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Background
Gene duplication clearly plays an important role in gener-
ating molecular diversity. In some cases, these duplica-

tions

arise

Abstract

Background: The iroquois (iro/lrx) genes encode transcriptional regulators that belong to the
TALE superclass of homeodomain proteins and have key functions during development in both
vertebrates and insects. The Irx genes occur in one or two genomic clusters containing three genes
each within the Drosophila and several vertebrate genomes, respectively. The similar genomic
organization in Drosophila and vertebrates is widely considered as a result of convergent evolution,
due to independent tandem gene duplications. In this study, we investigate the evolutionary history
of the Irx genes at the scale of the whole metazoan kingdom.

Results: We identified in silico the putative full complement of Irx genes in the sequenced genomes
of 36 different species representative of the main metazoan lineages, including non bilaterian
species, several arthropods, non vertebrate chordates, and a basal vertebrate, the sea lamprey. We
performed extensive phylogenetic analyses of the identified Irx genes and defined their genomic
organizations. We found that, in most species, there are several Irx genes, these genes form two
to four gene clusters, and the Irx genes are physically linked to a structurally and functionally
unrelated gene known as CG10632 in Drosophila.

Conclusion: Three main conclusions can be drawn from our study. First, an Irx cluster composed
of two genes, araucan/caupolican and mirror, is ancestral to the crustaceans+insects clade and has
been strongly conserved in this clade. Second, three Irx genes were probably present in the last
common ancestor of vertebrates and the duplication that has given rise to the six genes organized
into two clusters found in most vertebrates, likely occurred in the gnathostome lineage after its
separation from sea lampreys. Third, the clustered organization of the Irx genes in various
evolutionary lineages may represent an exceptional case of convergent evolution or may point to
the existence of an Irx gene cluster ancestral to bilaterians.

chromosomes or large chromosomal regions. In other
cases, duplications appear as tandem copies of genes,
which form clusters of evolutionarily related genes. Two

through the duplication of entire evolutionary questions are raised by the latter situation.
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When did these clusters form and what are the evolution-
ary forces that act to maintain these genes clustered? One
of the most intensively studied cases of clustered genes is
that of the Hox genes [1]. As complete genome sequences
become available, we can begin to track the evolutionary
history of many other clusters of evolutionarily related
genes. One gene family which displays genomic linkage of
unknown functionality and origin is the iroquois (iro/Irx)
family.

The Irx genes encode transcription factors that are
involved in many developmental processes in metazoans
[2,3]. The Irx proteins belong to the TALE (three ami-
noacid loop extension) superclass of homeodomain pro-
teins and are characterized by the presence, in addition to
the homeodomain, of two conserved specific domains of
unknown functions, named "IRO A" and "IRO box" [3-5].
Within the TALE superclass of homeobox genes, the Irx
genes appear closely related to the mohawk (Mkx, also
known as iroquois-like, Irxl) genes which encode proteins
with a homeodomain similar to that of the Irx proteins,
but lack the Irx-specific domains and harbour other con-
served domains (the "MKX A", "MKX B" and "MKX C"
domains) [5-7].

Three Irx genes - araucan, caupolican, and mirror — have
been identified in Drosophila, and they form a gene com-
plex (the so-called iroquois complex, Iro-C) that is
involved, during larval development and metamorphosis,
in the formation of sense organs (including the eyes), in
the specification of the dorsal part of the adult thorax and
in the patterning of the wing veins, as well as in the seg-
mentation of the body during embryonic development
[2,3]. Six Irx genes, organized into three-gene complexes
(IrxA which contains the Irx1, Irx2 and Irx4 genes and IrxB
which contains the Irx3, Irx5 and Irx6 genes) have been
isolated in mammals and have been shown to have key
roles during development, e.g. in neurogenesis and in the
patterning of the heart [2,3]. Orthologs of these genes
have been found in other vertebrates, such as the zebrafish
in which 11 Irx genes are organized into four clusters
[8,9]. A single Irx gene has been identified in the nema-
tode Caenorhabditis elegans [4], but its function has not
been characterized. Irx genes have also been identified in
a few other species, such as sponges, but they have not
been studied at the functional level [e.g. [5,10-12]].

The presence of several Irx genes and their organization
into three-gene complexes in both vertebrates and Dro-
sophila have raised several questions about the evolution-
ary history of these genes. First, are the Drosophila and
vertebrates clusters homolog, already present in the last
common ancestor of these species (this ancestor is known
as Urbilateria as it is the ancestor of all bilaterians, the ani-
mals displaying a bilateral symmetry)? Comparisons of
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the vertebrates and Drosophila Irx genes suggest that the
vertebrate genes are more similar to one another than to
their Drosophila counterpart, suggesting that the gene
duplications that have given rise to the Drosophila and ver-
tebrate complexes occurred independently and therefore
that these complexes do not derive from an ancestral clus-
ter present in Urbilateria [e.g. [3,13,14]]. However, this
conclusion is based on a very small sampling of species
and establishing a firmly-based scenario for Irx genes evo-
lution in bilaterians would require a broader sampling of
the species in which these genes are characterized. Such a
study has been recently published and the occurrence of
independent duplications has been advocated by the
authors of this study [12]. Second, what is the origin of the
2 or 4 complexes observed in vertebrates? Several lines of
evidence indicate that the two clusters found in mammals
(and other vertebrates such as birds) derive from an ances-
tral Irx cluster as a consequence of a chromosomal dupli-
cation event [3,13,14]. Indeed, Irx1, Irx2 and Irx4 are most
similar to Irx3, Irx5 and Irx6, respectively, suggesting that
Irx1/Irx3, Irx2/Irx5 and Irx4/Irx6 are pairs of paralogs. Fur-
thermore, the organization of the clusters, including the
orientation of the transcription of the genes, is very simi-
lar and paralogous genes flank the clusters in both mouse
and zebrafish. In this latter (and in other teleosts), the two
additional clusters that are found, would have been gen-
erated by a teleosts-specific genome duplication (whose
occurrence is now well documented; e.g. [8,9,15]). It is,
however, not clear when the ancestral vertebrate cluster
was established and when the suggested chromosomal
duplication occurred. Answering these questions requires
data from more basal vertebrates and non-vertebrate chor-
dates and non-chordate deuterostomes.

In a previously published study, Irimia et al. [12] reported
the existence of more than one Irx gene in several meta-
zoan genomes and these genes were in most cases clus-
tered. A phylogenetic analysis of these genes suggests that
these genes were produced by several independent dupli-
cations. In this article, we significantly extend this analysis
by retrieving and analyzing, at the phylogenetic and
genomic levels, the Irx genes encoded by several newly-
sequenced metazoan genomes. We confirmed that in
most species there are several Irx genes and that these
genes are clustered. We performed multiple phylogenetic
analyses of these sequences with up-to-date phylogenetic
methods. Taken together, our data suggest two possible
alternative evolutionary scenarios for the evolution of Irx
genes in animals: either several independent tandem
duplications events have occurred in the different bilate-
rian lineages and selective pressures independently acted
in each of these lineages to maintain the genes clustered
(in agreement with [12]), or a complex of Irx genes is
ancestral to bilaterians and has been conserved in most
species, but differential evolutionary rates have obscured
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the orthology relationships between genes from the differ-
ent bilaterian lineages. Both hypotheses are supported by
parts of the data and we do not think we can favor one of
the scenarios over the other one.

Results and discussion

Identification of the Irx and Mkx genes from the fully-
sequenced genomes of 32 metazoan species

We used the sequences of Irx and Mkx genes from Homo
sapiens and Drosophila melanogaster to identify, through
similarity searches using BLAST algorithm, the Irx and
Mkx genes encoded in the genomes of several species
which provide significant coverage of the main metazoan
evolutionary lineages (Figure 1). In most cases, we were
able to retrieve the complete homeodomain as well as the
additional conserved regions of the Irx and Mkx proteins
[5]. Given our extensive searches, we think that the
retrieved Irx and Mkx genes represent the full gene com-
plement for these two families within each analyzed
genome. All the identified sequences can be found in
Additional file 1. A multiple sequence alignment of the
conserved domains of the Irx and Mkx proteins can be
found in Additional file 2.

We used phylogenetic analyses and the presence of the Irx
and Mkx specific domains to define the respective com-
plement of Irx and Mkx genes. A representative phyloge-
netic tree is shown in Figure 2. This tree is based on a
multiple sequence alignment of the region that is con-
served between Mkx and Irx proteins, i.e. the homeodo-
main plus a few flanking amino acids (see Additional file
2). Given the high number of sequences, we excluded
from this alignment some sequences to simplify the tree,
in particular the more divergent ones, such as those from
the leech Helobdella. A similar tree topology was
obtained using an alignment including all sequences (not
shown). We also included the putative Irx gene that has
been cloned from the sponge Suberites domuncula [10] as
its affiliation to either the Irx or the Mkx families was not
clear [5]. We found a well-supported monophyletic group
that includes the known Mkx proteins together with sev-
eral newly-identified putative Mkx proteins (Figure 2).
This phylogenetic analysis and the presence of Mkx-spe-
cific conserved domains in these proteins (Additional file
2) allow their clear-cut identification as Mkx proteins.
Another monophyletic group includes the known Irx pro-
teins and a large number of other newly-identified puta-
tive Irx proteins (Figure 2). Although this group has poor
statistical support, the presence of the Irx-specific con-
served domains in most of the newly-identified proteins
within this monophyletic group, allowed their safe iden-
tification as Irx proteins (Additional files 1 and 2). The
proteins from the sponge Suberites and Amphimedon
cluster with the Irx proteins in our phylogenetic analyses
supporting the hypothesis that the corresponding sponge
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genes are bona fide Irx genes, as previously suggested by
Larroux et al. [11]. However, we have to notice that these
proteins lack the Irx-specific domains and are much diver-
gent with respect to bilaterian Irx proteins (as well as to
Mkx proteins; Additional file 2).

When reported on the species phylogeny, the numbers of
identified Irx and Mkx genes indicate contrasting trends in
the evolution of these two families (Figure 1). First, bona
fide Mkx genes cannot be found in non-bilaterian species
in contrast to Irx genes which are found, at least in cnidar-
ians and the placozoan Trichoplax, as well as probably in
sponges. We are therefore faced with two alternative
hypotheses: either the Mkx genes are ancestral to metazo-
ans and have been lost in the analysed non-bilaterian spe-
cies, or the Mkx genes may represent an innovation of
bilaterians and could be considered as bilaterian-specific
divergent Irx genes. Second, while Mkx genes are found in
both protostomes and deuterostomes (and are therefore
likely to be already present in Urbilateria), several unre-
lated species (13 out of 36) lack the Mkx gene, indicating
several independent events of gene loss. In contrast, Irx
genes are found in all studied species indicating strong
evolutionary pressures to conserve these genes. Third,
while Mkx genes are usually found as a single gene in each
species, we found several Irx genes in most cases (27 out
of 36 metazoan species, 26 out of 32 if we only consider
bilaterians). This indicates that the Irx (but not the Mkx)
gene family evolution has been shaped by gene duplica-
tions. We further studied these gene duplications by phy-
logenetic analyses and characterizing the genomic
organization of the Irx genes.

Phylogenetic analyses of the Irx genes suggest the
occurrence of many independent duplication events in
protostomes and deuterostomes

We first analysed a large sampling of Irx genes representa-
tive of the main metazoan lineages (Figure 3). We used a
multiple sequence alignment that includes both the home-
odomain and the additional conserved domains (Addi-
tional file 2). We excluded the most divergent sequences
from this alignment, including those from sponges that
lack the Irx specific domains. We found several mono-
phyletic groups, most of which were already observed in
the phylogenetic tree that includes the Mkx genes (Figure
2). These groups (which will be detailed below) include
either arthropods ("mirror" and "araucan/caupolican"
groups), or vertebrates ("Irx4/Irx6", "Irx2/Irx5", and "Irx1/
Irx3" groups), or lophotrochozoans (one group with an
annelid and a mollusc gene). However, we did not find any
statistically significant groups that include arthropods and
other protostomes, nor protostomes and deuterostomes
sequences. For example, while the "araucan/caupolican"
(arthropod sequences) clusters with the "Irx1/Irx3" group
(vertebrates sequences) in the ML tree (black arrow in Fig-
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Phylogenetic relationships between the species used in this study. The number of Irx and Mkx genes in each genome
and the potential clustering of the Irx genes are indicated. '+' indicates that the Irx genes form one or more clusters, '-' indicates
that there is no clustering, "' indicates that the current state of the assembly of the genome of the corresponding species does
not allow determination of the existence of clusters, and '/ indicates cases where there is only a single Irx gene. The names of
representative phylogenetic groups are indicated on the left of the nodes that define these different groups and along some of
the terminal branches. The identification of Irx genes in some of the indicated species were already reported in other studies
and our data are in full agreement with the previously published ones [4,5,9,11-13,37]. The color code for some of the meta-
zoan evolutionary lineages (sponges, cnidarians, placozoans, trochozoans, deuterostomes, and ecdysozoans) will also be used

in the next figures.
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Figure 2

Phylogenetic analysis of Irx and Mkx genes. The represented tree is a maximum-likelihood tree, which has been rooted
using the mouse TALE homeodomain TGIF as an outgroup. This tree is based on a multiple alignment that includes the home-
odomain plus a few flanking aminoacids of most of the retrieved Irx and Mkx. Similar relationships (with similar statistical sup-
ports) were found when we used the entire set of Mkx and Irx sequences. The Irx and Mkx groups are indicated in blue and
the associated numbers are their statistical support values obtained with different methods of phylogenetic reconstruction:
first number is the bootstrap support in maximum-likelihood analysis (500 bootstrap replicates); second number is the poste-
rior probabilities in Bayesian inference-based analysis; third number is the bootstrap support in neighbour-joining analysis
(10,000 bootstrap replicates); fourth number is the bootstrap support in maximum-parsimony analysis (1,000 bootstrap repli-
cates). The asterisk associated with the support in the neighbour-joining analysis indicates that in the neighbour-joining tree,
the strongly supported Irx group does not include the sponge genes which are found as outgroup to both Irx and Mkx pro-
teins. Statistical support in the maximum-likelihood analysis for some other internal branches is indicated in black. Only statis-
tical support values >50% are shown except for a few cases.
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ure 3), this group has a very week statistical support (10%)
and is not identified with the other phylogenetic recon-
struction methods (not shown). A similar situation is
observed for most of the other groups observed in the tree
in Figure 3. This phylogenetic analysis therefore suggests
that several independent duplications have occurred in
protostomes and deuterostomes and that the presence of
several Irx genes in many animals mainly represent evolu-
tionary convergences. This result is in concordance with the
conclusions of a previously published study based on a
more limited set of Irx genes and less detailed phylogenetic
analyses [12].

We next separately analyzed protostome and deuteros-
tome Irx genes, as it allowed us to construct phylogenetic
trees based on alignments which include many more ami-
noacid residues than when all metazoan sequences are
considered. We excluded from our analyses the most
divergent Irx sequences (those from Helobdella, Ciona,
Oikopleura, and the different nematode species) in order
to maximize the size of the unambiguously aligned por-
tion of the proteins.

Phylogenetic analyses of the protostome Irx genes suggest
the presence of two ancestral Irx genes in arthropods and
lophotrochozoans

In protostomes, we found four monophyletic groups in
the trees constructed by the different phylogenetic meth-
ods (Figure 4). Two of these groups only include arthro-
pod sequences: one group includes the Drosophila mirror
gene and one of the Irx gene found in the other analyzed
arthropod species; the other includes the Drosophila arau-
can and caupolican genes and the other Irx gene(s) from
the various arthropod species analyzed. To confirm the
validity of these two monophyletic groups, we analyzed
the arthropod sequences alone (this allowed to construct
phylogenetic trees based on an alignment of the full-
length proteins) and found strong support for the exist-
ence of monophyletic "mirror" and "araucan/caupolican"
groups (Additional file 3). Since each of these two groups
includes one gene from Daphnia pulex (a crustacean) and
one or two genes from every studied insect, the presence
of two Irx genes represents the ancestral situation for the
crustaceans+insects ('pancrustacea’) clade. These data
therefore show the occurrence of an ancient duplication
event in the arthropod lineage. A second duplication hap-
pened much more recently in some dipterans, comprised
in the brachycera lineage ("flies") that gave rise to the
araucan and caupolican genes found in Drosophila. In the
other dipteran lineage, the nematocera ("mosquitoes"), a
single "araucan/caupolican" gene has been retained as seen
in the three studied nematocera species, Aedes, Culex, and
Anopheles (Figures 1 and 4). Our data therefore confirm
the occurrence of two duplication events in the Irx gene
family in arthropods, as previously suggested [5].

http://www.biomedcentral.com/1471-2148/9/74

The two other protostome monophyletic groups concern
lophotrochozoan sequences (Figure 4): one group
includes three Irx genes from the limpet Lottia and one
gene identified in an EST collection of the mussel Mytilus
and therefore indicates the occurrence of duplications
specific to molluscs. The other group includes Irx genes
from three distantly-related species, the annelid Capitella
(1 gene), the mollusc Lottia (1 gene), and the flatworm
Schmidtea (2 genes). The other Irx genes from Capitella (2
genes), Lottia (3), and Schmidtea (2) do not cluster
together (Figure 4). Our interpretation of this phyloge-
netic tree is that there were two Irx genes in the last com-
mon ancestor of the three aforementioned
lophotrochozoan species and that one of the paralogs in
each evolutionary lineage underwent highly divergent
evolution (in such a way that these paralogs do not cluster
in the phylogenetic trees).

Since an ancestral two gene situation is found for both
arthropods and lophotrochozoans, it is therefore conceiv-
able that the presence of two Irx genes may be ancestral to
protostomes, but that differential evolutionary rates have
obscured the orthology relationships between genes from
the arthropod and lophotrochozoan lineages. We how-
ever have to note that a single Irx gene is found in several
different nematode species (Figure 1) which belong,
together with arthropods, to the ecdysozoans, one of the
two main protostome branches. If our hypothesis of an
ancestral two gene situation in protostomes is true, we
therefore have to consider that one or several Irx gene
losses have occurred in the nematode lineage. This is not
unconceivable as it is known that strongly-conserved
genes in bilatarians have been lost in nematodes, for
example several Hox genes [16], and our study points to
the loss of the Mkx genes in all the studied nematode spe-
cies. We can however clearly not exclude that the presence
of a single Irx gene in nematodes may represent the ances-
tral state in protostomes and that independent gene dupli-
cations occurred in arthropods and lophotrochozoans.

Phylogenetic analyses of the deuterostome Irx genes
indicate the presence of a single Irx cluster of at least 2
genes in the last common ancestor of present-day
vertebrates and suggest gene losses in non vertebrate
deuterostomes

We next focused on deuterostome sequences (Figure 5). We
found in our phylogenetic trees the 6 previously described
groups of Irx genes (Irx1 to Irx6) from mouse, human,
Xenopus, zebrafish and pufferfish, as well as their associa-
tion into three pairs of paralogs, Irx1/Irx3, Irx2/Irx5 and
Irx4/Irx6. This confirms that the last common ancestor of
the aforementioned vertebrate species (they all belong to
the osteichthyan lineage of gnathostomes) already owned
6 Irx genes which have been produced by the duplication,
earlier in vertebrate evolution, of 3 ancestral genes. The
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Phylogenetic analysis of Irx genes in metazoans. The represented tree is a maximume-likelihood tree, which has been
rooted using the Irx gene from Hydra as outgroup (this should be considered as arbitrary rooting). This tree is based on a mul-
tiple alignment that includes the Irx conserved domains. The most important monophyletic groups are indicated in red and the
associated numbers are their statistical support values obtained with different methods of phylogenetic reconstruction, as
described in Figure 2. Statistical support in the maximum-likelihood analysis for some other internal branches is indicated in
black. Only statistical support values >50% are shown except for a few cases. Other internal branches (with statistical support
<50%) should be considered unreliable. The black arrow points to the group which is discussed in the main text.
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Figure 4

Phylogenetic analysis of Irx genes in protostomes. The represented tree is a maximum-likelihood tree, which has been
rooted using the Irx gene from Nematostella as outgroup (this should be considered as arbitrary rooting). The most important
monophyletic groups are indicated in red and the associated numbers are their statistical support values obtained with differ-
ent methods of phylogenetic reconstruction, as described in Figure 2. Statistical support in the maximum-likelihood analysis for

some other internal branches is indicated in black.
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inclusion in our analysis of the Irx genes from a non gnath-
ostome species, the sea lamprey Petromyzon, allowed us to
further study the early evolution of Irx genes in vertebrates.
We found two of the four Petromyzon genes to cluster with
gnathostome groups, one as outgroup to the Irx2/Irx5
group and the other as outgroup to the Irx1/Irx3 group (Fig-
ure 5). This indicates that the last common ancestor of the
sea lamprey and gnathostomes has one Irx2/Irx5 and one
Irx1/Irx3 gene. No Petromyzon gene clusters with the gnath-
ostome Irx4/Irx6 group and the two other Petromyzon genes
(Irx-b and Irx-c) strongly cluster together but branch off
from the gnathostome genes. We have to mention that for
these genes we only retrieved a small part of their coding
sequence despite extensive efforts (Additional files 1 and 2)
and therefore incomplete sequences were used for the phy-
logenetic analyses. To our opinion, the most likely interpre-
tation is that Irx-b and Irx-c derive from an ancestral Irx4/
Irx6 gene that was independently duplicated in the evolu-
tionary lineage leading to the sea lamprey and in gnathos-
tomes. We think that the position of the Irx-b and Irx-c
sequences at the root of the deuterostome Irx tree is due, at
least in part, to the fact that partial sequences are used.
Taken together, our data therefore suggest that there were
three Irx genes in the last common ancestor of lampreys
and gnathostomes, and that the chromosomal duplication
that gave rise to the 6 aforementioned Irx groups occurred
in the gnathostome lineage, after the split with non gnath-
ostomes, such as sea lampreys (Figure 5). The identication
of the full set of Irx genes in chondrychthyans would allow
further definition of the timing of the duplication event.

We also studied Irx genes from urochordates and cephalo-
chordates. Unfortunately, the Irx genes from the urochor-
dates (the two Ciona species and Oikopleura) are very
divergent and when included in the phylogenetic analy-
ses, they perturb the overall topology of the trees and do
not cluster with vertebrate sequences (not shown). The
phylogenetic tree shown in Figure 5 therefore contains
only the Irx genes from the cephalochordate Branchios-
toma (amphioxus), as well as the only two Irx genes
known from non-chordate deuterostomes, the single Irx
gene encoded by the genome of the echinoderm Strongy-
locentrotus and the single Irx gene cloned (other Irx genes
may exist) in the hemichordate Saccoglossus (hemichor-
dates and echinoderms form a monophyletic group - the
Ambulacria - within deuterostomes). The 3 Branchiostoma
Irx genes strongly cluster together (and therefore derive
from Branchiostoma-specific duplications) and with the
Irx2/Irx5 group (statistical supports are not strong, but this
clustering is found with all methods). Similarly, the
Ambulacria Irx genes strongly cluster together and with
the Irx4/Irx6 group. The fact that the Branchiostoma Irx
genes, on one hand, and the Ambulacria Irx genes, on the
other hand, cluster with different vertebrate Irx gene (Irx2/
Irx5 and Irx4/Irx6 groups, respectively) suggest that there
were at least two Irx genes in the last common ancestor of
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the deuterostomes, like in prostostomes. The fact that a
third independent group (Irx1/Irx3) exists in vertebrates
may even suggest an ancestral situation where three Irx
genes form a cluster in deuterostomes (Irx1/Irx3, Irx2/Irx5
and Irx4/Irx6). In these views, we have to consider that the
two or three ancestral genes would have been conserved in
vertebrates (and subsequently duplicated), but one or two
of them were independently lost in Ambulacria (Irx4/Irx6
remained) and cephalochordates (Irx2/Irx5 remained and
was subsequently duplicated).

Organization of the Irx genes in clusters is a general rule in
bilaterians

As Irx genes are clustered in several species [e.g.
[3,8,9,12,13]] and more than one Irx gene is observed in
most bilaterian species, we wondered whether similar clus-
tering may be found in all these species. We found these
genes organized into clusters in most species (20 out of 28
bilaterian species; for the others, either there is a single
gene, or the current state of the genome assembly does not
allow to establish potential clusters due to very small
genomic scaffolds; Figures 1 and 6; the data used to con-
struct Figure 6 can be found in Additional file 4). The pres-
ence of clusters of Irx genes seems therefore to be an almost
general rule in bilaterians, as previously suggested [12]. We
also confirmed the observation made by Irimia et al. [12]
that the Irx genes are associated in most bilaterian species
except vertebrates, with a structurally and functionally
unrelated gene known as CG10632 in Drosophila (Figure 6).
CG10632 which encodes a well-conserved protein with
Ankyrin repeats (Additional file 5), is found either 5' to the
Irx cluster or within the cluster depending on the species
analyzed (Figure 6). In vertebrates - as well as in the cnidar-
ian Nematostella and the placozoan Trichoplax - putative
orthologs are found (human Ankyrin repeat domain pro-
tein 43 and 56, for example), but are not physically linked
to the Irx genes (not shown). This indicates therefore that
(1) a cluster of one (or more) Irx and CG10632 genes was
present in the last common ancestor of bilaterians, (ii)
there has been a strong evolutionary pressure to maintain
association of the Irx and CG10632 genes in bilaterians,
(iii) this pressure has been relaxed in vertebrates. Further
characterization of the CG10632 genes in species such as
Drosophila and Branchiostoma is needed to define the mech-
anistic reasons for this association (such as regulatory
region sharing).

These data about the genomic organization of the Irx
genes can be interpreted in two different ways. The sim-
plest and most parsimonious explanation is that a cluster
of at least two Irx genes (+CG10632) is ancestral to bilat-
erians and has been conserved in this evolutionary line-
age, like what has been observed for other homeobox
gene clusters, such as the Hox, ParaHox and NK clusters
[1,17]. This hypothesis is supported by our analyses that
suggest the presence of at least 2 genes in the last common
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ancestor of each investigated lineage, lophotrochozoans,
arthropods, and deuterostomes. One plausible and parsi-
monious interpretation of these analyses is that this situa-
tion might be ancestral to bilaterians. This view is,
however, not supported by the phylogenetic analyses of
the Irx genes at the scale of the bilaterians, which suggest
independent gene duplications in the different bilaterian
lineages (see previous sections). The hypothesis of cluster
of Irx genes already present in the last common ancestor

of bilaterians would require that we postulate that the
phylogenetic trees do not show the real relationships
between the Irx genes from the different bilaterian line-
ages, which might be a consequence of differential rates of
evolution in these lineages. This hypothesis is also not
supported by the presence of a single Irx gene in several
different nematode species - we would have to postulate
that one or more Irx genes have been lost in the nematode
lineages.
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The second possibility is that the duplications of the Irx
genes have occurred independently and in all cases there
have been pressures to maintain the physical linkage of
the duplicated genes. This explanation already proposed
by Irimia et al. [12] is in agreement with the phylogenetic
analyses, but is faced with one major problem, explaining
why in several independent lineages there have been sim-
ilar pressures to keep the duplicated genes in clusters.
Indeed, it is easy to explain that following tandem gene
duplications there could be, in some rare cases, molecular
events that lead to phenomenon such as shared regulatory
regions or global gene regulation, favouring cluster main-
tenance, while in most other cases, the duplicated genes
would be, after some time, dispersed in the genome, as it
is observed for most multigenic families. It is much more
difficult to understand why, in the case of the Irx genes,
there would have been systematic events leading to cluster
maintenance after numerous instances of gene duplica-
tions, unless postulating some particular properties of the
Irx genomic region that would, by itself, favor the conser-
vation of the physical link between the duplicated genes.
The existence of an ancestral cluster of a single Irx gene
and CG10632 may represent such a property, constraining
the duplicated Irx genes to remain associated with
CG10632 and therefore with each others. This remains
nevertheless to be proven and does not explain every-
thing, as for example why the CG10632 gene has never
been duplicated while the Irx genes would have dupli-
cated so many times (Figure 6, Additional file 5).

Conclusion

We present here a large-scale phylogenomic analysis of
the Irx and Mkx genes that extends a previously published
study on the evolution of Irx genes in metazoans. Several
main conclusions can be drawn from our study. First, an
Irx cluster composed of two genes, araucan/caupolican and
mirror, is ancestral to the crustaceans+insects clade and
has been strongly conserved in this clade. Second, 3 Irx
genes organized into a cluster were probably present in
the last common ancestor of vertebrates and the duplica-
tion that has given rise to the six groups of genes (organ-
ized into 2 clusters) found in most vertebrates occurred in
the gnathostome lineage after its separation from sea lam-
preys. Third, several Irx genes organized into clusters are
found in many different bilaterian species representing
various evolutionary lineages. This unexpected feature can
be explained in two opposite ways. Our analyses were
unable to discriminate between these two possibilities.
The first possibility is that there was an ancestral Irx cluster
composed of two or three genes in Urbilateria, and that
there have been structural and/or functional constraints
that maintained this organization in the various bilaterian
lineages. However, the genes constituting these clusters
would have a differential evolution which would hide
their orthology relationships. Furthermore, additional
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genes duplications and losses would have also occurred in
some lineages. The second possibility is that the different
Irx clusters have been independently acquired, implying
numerous independent tandem duplications and pres-
sures to maintain the physical linkage of duplicated genes
in several different lineages. In this view, the Irx genes
would be specially prone to duplication events and/or
retention of functional paralogs over long evolutionary
times. With the currently available data, we do not think
it is possible to favor one of the explanations over the
other one.

Methods

Retrieval of the Irx and Mkx sequences

Irx and Mkx gene sequences were retrieved using
TBLASTN and BLASTP algorithms [18] on the current
assembly and the predicted proteins (if available) of the
genomes of the species indicated in Figure 1, using the
BLAST servers dedicated to these species (Doe Joint
Genome Institute, Baylor College of Medicine, Flybase,
Genome Sequencing Center, and Ensembl) or the
National Center for Biotechnology Information (NCBI)
BLAST server (Genomic BLAST databases) [19-24]. Addi-
tional BLAST searches were also performed against the
NCBI protein and EST databases in order to identify Irx
and Mkx genes in additional species whose genomes are
not completely sequenced. Aminoacid sequences were
subsequently predicted using Geneid, Genscan, and
TBLASTN against the NCBI nr protein database
[18,25,26]. All the sequences we have isolated are availa-
ble upon request. Species abbreviations used in the
present article are: Acypis = Acyrthosiphon pisum (pea aphid
- insect); Aedaeg = Aedes aegypti (yellow fever mosquito -
insect); Ampque = Amphimedon queenslandica (demos-
ponge); Anogam = Anopheles gambiae (mosquito - insect);
Apimel = Apis mellifera (honey bee - insect); Bommor =
Bombyx mori (silkworm - insect); Braflo = Branchiostoma
floridae (amphioxus - cephalochordate); Brarer = Brachy-
danio rerio (zebrafish - vertebrate); Caeele = Caenorhabditis
elegans (nematode); Calvic = Calliphora vicina (Blue blow-
fly - insect); Capsp1 = Capitella sp I (annelid); Culpipqui =
Culex pipiens quinquefasciatus (mosquito - insect); Dappul
= Daphnia pulex (water flea - crustacean); Dromel = Dro-
sophila melanogaster (fruitfly - insect); Galgal = Gallus gallus
(chick - vertebrate); Helera = Heliconius erato (Red Passion
Flower butterfly - insect); Homsap = Homo sapiens (verte-
brate); Hydmag = Hydra magnipapillata (cnidarian); Lotgig
= Lottia gigantea (limpet — mollusk); Musmus = Mus muscu-
lus (mouse - vertebrate); Mytcal = Mytilus californianus
(mussel — mollusk); Nasvit = Nasonia vitripennis (parasi-
toid wasp - insect); Nemvec = Nematostella vectensis (sea
anemone - cnidarian); Pedhumcor = Pediculus humanus cor-
poris (human body lice - insect); Petmar = Petromyzon
marinus (Sea lamprey - vertebrate); Sackow = Saccoglossus
kowalevskii (hemichordate); Schmed = Schmidtea mediterra-
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nea (Planarian - platyhelminthes); Spofru = Spodoptera fru-
giperda  (fall armyworm - insect); Strpur =
Strongylocentrotus purpuratus (purple sea urchin - echino-
derm); Subdom = Suberites domuncula (demosponge); Tet-
nig = Tetraodon nigroviridis (pufferfish - vertebrate); Triadh
= Trichoplax adhaerens; Tricas = Tribolium castaneum (red
flour beetle - insect); Xentro = Xenopus tropicalis (verte-
brate).

Phylogenetic analyses

Multiple alignments were performed with Clustal W [27]
using the ClustalW web server at the Bioinformatics
Center of the Kyoto University [28] and they were subse-
quently manually improved. Handling of the multiple
alignments was done using SEAVIEW [29]. Unweighted
maximum-parsimony (MP) and neighbour-joining (NJ)
reconstructions were performed with the PAUP 4.0 pro-
gram [30]. NJ analyses were done using the BioN]J algo-
rithm [31] and 10,000 bootstrap replicates. MP analyses
were performed with the following settings: heuristic
search of over 250 bootstrap replicates; MAXTREES set at
3000, and other parameters set at default values. Maxi-
mum likelihood (ML) analyses were performed with
PHYML [32]. PHYML analyses were performed using the
WAG amino-acid substitution model [33], the frequencies
of amino acids being estimated from the data set, and rate
heterogeneity across sites being modelled by two rate cat-
egories (one constant and eight g-rates). The amino acid
substitution model was chosen using ModelGenerator
[34]. Statistical support for the different internal branches
was assessed by bootstrap resampling (500 bootstrap rep-
licates), as implemented in PHYML [32]. Bayesian infer-
ence was performed using the Markov chain Monte Carlo
method as implemented in the MRBAYES (version 3)
package [35,36]. We used the WAG substitution frequency
matrix [33] with among-sites rate variation modelled by
means of a discrete g distribution with four equally prob-
able categories. Two independent Markov chains were
run, each containing from 1,500,000 to 3,000,000 Monte
Carlo steps (depending on the number of steps required
to get chain convergence). One out of every 250 trees was
saved. The trees obtained in the two runs were meshed
and the first 25% of the trees were discarded as 'burnin’.
Marginal probabilities at each internal branch were taken
as a measure of statistical support. All the alignments and
the trees are available upon request. Phylogenetic rela-
tionships between the species used in this study (as
depicted in Figure 1) are based on [38-42].
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List of all the sequences used in our study in fasta format. The sequence
of the proteins are given. For the Irx proteins, we highlighted the homeo-
domain and Iro box in red and blue, respectively. The name of the newly-
identified proteins were underlined. Nucleotide sequences are available on
request.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-74-S1.pdf]

Additional file 2

Multiple alignments of the conserved domains of Irx and Mkx pro-
teins. These alignments only show the conserved domains of the Mkx and
Irx proteins, as defined in [5]. Some of the newly-identified sequences are
clearly incomplete, due to gap in the genome sequences and/or difficulties
to predict compmete open reading frame from the genomic sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-74-S2.pdf]

Additional file 3

Phylogenetic analysis of Irx genes in arthropods. The represented tree is
a maximum-likelihood tree, based on an alignment of the full-lenght pro-
tein sequences and which has been rooted using the Irx gene from Nema-
tostella as outgroup (this should be considered as arbitrary rooting). The
most important monophyletic groups are indicated in red and the associ-
ated numbers are their statistical support values obtained with different
methods of phylogenetic reconstruction, as described in Figure 2. Statisti-
cal support in the maximum-likelihood analysis for some other internal
branches is indicated in black.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-74-S3.pdf]

Additional file 4

Summary of the study of the genomic organization of the Irx genes
and their physical association with CG10632 genes. This table contains
the genomic data that have allowed to construct Figure 6.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-74-S4.pdf]

Additional file 5

Multiple alignments of sequences of the CG10632 proteins. This file
contains the alignment of the whole sequence of the CG10632 proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-74-S5.pdf]
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