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Abstract

Background: Major conflict between mitochondrial and nuclear genes in estimating species
relationships is an increasingly common finding in animals. Usually this is attributed to incomplete
lineage sorting, but recently the possibility has been raised that hybridization is important in
generating such phylogenetic patterns. Just how widespread ancient and/or recent hybridization is
in animals and how it affects estimates of species relationships is still not well-known.

Results: We investigate the species relationships and their evolutionary history over time in the
genus Polygonia using DNA sequences from two mitochondrial gene regions (COl and NDI, total
1931 bp) and four nuclear gene regions (EF-1a, wingless, GAPDH and RpS5, total 2948 bp). We
found clear, strongly supported conflict between mitochondrial and nuclear DNA sequences in
estimating species relationships in the genus Polygonia. Nodes at which there was no conflict tended
to have diverged at the same time when analyzed separately, while nodes at which conflict was
present diverged at different times. We find that two species create most of the conflict, and
attribute the conflict found in Polygonia satyrus to ancient hybridization and conflict found in
Polygonia oreas to recent or ongoing hybridization. In both examples, the nuclear gene regions
tended to give the phylogenetic relationships of the species supported by morphology and biology.

Conclusion: Studies inferring species-level relationships using molecular data should never be
based on a single locus. Here we show that the phylogenetic hypothesis generated using
mitochondrial DNA gives a very different interpretation of the evolutionary history of Polygonia
species compared to that generated from nuclear DNA. We show that possible cases of
hybridization in Polygonia are not limited to sister species, but may be inferred further back in time.
Furthermore, we provide more evidence that Haldane's effect might not be as strong a process in
preventing hybridization in butterflies as has been previously thought.
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Background

Phylogenetics at the species-level is becoming increasingly
important in the study of processes underlying speciation
[1,2]. Most species-level phylogenies have until recently
been based on only mitochondrial DNA (mtDNA) due to
the ease of PCR amplification and its perceived suitability,
e.g. due to maternal inheritance (shorter time for coales-
cence than nuclear DNA (nDNA) because of smaller N,),
lack of recombination and relatively high mutation rate.
However, species phylogenies are not necessarily the same
as gene phylogenies [3,4], as different genes might have
different histories. Genes involved with speciation, affect-
ing such traits as hybrid incompatibility, as well as sex
chromosomes should be more differentiated between
species and less likely to introgress than autosomes [5-8].
Different processes such as random sorting of homoplasy,
ancient polymorphism and hybridization with gene intro-
gression can obscure patterns of species relationships.
Information from different regions of genomes such as
mitochondrial DNA, nuclear DNA (from sex chromo-
somes as well as from autosomes) and microsatellites are
thus necessary in investigating the evolutionary history of
a group of closely related species.

As species-level molecular phylogenies based on both
mitochondrial and nuclear markers have become more
common, it has become clear that there is often well-sup-
ported conflict between the genomes for certain clades in
given phylogenies [9]. Recent work is pointing to major
conflict between mtDNA and nuclear DNA in species-
level phylogenetic analyses [6,9-15]. The conflict is often
attributed to ancient or recent hybridization [9,12-14] or
incomplete lineage sorting [15]. Hybridization, a well-
accepted process in plants, appears to be more common
also among closely related animals than previously
thought [16]. Kronforst [17] showed in Heliconius butter-
flies that gene flow between species can proceed for long
periods of time after divergence.

Although phylogenies give us a hypothesis of species rela-
tionships, they tell us little about the processes involved in
diversification on their own. More information is needed
to discover reasons for diversification, such as geographic
location of specimens used and times of divergence of lin-
eages. Contemporary sympatric species might have been
allopatric when the two lineages diverged and without
well-sampled species it is even harder to draw any conclu-
sions about movements of species and populations.
Knowledge about when divergences of lineages have hap-
pened in a given group of species may give insight to the
processes behind the conflicts in phylogenetic signal.
However, the temporal framework has rarely been studied
for such conflicts.

Here we study the relationships of species in the genus
Polygonia (Lepidoptera: Nymphalidae), which have been
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used as model taxa in numerous studies on the evolution
of insect-host plant interactions [18-21], phenotypic plas-
ticity in life-history traits [22,23], effects of environment
on distribution [24] and insect physiology [25,26]. Polygo-
nia is a genus thought to include five Palaearctic species
(P. c-album, P. c-aureum, P. egea, P. gigantea and P. inter-
posita), and nine Nearctic species, seven in the United
States and Canada (P. comma, P. faunus, P. gracilis, P. inter-
rogationis, P. oreas, P. progne and P. satyrus [27,28]) and
two endemic to Mexico (P. g-argenteum and P. haroldii).
The taxonomic status of some of these species is disputed.
Polygonia interposita has been treated as a subspecies of P.
c-album [29] but was suggested to be a species-level taxon
by Churkin [30]. So far, this taxon has not been included
in any earlier molecular studies. We have tentatively
treated P. zephyrus as a species separate from P. gracilis [fol-
lowing [31]] although this status is unclear; P. zephyrus is
often considered conspecific with P. gracilis [32]. These
two taxa (P. zephyrus and P. gracilis) are morphologically
distinguishable at the extremes of their ranges but
between those "ends of a cline" a broad zone exists where
intermediate forms occur (ADW pers. obs.). This may be
an example of incipient speciation or secondary contact
between two species. Earlier, P. oreas was sometimes con-
sidered a subspecies of P. progne, but in a recent study
[33], P. oreas was found to be closely related to P. gracilis.

According to previous analyses, the ancestor of Polygonia
was distributed in the Palaearctic and there have been two
colonization events into the Nearctic region [33]. The
ancestral host plants were most likely "urticalean rosids"
(which includes the closely related plant families Urti-
caceae, Ulmaceae, Cannabaceae and Celtidaceae) [21,34].
Many Polygonia species are still restricted to plants from
this group but some species have included additional or
shifted completely to other plant families, such as Betu-
laceae, Ericaceae, Grossulariaceae and Salicaceae. In previ-
ous studies [21,34] phylogenetic trees have been used to
infer ancestral host plant ranges used by butterflies in the
subfamily Nymphalinae. The results imply that when host
plant range has expanded, an increase in the rate of net
diversification has followed. In order to understand in
more detail the dynamics of host plant use and diversifi-
cation in the Polygonia butterflies in particular, and insects
in general, it is necessary to generate a hypothesis of the
evolutionary history of the group.

Species of Polygonia have been included in several earlier
phylogenetic studies [33,35,36], but the relationships of
some species have not been stable and conflict between
datasets has been noted [36]. In this study, we present a
hypothesis of the evolution of this genus in which all cur-
rently accepted species and most subspecies have been
included. We then apply a temporal framework in order
to illuminate the causes of major conflicts between
genomic datasets.
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Results

Combined analysis with Partitioned Bremer Support
(PBS) of the 25-taxon dataset showed that there was
strong conflict between the mitochondrial partition and
the nuclear partition at almost all nodes within the genus
Polygonia (Figure 1). Analysis of the two genomic datasets
separately showed that the topology was different at these
conflicting nodes (Figure 2). Despite the conflict, there are
several well-supported clades at which there is no conflict
between datasets. The genus Polygonia without the species
Kaniska canace is strongly supported by all datasets. The
position of K. canace as sister to the genus Nymphalis is not
well-supported in the cladistic analyses, but is supported
by all Bayesian analyses of combined and separate data.
The sister species relationships of P. egea and P. undina, as
well as P. comma and P. g-argenteum are well supported.
The clade containing P. c-album, P. interposita and P. fau-
nus, as well as the clade containing all the rest of the
Nearctic species (except P. faunus), are also well-sup-
ported.

The level of conflict between the different genomic data-
sets is particularly evident when comparing the separate
analyses, where species relationships are quite different
with relatively good support (Figure 2). These topologies
were not dependent on method used for analysis, and
thus the phylogenetic signal found within the mitochon-
drial and nuclear datasets appears to be strong. The excep-
tion is P. gigantea, which receives strong support as the
sister to P. undina+P. egea with the nuclear dataset, but lit-
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Combined analysis of all genes. Values above branches
are the Partitioned Bremer Support (PBS) values for the
combined mitochondrial gene partition and values below
branches are the PBS values for the combined nuclear gene
partition. Grey circles highlight nodes with strong conflict
within the Polygonia clade. Pictured butterflies are from top
to bottom Kaniska canace, Nymphalis polychloros, Polygonia c-
album, Polygonia satyrus and Polygonia zephyrus.
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tle or no support as sister to P. c-aureum with the mito-
chondrial dataset (Figure 2). Interestingly, the estimated
times of divergence for clades which are common to the
two datasets are similar regardless of which dataset one
uses (with the caveat that the confidence intervals are very
wide). Thus the Polygonia clade is estimated to have started
diverging 18-19 million years ago (mya), the P. c-album to
Nearctic Polygonia clade between 13 and 16 mya, the
Nearctic Polygonia at 11-12 mya and the P. progne to P.
gracilis clade between 5 and 6 mya (Figure 2).

Of particular interest in the separate analysis of the mito-
chondrial and nuclear datasets is the position of P. inter-
posita as sister to P. c-album (indeed with almost identical
COI haplotypes) based on mtDNA, but as sister to P. ¢-
album+P. faunus based on nDNA. Also the position of P.
satyrus as very closely related to P. gracilis+P. oreas+P.
zephyrus based on mtDNA, but as sister to P. interroga-
tionis+P. g-argenteum+P. comma based on nDNA. Finally,
the position of P. oreas as part of the P. gracilis+P. zephyrus
clade based on mtDNA, but as sister to P. progne based on
nDNA (Figure 2).

Increasing the sample size for each gene region and ana-
lyzing them separately brings some light to these patterns.
The COI tends to have very little variation within species,
but substantial variation between species (Figure 3). The
exceptions are P. interposita, which is almost identical to P.
c-album; P. g-argenteum, which is very similar to P. comma;
and P. gracilis, P. zephyrus and P. oreas, which are all very
similar to each other even to the point of sharing haplo-
types between the three taxa. The position of P. satyrus is
consistent with the 25-taxon dataset, and shows some var-
iation within the species.

The nuclear gene regions show quite different topologies
when analyzed on their own, but several patterns are con-
sistent between them (Figure 4, Figure 5, Figure 6, Figure
7 and Figure 8). First of all, the haplotypes of GAPDH and
wgl are very similar in the taxa P. gracilis, P. zephyrus, P.
haroldii, P. oreas and P. progne (Figure 5, Figure 7 and Fig-
ure 8). The haplotypes of EF-1a, RpS5 and wgl in P. satyrus
are more related to P. comma, P. g-argenteum and P. inter-
rogationis than to the other Nearctic Polygonia (Figure 4,
Figure 6 and Figure 7). The nDNA haplotypes found in P.
interposita tend to not be especially close to P. c-album (Fig-
ure 4, Figure 5, Figure 6 and Figure 7). Interestingly, the
haplotypes of RpS5 found in P. oreas are very closely
related to those found in P. progne (Figure 6 and Figure
8d), while all other nDNA haplotypes are ambiguous
about this relationship. Finally, the subspecies P. e. undina
is differentiated from P. egea for all sequenced genes.

Regarding the haplotype networks, we have focused on

the unresolved clade of P. zephyrus, P. gracilis and P.
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oreas (in COI) as well as the relationships between these
species and P. progne and P. haroldii (in RpS5, EF-1a,
GAPDH and wgl) (Figure 8). None of the haplotype net-
works showed a star-like pattern, i.e.,, a "central" com-
monly shared haplotype from which other haplotypes
deviate by only a few mutational steps, indicative of a
rapid and recent diversification [37]. Most haplotypes
were only represented by one individual. A few haplo-
types were however shared, even between different spe-
cies. For instance, Polygonia oreas shared the same
haplotype with P. gracilis and P. zephyrus in the COI data-
set (Figure 8a). In the EF-1o dataset one P. oreas haplo-
type is shared with P. gracilis (Figure 8b). Shared
haplotypes were found for P. haroldii, P. progne and P.
zephyrus in the GAPDH dataset as well as for P. progne, P.
zephyrus and P. gracilis (Figure 8c). In the RpS5 dataset P.
haroldii, P. zephyrus and P. gracilis shared the same hap-
lotype (Figure 8d). Three haplotypes were shared between
P. gracilis and P. zephyrus, one haplotype was shared
between P. progne and P. gracilis and one haplotype was
shared between P. oreas and P. zephyrus in the wgl dataset
(Figure 8e). In addition, in the wgl dataset one haplotype
is shared between P. comma, P. g-argenteum and all P.
satyrus. However, the P. g-argenteum individual had
many positions of missing data.

Discussion

Major clades in the phylogeny

Unlinked genes are expected to have independent genea-
logical histories [3,38], and thus combining data may not
always be informative of species relationships [39]. In this
study we have found that gene regions from different
genomes (mtDNA and nDNA) give rather different esti-
mates of species relationships. The phylogenetic positions
of four taxa in particular need explanation: P. satyrus, P.
oreas, P. haroldii and P. interposita. Each of these is strongly
supported in different positions depending on which
dataset is analysed. Before we discuss these four anoma-
lous taxa, we will discuss the general findings for the other
species, as this is the most complete study of Polygonia
phylogeny to date, including several taxa that have never
been part of a phylogenetic systematic investigation.

Previous studies have shown conflicting results on the
position of the taxon "canace" [33,35,36], often placed in
the monotypic genus Kaniska, but suggested to be
included in Polygonia by Wahlberg & Nylin [36]. The
present study does not corroborate that finding, but it
should be noted that in contrast to the earlier study we did
not include morphological data here. However, it is clear
that the position of "canace" is not stable and it's sister
relationship either to Nymphalis or to Polygonia is weakly
supported. In such a case, we feel it is best to retain it in
the monotypic genus Kaniska, in order to highlight its
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"oddity" and long history of independent evolution. This
is of course only valid if one accepts the validity of the
genera Polygonia and Nymphalis, which some consider to
be a single genus Nymphalis, along with our Aglais [e.g.,
[40,41]]. For reasons explained in Wahlberg & Nylin [36],
we feel that the genus Polygonia should be retained, and
thus we suggest that the taxon "canace" be retained in the
genus Kaniska, as is frequently done in the literature [e.g.,
[29], e.g., [42,43]].

There are several independent lineages within Polygonia.
The type species of the genus, Polygonia c-aureum, is the sis-
ter to the rest of Polygonia, as has been found in previous
studies [33,35,36]. Polygonia gigantea, included here for
the first time in a phylogenetic study, is an independent
lineage that is most likely sister to the P. egea+P. undina
clade, based on the well-supported result of the nDNA
dataset and the ambiguous result of the mtDNA dataset.
Polygonia undina has mainly been considered to be a sub-
species of P. egea, but our results show that it is genetically
very distinct and the common ancestor of the two
diverged as early as between 8-13 mya (Figure 2). This
makes the pair older than several other species pairs in
Polygonia, and we found no evidence of interbreeding (all
genes were clearly diverged for this pair of species). We
thus elevate P. undina to the species level (stat. nov.).

The clade containing P. c-album, P. interposita and P. faunus
is well-supported and quite clearly the sister to the Nearc-
tic clade. The interrelationships of these three species will
be discussed in more detail below. The Nearctic clade
including P. satyrus, P. interrogationis, P. comma, P. g-argen-
teum, P. progne, P. oreas, P. haroldii, P. gracilis and P. zephy-
rus, is also well-supported. Within this clade, P. g-
argenteum (here included for the first time in a phyloge-
netic analysis) is clearly the sister species to P. comma, and
apparently these two have diverged relatively recently (2-
4 mya). The position of P. interrogationis with regard to
these two species is different with the two genomic data-
sets. Mitochondrial DNA suggests that it is sister to the rest
of the Nearctic species, while nDNA suggests that it is sis-
ter to P. comma+P. g-argenteum. The latter sister relation-
ship is in fact suggested by morphological data as well
[35], giving more weight to this hypothesis of phylogeny.

Our data suggest that P. comma and P. g-argenteum have
diverged in the past 2-3 mya, during which time there has
been considerable morphological diversification between
them. Adults of g-argenteum are among the largest of Poly-
gonia (generally the same size as P. interrogationis), and
they lack the seasonal polyphenism (expression of dark
"summer" forms) seen in P. comma and P. interrogationis.
As a result, size excluded, adults of P. satyrus and P. g-
argenteum share a very similar superficial resemblance
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Topology of haplotypes from Bayesian analysis based on the mtDNA COI. Details of gracilis/zephyrus/oreas clade are
shown in the haplotype network in Figure 8a. Values below the branches are posterior probabilities for the nodes to the right

of the numbers.

(especially in the dorsal view), while adults of P. comma
(especially dark forms) and P. g-argenteum appear quite
different at first glance.

As an aside, it is interesting to note that apparently similar
patterns of differences between mitochondrial and
nuclear DNA are found in the genus Nymphalis (Figure 2).
This warrants a separate study to see if similar forces have
acted on the sister group of Polygonia.

Ancient mitochondrial introgression in P. satyrus

Mitochondrial DNA suggests that P. satyrus is closely
related to P. gracilis, P. zephyrus and P. oreas, whereas
nDNA suggests very strongly that P. satyrus is sister to P.

interrogationis, P. comma and P.

g-argenteum (Figure 2).

Morphological and ecological features, however, suggest

that P. satyrus is more related to

the latter clade. In addi-

tion to great overall phenotypic similarity between the
adults and immatures of P. satyrus and P. comma, larvae of
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those two taxa, as well as those of P. interrogationis and P.
g-argenteum [see [44]], feed on Ulmaceae, Moraceae and
Urticaceae as larvae, and late-instar larvae of P. satyrus and
P. comma make very similar larval nests out of altered host
plant leaves [45]. Polygonia satyrus is largely parapatric
with respect to P. comma, as the two fly in sympatry only
in a limited portion of northeastern North America, and
rarely in eastern Colorado, where P. comma is present only
as uncommon vagrant individuals from the east [46].

According to our estimates of times of divergence (Figure
2), P. satyrus diverged from the ancestral populations
between 7-8 mya based on nDNA, whereas the result
from mtDNA suggests that the divergence happened
much more recently, about 2 mya. Given that the nDNA
estimate of divergence time is older than that from

mtDNA, it is possible that the presence of an "alien"
mtDNA lineage in P. satyrus may be the result of ancient
introgression from the ancestor of P. gracilis+P. zephy-
rus+P. haroldii, which could have happened some 2-3
mya (prior to the onset of the Pleistocene glacial periods).
The current sympatric distribution of P. satyrus vs. P. graci-
lis+P. zephyrus (the geographic distribution of these taxa is
almost identical) highlights the potential for gene
exchange in the recent past and present. Given also that all
mtDNA haplotypes found to date in P. satyrus are very
similar, yet all nDNA haplotypes are more related to the
P. interrogationis clade, it is possible that repeated popula-
tion bottlenecks during the glacial cycles have wiped out
the original mtDNA lineages from P. satyrus, by chance
leaving the current introgressed lineage in extant popula-
tions. Lack of gene flow during the last 2 million years has
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now resulted in reciprocal monophyly to evolve in P.
satyrus and P. gracilis+P. zephyrus+P. haroldii. Such a specu-
lative scenario could be corroborated by more extensive
sampling of P. satyrus populations across North America,
which could make possible coalescense modeling to rule
out any possibility that the conflicting results can be
explained by ancient polymorphisms [39,47].

In butterflies females are the heterogametic sex and it is
accepted that "Haldane's rule" [48] is an important phe-
nomenon, ie. introgression of the maternally inherited
mtDNA will not enter the new gene pool due to low via-
bility or sterility of female F, offspring [see [49]]. Pres-

graves [50] showed that hybrid sterility and inviability are
common in Lepidoptera and evolve gradually. In those
studies of butterflies where both mtDNA and nDNA have
been screened, introgression in nDNA but not mtDNA
has been found between Papilio machaon and P. hospiton
(Papilionidae) [7] as well as between Heliconius cydno and
H. melpone (Nymphalidae) [13,14]. However, mtDNA
introgression has been found between the latter species
pair in another study [8], suggesting that the wide accept-
ance of Haldane's rule needs to be questioned. In the case
of Polygonia satyrus we have no knowledge of whether
hybrid female offspring are sterile or not, but even if
hybrids between contemporary P. satyrus and species from
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the P. gracilis clade are inviable this may not have been the
case when (if) introgression occured.

Recent mitochondrial introgression in P. oreas

The mtDNA haplotypes found in P. oreas are very similar
to those found in P. gracilis and P. zephyrus, and one hap-
lotype is shared between these species. In the nDNA data-
sets, haplotypes are shared between P. oreas, P. gracilis and
P. zephyrus for EF-1a but not for the other genes, and in
the case of RpS5, haplotypes of P. oreas are clearly more
related to P. progne (Figure 4, Figure 5, Figure 6, Figure 7,
and Figure 8e). Polygonia oreas has been considered a sub-
species of P. progne by various authors [e.g., [51]], thus
once again, the nDNA dataset corroborates the morpho-
logical proposals of previous authors. Interestingly, both
the mtDNA and the nDNA datasets suggest that the clade
including the five taxa P. progne, P. oreas, P. haroldii, P. gra-

cilis and P. zephyrus began diverging about 5 mya at the
end of the Miocene. Based on nDNA, P. oreas and P. progne
began diverging about 3 mya, whereas the divergence of P.
oreas mtDNA is more recent. As with P. satyrus, no P. oreas
COI haplotypes were found to be more related to its prob-
able sister species P. progne, and it may be that bottlenecks
have wiped out the original mtDNA lineages, while cur-
rent introgression is introducing new genetic material into
P. oreas from the P. gracilis complex (most likely from
western P. zephyrus). On the other hand, we have sampled
only 5 individuals of P. oreas, and it may be that a denser
sampling would reveal mtDNA lineages closer to P.
progne. Polygonia oreas flies in sympatry and synchrony
with P. zephyrus throughout the vast majority of its range,
the latter usually being much more abundant locally and
regionally; thus there are ample opportunities for ongoing
introgression between the two taxa. It should be noted
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that adults of some subspecies of P. oreas, especially nigro-
zephyrus, and some individuals of threatfuli, are so similar
to those of sympatric P. zephyrus that many experienced
lepidopterists cannot distinguish them (without life his-
tory information), and these two taxa were not described
until 1984 and 2001, respectively (adults of these taxa are
still hiding in museum series of P. zephyrus all over the
world).

Recent speciation of P. haroldii and incipient speciation
of P. gracilis/zephyrus?

The taxa P. haroldii, P. gracilis and P. zephyrus appear to be
related to one another in a complicated way. Mitochon-

drial DNA suggests that P. haroldii is a distinct lineage sis-
ter to the P. gracilis/zephyrus lineage (that includes the
"alien" P. satyrus lineage) (Figure 3), yet the nDNA sug-
gests that P. haroldii is not distinct from P. zephyrus (note
that by chance, the P. zephyrus chosen for the 25-taxon
analyses is rather different from the other P. zephyrus) (Fig-
ure 4, Figure 5, Figure 6 and Figure 7). Here the classical
explanation for conflicts [52] of recent divergence with
not enough time for slowly evolving nuclear genes to have
segregated would appear to hold. Interestingly, P. haroldii
(endemic to mainland Mexico) and some P. zephyrus
(endemic to western United States and Canada, including
northern Baja California, Mexico) nDNA haplotypes
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@ Polygonia haroldii
Figure 8

Minimum spanning networks. a) COI b) EF-1a ¢)
GAPDH d) RpS5 and e) wgl. Size of the circles are directly
proportional to the number of individuals with that haplo-
type. Small white circles indicate a missing haplotype. Each
branch is equivalent to one basepair change. Circles with
more than one pattern show the proportion of each species.
The colour coding are as follows; blue — P. zephyrus, red — P.
oreas, green — P. progne, yellow — P. gracilis and orange — P.
haroldii.

appear to be more related to each other, perhaps suggest-
ing recent gene exchange between these western taxa dur-
ing the Pleistocene glacial periods. Currently, the two taxa
appear to be allopatrically distributed. A close relation-
ship between P. haroldii and P. zephyrus was suggested by
Krogen [53], based on morphological similarities. Beutel-
spacher [54] reported an unidentified species of Urti-
caceae as a larval foodplant for P. haroldii (presumably in
the Valley of Mexico), although this record seems
unlikely, since P. haroldii is usually found in immediate
association with Ribes species (Grossulariaceae) (ADW,
pers. obs.), the host plant genus utilized by P. zephyrus.

Our data suggest that morphological differentiation may
occur rapidly in Polygonia, once speciation has occurred.
Despite the essentially identical nDNA haplotypes

http://www.biomedcentral.com/1471-2148/9/92

between P. zephyrus and P. haroldii, the latter has diversi-
fied morphologically to the point where it cannot be con-
fused with any other member of the genus. This was
perhaps achieved through evolution of a mimetic rela-
tionship with the presumably distasteful model Dione
moneta (Nymphalidae: Heliconiinae: Heliconiini); in
flight, adults of D. moneta and P. haroldii appear nearly
indistinguishable, since the metallic ventral spots of D.
moneta frequently are not visible (ADW, pers. obs.). Cur-
rently, these two species are very often found flying in
sympatry and synchrony throughout the Mexican distri-
bution of P. haroldii, although the presumed model, D.
moneta, is usually much more widespread and common
than P. haroldii. No obvious geographic variation in mor-
phology has been noted in P. haroldii.

The taxon pair P. gracilis and P. zephyrus has been treated
as two hypothetically separate species in this study, but
the current consensus is that these are subspecies of the
same species [27,28]. Our results are ambiguous about
whether these two taxa are currently diverging or merging.
Morphologically, populations of far western P. zephyrus
are separable from far eastern populations of P. gracilis,
but there is a clear cline between the extremes, and popu-
lations found in Alberta, Canada, consist mostly of adults
that cannot be confidently assigned to one or the other
taxon [55]. On the one hand, our data does not distin-
guish between the two taxa (haplotypes are shared regard-
less of gene or genome inspected), but on the other hand,
haplotypes are also shared with P. progne, P. haroldii, and
P. oreas, which are distinct species-level taxa. Thus,
detailed elaboration of the taxonomic status of P. zephyrus
and P. gracilis will only be possible once a thorough study
can be conducted, considering dozens of populations
from throughout the range of the complex. The current
distribution of these two taxa, with an apparently broad
zone in western Canada where their identities become
blurred, suggests ongoing gene flow between them, and a
careful study of populations in Alberta seems warranted.

Polygonia interposita, species or subspecies of P. c-album?
The rarely collected taxon P. interposita is found in central
Asian mountains and has often been considered a subspe-
cies of P. c-album |e.g., [43]]. This taxon has frequently
been confused with P. undina, due to the somewhat simi-
lar ventral wing pattern and similar distribution. We were
only able to get one specimen of P. interposita that gave
good quality DNA. The mtDNA of this specimen was
almost identical to P. c-album (which shows very little var-
iation in COI across its entire range; Weingartner et al. in
prep.). The nDNA, however, was quite distinct from P. c-
album, and indeed in the 25-taxon analysis, P. interposita
emerged as sister to P. c-album+P. faunus, with a diver-
gence time estimated at about 5 mya. Could this possibly
be a similar case to P. satyrus in North America? Only
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Species through time, a summary of our results. Spe-
cies below the "grey zone" are clear independent lineages
with no known closely related sister species. Species in the
"grey zone" are at various stages in the speciation process.
Species above the "grey zone" are closely related sister spe-
cies that are separate genetic entities. They have thus by this
time also become clear independent lineages ready for a
future new bifurcation, should the right circumstances arise.
Figure modified from de Queiroz [58].

more samples of P. interposita would shed light on this
question, but based on the current specimen, it is possible
that the mitochondrial lineage of P. c-album has invaded
the genome of P. interposita in recent times, resulting in a
situation where the two genomes give conflicting signals
regarding phylogenetic relatedness.

Species as lineages through time

The concept of species as lineages is fast gaining support
from the scientific community [56-59]. The concept takes
into account that species are part of an evolutionary con-
tinuum from diverging populations to already diverged,
well-defined species. Many of the multitude of proposed
species concepts lie along this continuum, but are not
general enough to explain the diversity we see in nature.
Here we present results for a small group of well-known
butterflies with a relatively stable taxonomy. Despite
molecular data from 6 gene regions for a total of 4879 bp
(much more than the standard in species level phyloge-
netic studies at the moment), we were unable to resolve
the relationships of the 16 species unambiguously,
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mainly due to conflicts between mitochondrial and
nuclear gene regions.

Considering the lineage concept, it is clear that P. c-
aureum, P. gigantea, P. egea, P. undina, P. satyrus and P.
interrogationis have differentiated so long ago that there is
no question about their taxonomic status as species (Fig-
ure 9). The species-level status of P. comma and P. g-argen-
teum, as well as P. c-album, P. interposita and P. faunus also
is not really a question based on our results, but they have
speciated relatively recently and in the case of P. inter-
posita, may still hybridize in nature with P. c-album. In Fig-
ure 9, P. faunus is placed out of the grey zone due to the
clear separation of it's populations in North America from
those of P. c-album and P. interposita in Eurasia. Further
down the continuum closer to the divergence events are P.
progne, P. oreas and P. haroldii (Figure 9), which have spe-
ciated so recently that occasional gene flow may still occur
between P. oreas and P. progne and/or P. zephyrus, but
which remain taxonomic entities separate from their clos-
est relatives. Just above the divergence line, entering into
the grey zone of one or two species is the taxon pair P. gra-
cilis and P. zephyrus (Figure 9). To really be able to say
whether the two are above or below the line would
require population genetic methods to see whether gene
flow between the two populations is sufficiently high to
consider them conspecific.

Conclusion

In conclusion, although we now have included consider-
able amounts of new genetic information in an attempt to
interpret the evolutionary history of Polygonia butterflies,
we are still not able to fully understand the processes of
speciation in this taxon. Especially within the Nearctic
clade, more population genetic data is needed. However,
our results graphically demonstrate, first, that species in
this group evolve over time, sometimes over a very long
time, and, second, that evidently even well-differentiated
species can hybridize to the extent that different parts of
their genome may suggest strongly conflicting patterns of
relationships.

The results from the present study do not change the main
conclusion from the study of host plant range in Polygonia
butterflies [21]. In that paper we introduced the idea that
based on the phylogeny it was possible to show that but-
terfly clades including species that use host plants addi-
tional to, or other than, the "urticalean rosids", included
more butterfly species than the sister clade (only feeding
on "urticalean rosids"). Our present results are still in
agreement with the former result and there is no case in
which the reverse is valid (that species restricted to "urti-
calean rosids" constitute more butterfly species than the
sister group of species with a broader host plant range).
Thus, we believe that being able to expand the host plant
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Table I: Summary of number of individuals per species sequenced for a given gene.

Number of individuals sequenced

Species COl NDI

Outgroup taxa

Aglais io

Aglais milberti

Aglais urticae
Nympbhalis antiopa
Nymphalis californica
Nymphalis l-album
Nympbhalis polychloros
Nymphalis xanthomelas

Ingroup taxa

Kaniska canace
Polygonia c-album
Polygonia interposita
Polygonia c-aureum
Polygonia comma
Polygonia egea
Polygonia undina
Polygonia faunus
Polygonia g-argenteum
Polygonia gigantea
Polygonia gracilis
Polygonia zephyrus
Polygonia haroldii
Polygonia interrogationis
Polygonia oreas 5
Polygonia progne 14
Polygonia satyrus 17

W — — U1 A W WwWww—»hw
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w
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| | | |
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| | | |
2 2 2 2
3 4 2 2
| | | |
3 2 2 2
3 | 2 |
2 3 2 2
3 | | 2
4 4 4 4
| | | |
| | | |
2 | 2 2
8 6 8 8
2 2 2 2
2 | | |
4 4 4 4
2 3 2 2
4 4 4 |

See Additional File | for details of individuals, including collection locality and GenBank accession numbers.

range will enhance speciation through colonizations and
local adaptations, according to the oscillation hypothesis
[60].

We have shown that the species-level relationships
inferred from DNA sequence data may be strongly influ-
enced by the markers that have been chosen. This then
begs the question of how this phenomenon affects studies
aimed at looking at higher levels of phylogenetic relation-
ships, such as genera or families. Fortunately, our previ-
ous studies at higher levels have used the same markers as
we have in this study [33,61-66], and results show that the
COI is generally concordant with the nuclear markers at
taxonomic levels above genera. This is probably due to the
same stochastic processes that lead to reciprocal mono-
phyly at the species level, i.e. given enough time, lineages
(species) will go extinct, leaving sister entities that we call
genera (and by default higher taxa) reciprocally mono-
phyletic. This is not to say that all currently described gen-
era are monophyletic entities, simply because the majority
of genera have not been rigorously tested for monophyly
using phylogenetic analyses.

Methods

We sampled 96 individuals of all Polygonia species, as well
as 8 outgroup species belonging to the genera Nymphalis
and Aglais (see Table 1 and Additional File 1). Most indi-
viduals were collected by colleagues (see Acknowledg-
ments) and sent dry to Stockholm. Total genomic DNA
was extracted from two legs using QIAgen's DNEasy
extraction kit, according to the manufacturer's instruc-
tions, with the exception that individuals more than 2
years old at extraction were eluted into 50 pl of elution
buffer, rather than the recommended 200 pl. Voucher
specimens are stored at the Department of Zoology,
Stockholm University and Laboratory of Genetics, Univer-
sity of Turku, and can be viewed at http://nymphali
dae.utu.fi.

We amplified 6 loci using PCR directly from the genomic
extracts. The loci were cytochrome oxidase subunit I (COI)
and NADH subunit 1 (ND1) from the mitochondrial
genome, and elongation factor-1« (EF-1a.), wingless (wgl),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
ribosomal protein S5 (RpS5) from different nuclear
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genomes. Primers and PCR protocols were taken directly
from Wahlberg and Wheat [67], except for ND1, for
which we followed the protocol described in Nylin et al.
[35]. PCR products were cleaned using exonuclease I and
calf intestine alkaline phosphatase (Fementas) and
sequenced directly, using either the PCR primers or uni-
versal tails attached to the primers [for details, see [67]],
on a Beckman-Coulter CEQ8000 capillary sequencer
(Stockholm), or an ABI PRISMR 3130xl capillary
sequencer (Turku) using dye terminator sequencing kits
according to the recommendations of manufacturers.

All six genes were initially amplified for a selection of 25
taxa (8 outgroup species and 17 taxa of Polygonia). In
order to verify patterns of strong conflict between the
mitochondrial and nuclear genes [33,36], a further 77
individuals of Polygonia and four individuals of Kaniska
canace were amplified and sequenced for COI, 27 individ-
uals of Polygonia for EF-1a, 30 individuals of Polygonia for
wgl, 23 individuals of Polygonia for GAPDH and 20 indi-
viduals of Polygonia for RpS5. Two individuals of Kaniska
canace were amplified and sequenced for all nuclear
genes.

Resulting chromatograms were examined by eye in
BioEdit [68] and any heterozygous positions (two equally
sized peaks observed at one position) were coded with
IUPAC ambiguity codes. All sequences are from protein-
coding genes and thus alignment was trivial. As noted in
previous publications [33,35,36], a one-codon deletion
was inferred in the wgl sequence of the three species of
Aglais. Heterozygous sequences were separated manually
into haplotypes. For sequences with only one hetero-
zygous position, this was trivial. For those with two or
more heterozygous positions, one haplotype was
assumed to be identical to a common haplotype found in
other individuals of the same species. This was possible in
all cases.

The previously noted strong conflict between two mito-
chondrial and two nuclear genes [33,36] was investigated
with a total evidence approach and Partitioned Bremer
Support (PBS) on the 25-taxon dataset. Results suggested
that mitochondrial and nuclear partitions continued to
conflict with the addition of new nuclear gene regions. We
thus analysed the combined mitochondrial genes and the
combined nuclear genes to obtain estimates of relation-
ships based on the mitochondrial genome and the nuclear
genome, respectively. The two genome sets were analysed
separately, but combined within each set (ie. COI+ND1
and EF-10+GAPDH+RpS5+wgl) and will be referred to as
the mitochondrial data and the nuclear data, respectively.
Parsimony analyses were conducted using a heuristic
search algorithm in the program TNT [69] on the equally
weighted data set. The data were subjected to 100 random
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addition rounds of successive Sectorial, Ratchet, Drift and
Tree Fusing searches [70-72]. We evaluated the character
support for the clades in the resulting cladograms using
Bremer support [73,74] and Partitioned Bremer support
[75,76]. The scripting feature of TNT was used to calculate
these values [see [64]].

Bayesian inference of phylogeny and times of divergence
were estimated using the program BEAST v1.4.6 [77].
Both datasets were analysed under the GTR+ I" model with
a relaxed clock, allowing branch lengths to vary according
to an uncorrelated Lognormal distribution [78]. The tree
prior was set to the Yule process, and the "tree-
Model.RootHeight" prior (i.e., the age at the root of the
tree) was set to 33 million years (with a standard devia-
tion of 5 million years), in accordance with results from
Wahlberg [79]. All other priors were left to the defaults in
BEAST. Parameters were estimated using 2 independent
runs of 1 million generations each (with a pre-run burn-
in of 10000 generations), with parameters sampled every
1000 generations. Convergence was checked in the Tracer
v1.4.6 program and summary trees were generated using
TreeAnnotator v1.4.6, both part of the BEAST package.

To confirm that Bayesian analyses converged on the same
topology, the data were also analyzed with MrBayes 3.1
[80]. The Bayesian analysis was performed on the com-
bined data set with parameter values estimated separately
for each gene region using the "unlink” command and the
rate prior (ratepr) set to "variable". The analysis was run
twice simultaneously for 2 million generations, with four
chains (one cold and three heated) and every 500t tree
sampled. The first 500 sampled generations discarded as
burn-in (based on a visual inspection of when log likeli-
hood values reached stationarity), leaving 3501 sampled
generations for the estimation of posterior probabilities.
Results of the two simultaneous runs were compared for
convergence using Tracer v1.4.6 [77].

The expanded single-gene datasets were analysed sepa-
rately after separating heterozygotes into haplotypes.
These datasets were analysed using both parsimony and
Bayesian methods in TNT and MrBayes 3.1, respectively.
Search parameters were as above, except the single data-
sets were not partitioned in any way.

In order to further investigate the resulting polytomies, we
constructed a haplotype network in TCS [81], which
shows how haplotypes are connected to each other. In this
program, the gene genealogies from DNA sequences are
estimated with statistical parsimony according to Temple-
ton et al. [82]. We focused on the Nearctic Polygonia spe-
cies (excluding P. faunus). Regions of missing basepairs
were removed and we performed analyses of all Nearctic
taxa as well as subsets of clades. The datasets are com-
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prised of 1430 bp for COI, 1240 bp for EF-1a, 392 bp for
wgl, 691 bp for GAPDH and 617 bp for RpS5.
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