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Abstract

Background: Homology inference is pivotal to evolutionary biology and is primarily based on significant sequence
similarity, which, in general, is a good indicator of homology. Algorithms have also been designed to utilize
conservation in gene order as an indication of homologous regions. We have developed GenFamClust, a method
based on quantification of both gene order conservation and sequence similarity.

Results: In this study, we validate GenFamClust by comparing it to well known homology inference algorithms on a
synthetic dataset. We applied several popular clustering algorithms on homologs inferred by GenFamClust and other
algorithms on a metazoan dataset and studied the outcomes. Accuracy, similarity, dependence, and other characteristics
were investigated for gene families yielded by the clustering algorithms. GenFamClust was also applied to genes from
a set of complete fungal genomes and gene families were inferred using clustering. The resulting gene families were
compared with a manually curated gold standard of pillars from the Yeast Gene Order Browser. We found that the
gene-order component of GenFamClust is simple, yet biologically realistic, and captures local synteny information for
homologs.

Conclusions: The study shows that GenFamClust is a more accurate, informed, and comprehensive pipeline to infer
homologs and gene families than other commonly used homology and gene-family inference methods.

Keywords: Homology inference, Gene synteny, Gene similarity, Gene family, Clustering, Gene order conservation

Background
Homology inference has been an active research topic
of Computational Biology for several decades and is
employed as a starting step for many studies in, for exam-
ple, phylogeny inference, protein structure prediction [1],
and function prediction [2, 3]. Our interest comes from
the desire to define complete and suitable gene fam-
ilies for evolutionary studies on a genome-wide scale,
i.e., when manual curation is out of the question, and
homology inference is then the first step. Homology is
mainly inferred from sequence similarity and there are
issues that makes this seemingly easy problem inher-
ently difficult (as the extensive literature on gene/protein
homology inference is witness to). Divergent families can
be hard to infer correctly due to weak similarity, even
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when combined with clusteringmethods, resulting in split
families. Increasing search sensitivity to gain a larger num-
ber of homologous genes risks including non-homologs
to gene families, for clustering methods based only on
sequence similarity. Convergent evolution, causing simi-
larity between two genes that do not have a common
evolutionary origin [4], may not be the worst obstacle
in general but can confuse inference [2]. Low-complexity
regions are a further source of high local similarity
between non-homologous proteins. Similarly, sequences
of homologous proteins sometimes evolve at a fast rate
and can not be identified by similarity-only based meth-
ods. Multidomain proteins, in particular those involving
promiscuous domains [5], pose a special challenge for
homology inference and have even been referred to as a
problem ([6] for example). Shared domains are common
and can link two proteins through a strong local similarity.
Hence, multidomain proteins may be the main obstacle in
homology inference and clustering as they break simplify-
ing assumption on evolution. Inferring protein homology
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using local [7] or global [8] similarity depends on a model
that does not take insertion of domains into account. This
was recognized by Song et al. [9], who suggested a defini-
tion for “multidomain homology”. They stated that homol-
ogous proteins follow vertical inheritance and inserted
domains (which are seen as horizontally transferred from
another protein) should be discounted for. Explicitly iden-
tifying vertical inheritance is difficult, but they proposed a
proxy based on a statistical analysis of conserved domain
architecture.
Complementing a similarity-based method with addi-

tional information can improve analysis, as has been
demonstrated for orthology inference, see [10], and we
believe it valuable for homology inference as well. For
orthologs, it is expected that genes’ locations are con-
served at speciation, but rearrangements occur with time,
so closely related species will display similar gene order.
The same should also hold for many duplications. A chro-
mosomal duplication retains gene order and although a
duplication due to unequal crossing over disrupts gene
order, copies in tandem retain almost the same neighbor-
hood of genes. On the other hand, duplications due to
retrotransposition often yield paralogs in new gene neigh-
borhoods and reciprocal gene loss following large-scale
duplications [11] break gene order. However, break in gene
order for some duplications should not prevent us from
making use of the conservation that is present and which
provides a supportive signal for vertical inheritance. Signs
of conserved gene order should boost the identification
of potential homologs with weak similarity in general,
and multidomain homologs in the sense of Song et al.
[9] in particular. Hence, we wanted to investigate how
conserved gene order may improve homology inference.

A brief account of prior work
The primary, and recurring, tool for inferring homologs
has been BLAST [12]. For example, BlastClust [13] uses
single linkage clustering on BLAST results to compute
clusters of homologs or gene families, and PSI-BLAST
[12] uses an iterative procedure and position specific scor-
ing matrix to infer remote homologs (homologous gene
pairs with poor sequence identity but sharing common
fold and function) from BLAST hits. Other gene fam-
ily inference approaches are guided by multiple sequence
alignment (MSA) likelihood (HiFiX [14]), profile hidden
Markov models (Pfam [15]), and protein structure clas-
sification (SCOP [16]). hcluster_sg [17] is a graph-based
algorithm that performs hierarchical agglomerative clus-
tering on all-vs-all BLAST results. It is the clustering
component of Ensembl Compara [18] and earlier versions
of TreeFam [19]. Other algorithms have employed net-
work structure and the transitive property of homology to
infer gene families, e.g., Markov Clustering (MCL) [20],
ProtoMap [21], TribeMCL [6], ProClust [22] and PHYRN

(returns high resolution phylogenies alongwith distant
gene families) [23].
An elegant solution to themultidomain homology prob-

lem, named Neighborhood Correlation (NC), has been
proposed [9, 24]. NC avoids explicit identification of pro-
tein domains and architecture by looking at statistics
of BLAST scores. It classifies two proteins as homolo-
gous if they have highly correlated BLAST scores when
compared to a reference database, thereby avoiding the
need for thresholds for alignment length, similarity, etc.
The major advantage of NC over BLAST is its homology
inference accuracy for diverse multidomain architecture
proteins [25].
Algorithms have also combined other information with

similarity to aid them in homology and/or orthology infer-
ence. Gene order conservation has been shown to be
important information in homolog and ortholog valida-
tion as shown for fungi [26, 27] and prokaryotes [28, 29].
The SOAR and MSOAR algorithms have used synteny
to assign orthologs by minimizing recombination dis-
tance between two genomes [30, 31]. Han and Hahn [32]
have utilized local synteny information (conserved gene
order within a fixed size neighborhood of queried pair) to
identify parent-daughter relationships among duplicated
genes. SYNERGY [33] uses gene order conservation (syn-
teny) and species tree information alongside similarity to
infer phylogeny and orthogroups, where an orthogroup
for a specified node in the species tree is a set of genes that
descended from or below the given node and is by defini-
tion a subset of homology. SYNS [34] and Jin et al. [35] use
local synteny to infer homologs and orthologs.
In our earlier work [36], we presented a pipeline that

builds on NC and combines its sequence similarity graph
structure with gene order information to assess homol-
ogy relationships. We showed that this approach, called
GenFamClust (GFC), was more accurate than NC [36],
which in turn has been shown to be better than BLAST
scores [25].

Present study
We performed a rudimentary accuracy check for
homologs inferred from GFC and NC in our previous
study [36] and NC has been compared with BLAST for
accuracy [25]. Gene families inferred by applying clus-
tering algorithms on homologs inferred from BLAST,
NC or GFC have not been checked for other cluster
properties. Therefore, we wanted to measure effects of
different homology inference components on accuracy
of gene family inference using selected clustering algo-
rithms for simulated data and for a dataset with known
gold standard. We also wanted to explore properties
such as dependence, similarity, and latent class analysis
between gene families. We wanted to quantify the effect
of using synteny in addition with similarity for homology
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inference at the level of gene families using diverse bio-
logical datasets representing different branches in Tree of
Life as well as on synthetic datasets.
GFC was evaluated in comparison with NC. We applied

single, average and complete linkage clustering algorithms
on homologs inferred from NC and from GFC, and
applied MCL, hcluster_sg, SiLiX (a faster and memory-
efficient implementation of BlastClust) [37] and HiFiX on
BLAST scores to determine gene families. We calculated
accuracy, similarity, dependence and other characteristics
of gene families inferred from clustering algorithms on
complete genomes of selected metazoan species, and val-
idated the accuracy on synthetic datasets. We compared
clusters inferred from applying clustering algorithms on
homologs from GFC with semi-manually curated pillars,
sets of orthologs and ohnologs (genes related by a whole
genome duplication event) determined by Yeast Gene
Order Browser (YGOB) [38] on complete genomes of a
fungal dataset. We determined agreement and disagree-
ment between GFC and YGOB. Our results suggest that
GFC is a more reliable, accurate, informed and com-
prehensive pipeline to infer homology than most other
similarity-based homology inference approaches as seen
in diverse biological datasets as well as the synthetic
datasets, and that the local synteny module of GFC adds
biologically relevant and useful information to identify
homologs.

Methods
The GFCmethod
The GFC method [36] takes two (possibly intersecting)
sets of sequences as input: query dataQ and reference data
R. Q should consist of genes for which we want to infer
homology and R is only used when computing similarity

and synteny correlation scores. In case we do not have ref-
erence data, the query data will be used as reference data.
Figure 1 shows an overview of each module of GFC. GFC
uses NC as its similarity measure and introduces a syn-
teny correlation score, SyC, which in turn is inferred from
a local synteny score, SyS as its synteny measure. We refer
to the original work [36] for further details on parameter
settings, method, comparison with NC, and other details.
In the previous study, we showed that GFC can work

with data, where Q and R are disjoint and used query ver-
sus reference blast-scores as input. In the current study,
input to GFC is all-versus-all BLAST scores. For two genes
g1 and g2, the score NC(g1, g2) is (from [24])

NC(g1, g2) =
∑

i∈N (S(g1, i) − S(g1))(S(g2, i) − S(g2))√∑
i∈N (S(g1, i) − S(g1))2

∑
i∈N (S(g2, i) − S(g2))2

where S(g1, i) is the normalized bit score of the opti-
mal local alignment of query sequence g1 and database
sequence i,N is the number of sequences in database, and
S(g1) is mean of S(g1, i) over all sequences i.
The synteny scores SyS(g1, g2) between genes g1 and g2

are computed from NC scores. We define synteny score
SyS(g1, g2) between two genes g1 and g2 as

SyS(g1, g2) = max{NC(a, b) : a ∈ n(g1), b ∈ n(g2)}

where n(g) represents the set of neighbor genes, upstream
or downstream of g, at most at distance k, on a chromo-
some or contig. In our previous study [36], we determined
that k = 5 is a suitable number of neighbouring genes
upstream or downstream to consider for estimating local
synteny between genes of Metazoa.

Homology Inference 
Evaluates the synteny and similarity conservation for a gene 
pair. 
Input: NC-hit pairs and their NC & SyC scores. 
Output: NC-hit pairs and their scaled evaluation scores in 
[0.5-1]. 

Gene Family Clustering 
Clusters the inferred homologs together. 
Input: Homologs and their evaluated scores. 
Output: Gene families. 

Refined Synteny Measure (SyC) 
Measures gene order conservation by considering evidence 
from multiple sources. 
Input: NC-hit pairs and their SyS scores. 
Output: NC-hit pairs and their synteny correlation (SyC) 
scores in [0-1]. 

Raw Similarity Evaluator 
All versus All BLAST. 
Input: Protein Sequences. 
Output: Pairwise Blast hits with bit scores. 

Refined Similarity Evaluator (NC) 
Recommended software: Neighborhood Correlation (NC). 
Input: Hit pairs and their bit scores. 
Output: Hit pairs and their NC-scores in [ -1]. 

Direct Synteny Score (SyS) 
Measures direct gene order conservation in neighborhood of 
both genes. 
Input: NC-hit pairs and their NC scores. 
Output: NC-hit pairs and their synteny (SyS) scores in [0-1]. 

Fig. 1 A brief introduction to GenFamClust that shows the modules and brief experimental settings of each module. The figure depicts the different
modules, their functions, expected input, expected output and the author recommended software settings for each module
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Synteny correlation score SyC(g1, g2) between genes g1
and g2 is defined as

SyC(g1, g2)=
∑

i∈H (SyS(g1, i)−SyS(g1))(SyS(g2, i) − SyS(g2))√∑
i∈H (SyS(g1, i)−SyS(g1))2

∑
i∈H (SyS(g2, i)−SyS(g2))2

where ncHits(g1) = {i|i ∈ Q ∪ R,NC(g1, i) ≥ β} and H =
ncHits(g1) ∩ ncHits(g2).
Synteny correlation scores are calculated for each gene

pair (g1, g2) with acceptable NC score, i.e., g1, g2 ∈ Q
and NC(g1, g2) > β (where β is a minimum threshold on
NC score). Syntenic correlation score (SyC) is more robust
than syntenic score (SyS) because SyS scores are negatively
correlated to divergence times and conservation in gene
order, and SyC is supported by evidence from a range of
homologous regions from possibly multiple species with a
range of divergence times. This gives empirical support to
SyC scores as well as compensates for varying divergence
times between species.
We use a heuristic decision boundary h(g1, g2) for a gene

pair (g1, g2) as

h(g1, g2) = NC(g1, g2)2 + 0.25 ∗ SyC(g1, g2)2 − 0.25

where a positive value for h(g1, g2) indicates that g1 and g2
are homologous, otherwise g1 and g2 are classified as non-
homologous. This decision boundary was determined and
evaluated in the previous work [36] on the multispecies
dataset and the specifics of evaluation are mentioned in
the Additional file 1 of the same work.

Data
For validating each homology inference method, we gen-
erated six synthetic datasets with known species tree,
homology relationships, gene families and completely
observable evolutionary history.
Two sets of biological data were collected comprising

selected metazoan and fungal species. For these datasets,
the genomes, proteomes, gene order information (gene
to species mapping and their location on chromosomes),
and the species tree are known. For genes with multiple
protein isoforms (in particular from Homo sapiens and
Mus musculus), we have selected the longest protein as a
representative to maintain a single protein per gene rep-
resentation. Both datasets have been taken from publicly
available sources (Ensembl’s Metazoa genome browser
and Yeast Gene Order Browser), and no experimentation
was conducted on animals or humans.

Synthetic dataset
We generated the synthetic data using Artificial Life
Framework (ALF) [39], which simulates major evolution-
ary forces at gene and genome level. We generated six
datasets with varying synteny and similarity. Mus muscu-
lus chromosome 18 was used as ancestral chromosome
due to its medium size of 497 genes and lower percentage

of paralogs as compared to most other mouse and human
chromosomes. Maximum indel size was set to 25, indel
rate was set to 0.0005, and indel model was set to Zipfian
distribution with distribution parameter s equal to 1.821.
Duplication rates and loss rates were set so that total num-
ber of genes in each dataset was around 3000. For each
simulation run, we varied substitution rate and transloca-
tion rate to alter evolutionary distance for similarity and
synteny (Table 1). For simplicity, rates of all other evolu-
tionary events, e.g., fusion, fission, neofunctionalization,
etc., were set to zero. For further documentation on gener-
ation of simulated data, refer to Section 2.1 in Additional
file 1.

Metazoan dataset
The metazoan dataset consists of genomes from 19
species that range from primates and rodents, e.g.,
Homo sapiens, Pongo abelii and Mus musculus to simpler
metazoans such as Ciona intestinalis. The genomes of this
dataset have been extracted from Ensembl v. 72 [40] and
the general properties and names of species present in this
dataset are shown in Table 2. Model organisms represent-
ing major evolutionary branches in Metazoa with anno-
tated and high quality genome assembly were selected
from Ensembl’s Metazoa genome browser. The gold stan-
dard for this dataset consisted of 1561 genes divided
into twenty function-based protein families from human
and mouse taken from Song et al. [24]. These families
were hand-curated and selected by a detailed literature
study and other information such as domain and struc-
ture architecture. For each family, Song et al. [24] used
Pfam and/or InterPro codes from publications by family
experts, and reports from standards committees, such as
the HUGO Gene Nomenclature Committee [41]. Table 3
enumerates basic properties of the gold standard dataset
and further information regarding individual families and
their characteristics can be found in Additional file 1:
Section 2.3.

Table 1 Parameter settings for generating the simulations using
Artificial Life Framework (ALF)

Sim. # # of families Dup. rate # of genes Translocation rate Subs. rate

1 329 0.0025 4272 0.002 350

2 289 0.0025 3837 0.001 350

3 382 0.0025 4065 0.0002 350

4 241 0.0045 4433 0.002 250

5 258 0.003 3941 0.001 250

6 233 0.003 3899 0.0002 250

Each dataset has a different substitution rate and/or translocation rate to show
changes in gene sequence and order conservation. Datasets 1, 2 and 3 have lower
sequence conservation while Datasets 4, 5 and 6 have higher sequence
conservation. Similarly, Datasets 1 and 4 have low, 2 and 5 have medium and 3 and
6 have high gene order conservation
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Table 2 Species in the metazoan dataset and their general properties

Scientific name Common name # scaffolds # genes genes/scaffold

Takifugu rubripes Fugu 1,930 18,523 9.60

Oreochromis niloticus Nile tilapia 1,081 21,437 19.83

Danio rerio Zebra Fish 458 26,235 57.28

Drosophila melanogaster Fruit fly 14 13,937 995.5

Ciona intestinalis Sea squirt 732 16,658 22.76

Loxodonta africana Elephant 583 20,033 34.36

Tupaia belangeri Tree shrew 8,249 15,471 1.88

Oryctolagus cuniculus Rabbit 1,022 19,018 18.61

Sus scrofa Pig 1,367 21,607 15.81

Equus caballus Horse 106 20,449 192.92

Bos taurus Cow 43 19,994 464.98

Homo sapiens Human 207 22,665 109.49

Pongo abelii Orangutan 57 20,424 358.32

Macacamulatta Rhesus monkey 25 21,905 876.2

Musmusculus House mouse 49 22,709 463.45

Xenopus tropicalis Clawed frog 2,241 18,442 8.23

Gallus gallus Chicken 809 15,508 19.17

Taeniopygia guttata Zebra finch 70 17,488 249.83

Anolis carolinensis Anolis lizard 2,425 18,596 7.67

Total - 21,468 371,099 17.29

The table displays the common name, scientific name and the major GenBank taxonomic rank of species along with the gene and scaffold/chromosome distribution in each
species present in metazoan dataset

Fungal dataset
The Fungal dataset consists of well-assembled genomes
from 20 Fungi species with a relatively conserved gene
order, taken from Yeast Genome Order Browser (YGOB)
version 7 [38] (also discussed in Section 2.2 of Additional
file 1). YGOB partitions genes into sets related by either
speciation or whole genome duplication events at their
last common ancestor and terms such families as “pil-
lars”. The YGOB database is composed of 12,596 pillars
consisting of protein-coding genes. In YGOB, up to two
genes from each species can be contained in a pillar. Pil-
lars are delineated semi-automatically based on sequence
similarity and synteny. We use pillars as a gold standard

Table 3 Properties of the “gold standard” metazoan dataset. This
table enumerates the total number of positive and negative pairs
on which cluster quality analysis is based

Description No. of members

Sequences 1,561

Pairs 1,217,580

Families 20

Positive pairs 419,332

Negative pairs 798,248

of orthology and ohnology (paralogous genes related by
whole genome duplication). A whole genome duplica-
tion (WGD) in the Saccharomyces clade is hypothesized
[26, 42–44] and YGOB classifies fungal species into pre-
WGD species and post-WGD species in this context.
To better understand distribution of genes, we classified
genes in YGOB pillars into orthologs (at least one other
gene in another species), singletons (no ortholog/ohnolog
exists for these genes), and ohnologs (homologs related by
WGD event), see Fig. 2.

Data grouping for GFC
For our synthetic data (all 6 datasets) and the fungal
dataset, the complete datasets were used as query data Q
for homology inference and as reference dataset R.
In the metazoan dataset, reference data R consisted of

genomes from 18 species (shown in Table 2) and the query
dataQ was composed ofHomo sapiens andMus musculus
genomes.

Evaluation
Clustering strategies employed for BLAST, GFC and NC
The BLAST, NC, and GFC homology predictions were
clustered using single linkage, complete linkage, and aver-
age linkage. SiLiX was used for inferring gene families
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Fig. 2 Species-wise distribution of genes in YGOB pillars. The distribution of genes for each species in YGOB v.7 pillars such that all genes that have
an ohnolog or ortholog are quantitatively measured against all the singleton genes (genes that do not have an ohnolog or ortholog assigned) for
each species. The distribution shows that L. Waltii has the most singleton genes

using single-linkage clustering on BLAST. For comput-
ing average and complete linkage clusters with BLAST
bitscores, normalized scores were used for clustering.
For a pair of genes g1 and g2 with bitscore s(g1, g2), the
normalized score is s(g1, g2)/max(s(g1, g1), s(g2, g2)).
Names for clustering-based methods were constructed

by appending the homology-inference method-name
with the clustering strategy. For example, “GFC-Single”
denotes that homology has been inferred using GFC
followed by family inference using single linkage
clustering.

Cluster quality analysis
To evaluate inferred clusters against known gene fami-
lies (simulated with ALF or gold standard for biological
datasets), we computed cluster quality F(i, j) for cluster i
and family j using the F-score (also used by [25]), F(i, j) =
2P(i,j)R(i,j)
P(i,j)+R(i,j) . This is the harmonic mean of precision P(i, j)
(fraction of elements in cluster j that are members of fam-
ily i) and recall R(i, j) (fraction of members of family i that
are found in cluster j).

Evaluation onmetazoan dataset
A precision-recall plot was drawn for all clustering meth-
ods on the metazoan dataset. One parameter from each
software was identified as important for changing pre-
cision and recall, and this parameter was varied to
change precision/recall. Note that the selected parame-
ter was identified from a group of parameters by vary-
ing one parameter at a time on the metazoan dataset,

and analysing the effect on precision and recall; other
datasets may require a different parameter. Also, varying
multiple parameters simultaneously might give a better
precision and recall. Resulting clusters were then eval-
uated for precision and recall. Commands to run each
software can be found in Additional file 1: Section 4. For
hcluster_sg, applied on BLAST scores, no single param-
eter could be identified that caused significant varia-
tion for recall; settings used for Ensembl Compara were
employed for hcluster_sg (i.e., maximum size 750, mini-
mum edge weight 0 and minimum edge density between
a join 0.34) and varied “minimum edge density between
a join” parameter. We also used NC scores as input
for hcluster_sg (this is referred to as NC-Hierarchical
in further sections) and then identified “breaking edge
density” as the parameter causing maximum variation.
“Clustering threshold” was identified as the parameter
for NC-based algorithms (NC and GFC) and for BLAST
scores. The “inflation” parameter represented the most
significant parameter for MCL and it was varied in the
interval (1, 5] (a range suggested by MCL authors [6]).
The “MIN” parameter, representing minimum size of
pre-families, in HiFiX was set to 10. SiLiX clusters pro-
duced in the analysis were given as input to vary HiFiX
clusters.

Mutual information and Jaccard coefficient calculation
Mutual information represents dependence between two
variables. Let X take values in {Yes,No} and denote the
outcome from an inference method: homologous or not?
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Then the entropy of X is denoted as H(X) and calculated
as H(X) = Pr(X = No) ln Pr(X = No) + Pr(X =
Yes) ln Pr(X = Yes). Given two different clustering
methods A and B, the mutual information isM(XA,XB) =
H(XA) + H(XB) − H(XA,XB), where H(XA,XB) is joint
entropy and quantifies the overall agreement between
both software A and B.
The Jaccard similarity coefficient is defined as J(C,D) =

|C ∩ D|/|C ∪ D| where C and D are sets of inferred
homologous pairs by two different methods.

Evaluation on the fungal dataset
The accuracy of GFC predictions on fungal dataset was
ascertained by comparing clusters inferred from GFC
homologs with YGOB pillars. We also looked for possi-
ble novel pillars, missed by YGOB but found as clusters
of orthologs by GFC and evaluated them phylogenetically
and syntenically. For phylogenetic analysis, we inferred
gene trees from protein sequences of proposed gene fam-
ily using a pipeline consisting of Clustal Omega [45] and
FastTree [46] with default settings for both softwares. We
used NOTUNG [47] with default settings to calculate the
most parsimonious reconciliation (MPR, the reconcilia-
tionminimizing number of duplications) and to count and
score the number of duplications and losses in MPR of
inferred gene tree for gene cluster (minimum cluster size
4 since size 3 or less always have score 0) and the species
tree [48]. NOTUNG’s D/L score is a weighted sum, where
the default weights are 1.5 for duplications and 1.0 for
losses. A lower score, or an increased cluster size with
same score, indicated a better cluster because of implied
closeness to MPR. This evaluation criteria is based on the
hypothesis that a gene tree closer to MPR is more prob-
able than the gene tree further from it [49, 50]. We also
performed syntenic evaluation of both YGOB pillars and
clusters inferred from GFC homologs, where we looked
for synteny support for homologs. For syntenic analysis,
we considered five neighboring genes upstream and five
neighboring genes downstream of both genes and tried
to find a BLAST hit in this neighborhood. If such a hit
existed, then we concluded that the pair is syntenically
supported.

Results and discussion
We studied gene families inferred from GFC homologs
for quality, agreement, recall, precision, and correlation
with clusters from other software and available gold
standards. The synthetic dataset was used to benchmark
each software at several levels of similarity and synteny.
We evaluated accuracy and statistical properties of clus-
ters inferred from all software on metaozoan dataset.
The fungal dataset was used to evaluate homology infer-
ence accuracy of GFC and importance of its syntenic
measure.

Synthetic dataset
Gene family quality analysis
We computed cluster quality F(i, j), precision P(i, j), and
recall R(i, j) scores for all clustering methods on GFC
and NC. As shown in Fig. 3a, GFC consistently per-
formed better than NC for each clustering algorithm for
all datasets with varying synteny and similarity conserva-
tion, indicating that synteny can improve inference. This is
consistent with other studies [10, 34, 35], which shows that
gene order conservation is extra information that can aid
gene sequence conservation in inferring orthologs more
accurately.
Similarly, we compared GFC-Single with other gene

family inference methods. Hierarchical Clustering (hclus-
ter_sg) and Markov clustering (MCL) performed con-
sistently well as compared to NC-Single Linkage and
outperformed SiLiX (using BlastClust-style single linkage
clustering) and the MSA-based algorithm HiFiX. GFC-
Single outperformed all these methods on clustering qual-
ity, see Fig. 3b. All clustering methods had a precision
close to 1 for simulations 4, 5, and 6 (lower substitu-
tion rate) and 0.95 for the other three simulated datasets
(higher substitution rate), but recall varied for different
methods and datasets with GFC-Single having the best
recall scores in all six datasets (data not shown). GFC-
Single applied to datasets with high gene order conserva-
tion (simulations 2, 3, 5 and 6) unsurprisingly gave more
accurate results than other homology inference methods.
GFC-Single applied to the datasets with lowest gene order
conservation (simulations 1 and 4) also showed consider-
able difference in gene cluster quality with other methods,
see Fig. 3b.

Metazoan dataset
Accuracy of gene family inferencemethods
In this section, we discuss the properties that can be
derived from our biological datasets.
We evaluated the accuracy of homologous pairs inferred

from clusters by calculating precision and recall of all gene
family inference methods. Figure 4 displays the receiver
operating characteristic (ROC) curve for all gene fam-
ily inference methods. While NC-Complete and GFC-
Complete have a higher recall to precision ratio for the
computed recall points, they have a smaller upper limit on
recall. There are only two points for hcluster_sg because
of the small variation we could achieve; the precision was
close to 1.0, with amaximum recall of 0.41. Themaximum
recall observed for MCL is 0.52. Since NC is calculated for
each BLAST hit, the maximum recall value of NC-based
clustering methods is limited by the recall of BLAST-hit-
based methods. GFC-based methods, in turn, are limited
by NC, because GFC consider only those pairs (gi, gj) for
homology evaluation that have NC(gi, gj) > 0.3 (see β

threshold in calculation of synteny correlation scores), but
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Fig. 3 Cluster quality scores on simulated datasets for homology inference algorithms. The cluster quality scores of (a) single, average and complete
linkage clustering when applied on homologs inferred by GenFamClust and by Neighborhood Correlation and (b) hcluster_sg, MCL, SiLiX and HiFiX
clustering on BLAST scores and GenFamClust with single linkage clustering for each simulated dataset. Datasets are arranged in asscending order of
similarity and then by asscending order of synteny. a Gene families inferred from GFC-based clustering methods (solid lines) are more accurate than
those inferred from NC-based clustering methods (dotted lines) on all clustering algorithms and (b) Gene families inferred from GFC-Single (blue line)
are more accurate than gene families inferred from similarity-only based clustering algorithms. The results are displayed in two panels for better
legibility

Fig. 4 Precision-recall plot for precision and recall of various gene family inference methods on the metazoan dataset. The right top corner shows
the maximum cluster quality for compared methods. GFC-Single and GFC-Complete have the best cluster quality followed by NC-Hierarchical and
NC-Average. MCL, GFC-Complete and NC-Complete do not have data to test for recall beyond 0.54, 0.56 and 0.6 respectively. Other linkage
algorithms on NC (NC-Single, NC-Average and NC-Hierarchical) have a maximum recall of 0.8 while GFC-Single and GFC-Average have a maximum
recall of 0.75. Single linkage clustering on BLAST scores and HiFiX have maximum recall of 0.85. The inset zooms in for better legibility for recall
between 0.45 and 0.6
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NC-based methods have a lower NC threshold of 0.05 for
inferring homology.
Cluster quality scores for each method were also cal-

culated, where the maximum cluster quality score for a
method is shown in the top right of Fig. 4. GFC-Single
and GFC-Average have the highest quality score followed
by those of NC-Hierarchical and NC-Average. The maxi-
mum cluster quality-scores show small differences, which
we interpret as a limitation with this indicator because
there is substantial variation in the ROC curves. Synteny,
domain architecture, and MSA likelihood provide addi-
tional information, on top of similarity scores, as shown
by the area under the curve of clustering algorithms on
GFC and on NC, and HiFiX as compared to clustering
algorithms on BLAST scores alone (SiLiX and BLAST), as
displayed in Fig. 4.
All methods except SiLiX have precision value 1

for recall values in [0–0.4]. NC-Complete, followed by
GFC-Complete, have the highest precision values for
recall values in [0.4–0.56]. GFC-Average, followed by
NC-Average and NC-Hierarchical, has the highest pre-
cision to recall ratio for recall values in [0.56–0.75].

From the receiver operating characteristic (ROC) curve
shown in Fig. 4, GFC-Average has a larger area
under the curve. Also, GFC-Average and GFC-Single
have the best cluster quality when maximum recall
is desired. Therefore GFC-Average has the best preci-
sion to recall trade-off of all tested homology inference
methods.
For a closer look at difficult families, we analyzed the

20 interesting gene families chosen by Song et al. [24] and
computed their cluster quality, see Fig. 5 where panels a-
d have data for the four example families FOX, TNFR,
Kinase, and USP. GFC-Single and GFC-Average are as
accurate or better than the corresponding algorithms of
NC and significantly better than other methods in all
cases. The difference can be clearly observed in Fig. 5a for
the FOX family, where GFC-Single and NC-Single have
quality score 1.0; GFC-Average and NC-Average have
quality score 0.98 while all other algorithms are around
or below 0.7. The same can also be noted for USP, a
family with large sequence divergence, and the Kinase
family, with rich variation in domain architecture. The
significantly improved results of NC over other BLAST-
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Fig. 5 Cluster quality of various gene family inference methods on various families and the complete test data consisting of twenty families. The
figure displays cluster quality of selected methods with default settings for various protein families as well as for twenty gene families in test data.
Panels (a–d) display results for a particular protein family like FOX, TNFR, Kinase and USP respectively. FOX and TNFR are single domain architecture
family while Kinase and USP have multidomain architecture with large sequence divergence and diverse domain architecture families. Panel (e)
displays results for nineteen families (all except Kinases) because Kinases constitute more than half of proteins in number and could bias the overall
results. Panel (f) displays the results for all twenty families. In all panels, GFC-based clustering methods have significantly higher or equal cluster
quality than other methods
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based software (SiLiX andHiFiX) was described by Joseph
et al. [25]. We have shown previously that the cluster
quality of GFC is better than NC [36] and that is cor-
roborated by results shown in Fig. 5 (experiments done
on a different reference dataset). In particular Fig. 5e–
f demonstrate overall improvement in cluster quality by
GFC-Single and Average algorithms over other homology
inference algorithms. The top three algorithms that are
most accurate in inferring gene families for the overall
test dataset are GFC Single (quality score 0.69), NC-Single
(quality score 0.59) and GFC-Average (quality score 0.42)
as displayed in Fig. 5f. However, Kinase is by far the largest
family (900 members out of 1561 total members) and
may bias the results towards methods performing well
on this family. Therefore, we looked at what would hap-
pen if the Kinase members were excluded. The results
retained the same trend, i.e., GFC-Single (quality score
0.86), NC-Single (quality score 0.86) and GFC-Average
(quality score 0.85) are still the three best algorithms, see
Fig. 5e.

Case studies on the value of synteny
To exemplify the value of synteny in assessing homol-
ogy, we looked at two cases. The first case is an example
of identifying multi-domain homology, because a domain
insertion complicates similarity. The second case shows
how high sequence divergence can be overcome thanks to
neighboring genes.
TNFRSF1A in Homo sapiens and CD27 in Mus mus-

culus are two genes belonging to the tumor necrosis
factor receptor superfamily (TNFR), as classified by Song
et al. [24] in the metazoan dataset. Figure 6a displays
the domain architecture of both genes, where CD25 con-
tains an additional Death_TRNF domain not present in
TNFRSF1A. The BLAST bit-score between both genes is
43.5 and the E-value is 0.002. NC-score for the pair is
0.351, which is below the 0.50 threshold set for homolo-
gous gene pairs [25]. CD27 is found on chr. 6 inMus mus-
culus and TNFRSF1A on chr. 12 in Homo sapiens, very
close to a cluster of identified members of TNFR super-
family. Figure 6b displays this region along with NC-hits
(NC score > 0.9) of genes within a distance of 5 genes
upstream and downstream of CD27 and TNFRSF1A. Syn-
teny score SyS(CD27, TNFRSF1A) is 0.991, which means
that there is a very similar gene pair in the neighbor-
hood of these genes. Synteny correlation score SyC(CD27,
TNFRSF1A) is 0.983, suggesting conserved synteny in
other species. Figure 6c displays the support for synteny
for both CD27 and TNFRSF1A in Pongo abelii chr. 12,
where both genes had a common NC-hit in Pongo abelii
and this gene supports synteny scores of both genes.
Thus when NC-score is combined with SyC scores for
CD27 and TNFRSF1A, GFC infers these genes as a ln
gene pair. Without support for synteny, NC would not

be able to infer them as homologs with the current
threshold.
In the second case study, USP46 in Homo sapiens and

Usp26 in Mus musculus, belonging to the ubiquitin spe-
cific peptidase (USP) superfamily, are two homologous
genes in the metazoan dataset. Both proteins are single
domain proteins containing the Peptidase_C19 domain.
The BLAST bit-score for the two proteins is 48.1 and
their E-value is 0.0006. Their NC-score is 0.411, which is
below the 0.50 threshold suggested for homologous gene
pairs [25]. USP46 is found on chr. 4 in Homo sapiens
and Usp26 on chr. X in Mus musculus with significant
sequence divergence between the two proteins. Figure 7a
displays this region along with NC-hits (NC score > 0.7)
of genes within a distance of 5 genes upstream and down-
stream of USP46 and Usp26. Synteny score SyS(USP46,
Usp26) is 0.741 due to presence of a similar gene pair
(SPETEX1 in Homo sapiens and Ccdc160 in Mus mus-
culus) in the neighborhood of these genes. Synteny cor-
relation score SyC(USP46, Usp26) is 0.672, suggesting
conserved synteny in other species. Figure 7b displays
the support for synteny for both USP46 and Usp26 in
Homo sapiens chr. X, where both genes have a common
NC-hit (USP26) in Homo sapiens and syntenic conser-
vation of both query genes is supported by this region.
Thus, when NC-score is combined with SyC scores, GFC
infers these genes as a homologous gene pair. Due to high
sequence divergence and lack of sequence similarity, NC
and BLAST do not infer them as homologs with common
thresholds.

Similarity and statistical dependence between gene family
inferencemethods
The similarities and dependence between various gene
family inference methods was assessed by calculating
Jaccard similarity coefficients and mutual information
scores for all pairwise comparisons for the methods.
Mutual information (Table 4, top) reflects the overall
dependence and is used to assess correlation between two
variables (methods in this case). All methods are most
correlated with GFC-Single (top eight are highlighted),
which supports the proposition that GFC-Single is a good
replacement for other methods. However, when Jaccard
similarity coefficients (which reflect the ratio between
number of genes both methods assign to the same cluster
and the number of decisions in which at least one soft-
ware assigns a particular gene to this cluster between both
software) were calculated for the pairwise data (Table 4,
bottom), the top eight values (shown in bold-face) showed
that GFC-Single does not have a single top most value.
In fact, the best values belong to GFC-Average and GFC-
Complete, which suggests that other methods have little
disagreement on clustering of genes with GFC-Average
and GFC-Complete.
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Fig. 6 Case study: Local synteny adding useful information for homology inference for proteins with domain insertion. The genes CD27 in
Musmusculus and TNFRSF1A in Homo sapiens are homologous and belong to the TNFR superfamily. a The domain architecture of CD27 and
TNFRSF1A. CD27 has an additional Death_TNFR domain which is absent in TNFRSF1A. The NC-score (relative to the metazoan reference data) for
CD27 and TNFRSF1A is 0.351, which is under the 0.5 threshold recommended for calling the genes homologous [9]. b and c Gene order
conservation between Homo sapiens chr. 12, Pongo abelii chr. 12 andMusmusculus chr. 6 containing CD27 and TNFRSF1A at the center and five
genes upstream and downstream in all three chromosomes. Only hits with NC-scores greater than 0.9 are displayed in these panels. Common
NC-hits between CD27 gene inMusmusculus and TNFRSF1A gene in Homo sapiens are marked and used for calculating synteny correlation score
between both genes. This is illustrated in (c) where CD27 in Pongo abelii is a common NC-hit of both genes. Direct synteny score between both
genes (shown in b) using SyS score of GenFamClust is 0.991 and synteny correlation score between both genes using SyC score is 0.983. The GFC
score obtained for this pair of genes is 0.115 which, being is greater than 0, indicates that CD27 and TNFRSF1A are homologs

Method agreement
We investigated the clusters formed by GFC-Single
matching for coherence with other methods, i.e., where
two clusters A and B are coherent if A ⊂ B or A ⊃
B or A = B. Two clusters are not coherent if their
intersection is not empty and both contain at least one
member not found in the other cluster. Figure 8 shows
the percentage of clusters inferred by GFC-Single that are
coherent with other homology inference method. Since
NC is a component of GFC and average and complete
linkage are more strict algorithms than single linkage, it
is not surprising that GFC-Single is 100% coherent with
all clustering algorithms on NC and average and complete
linkage clustering on GFC. Unsurprisingly, all clusters in

GFC-Single are either superset or equal to the clusters
formed by these clustering methods due to the high
agreement between GFC-Single and other methods. Fur-
thermore, as expected from high values in the mutual
information scores (Table 4), more than 95% of GFC-
Single clusters are coherent when comparing with all other
methods.
The cluster size (number of proteins in each cluster) is

an important characteristic of gene families. A method
that aims to find the maximum number of true homologs
may have a high false positive rate and gives large-sized
clusters. On the other hand, a more precise method will
trade off on the number of true homology relationships
it captures and might find relatively small and average



Ali et al. BMC Evolutionary Biology  (2016) 16:120 Page 12 of 19

Homo sapiens Chromosome 4 

Mus musculus Chromosome X 

NC(gi,gj) > 0.7 

NC(g1,g2) 

Neighboring genes 

Usp26 (Mus)

0.411 

USP46 (Homo)

USP26 (Homo)

A

B
Homo sapiens Chromosome 4 

Mus musculus Chromosome X 

Homo sapiens Chromosome X 

Fig. 7 Case study: Local synteny adding useful information for homology inference for highly divergent proteins. The genes Usp26 inMusmusculus
and USP46 in Homo sapiens are homologous and belong to the USP superfamily. Both proteins are single domain proteins belonging to the
Peptidase_C19 superfamily. The NC-score (relative to the metazoan reference data) for USP46 and Usp26 is 0.411, which is under the 0.5 threshold
recommended for calling the genes homologous [9]. a and b Gene order conservation between Homo sapiens chr. 4, Homo sapiens chr. X and
Musmusculus chr. X containing Usp26 and USP46 at the center and five genes upstream and downstream in all three chromosomes. Only hits with
NC-scores greater than 0.7 are displayed in these panels. Common NC-hits between Usp26 gene inMusmusculus and USP46 gene in Homo sapiens
are marked and used for calculating synteny correlation score between both genes. This is illustrated in (b) where USP26 in Homo sapiens is a
common NC-hit of both genes. Direct synteny score between both genes (shown in a) using SyS score of GenFamClust is 0.741 and synteny
correlation score between both genes using SyC score is 0.672. The GFC positive score obtained for this pair of genes, 0.045, indicates that Usp26
and USP46 are homologs despite high sequence divergence and little sequence similarity

sized clusters. In order to study cluster sizes and see effect
of each clustering strategy, we counted the number of
proteins (shown in Fig. 9) in each coherent sub-group
for each method, with respect to GFC-Single, see Fig. 8.
GFC-Single and SiLiX form a few large clusters reflected
in Fig. 8 and in Fig. 9 for each corresponding method
(2.42% clusters from GFC-Single correspond to 32.68%
proteins clustered by GFC-Single for NC-Single displayed
by green part of first bar in both Fig. 8 and in Fig. 9 and
similarly for all other methods) and similarly for SiLiX
(0.4% clusters of GFC-Single corresponds to 7% proteins
clustered by SiLiX). On the other hand, clusters formed by
GFC-Average are similar to most other software (data not
shown here).

One interesting observation is the behavior of hclus-
ter_sg, where a large proportion of GFC-Single clusters
are subsets of hcluster_sg clusters (25.35%), yet contains
only 14.76% of proteins clustered by GFC-Single (shown
by yellow bars for hcluster_sg in Fig. 8 and in Fig. 9). This
is because of the compactness constraint imposed by the
hcluster_sg algorithm. A similar pattern is also observed
for clusters formed by MCL with respect to clusters by
GFC-Single.

Quality assessment using the fungal dataset
Accuracy of gene family inference of GenFamClust
We wanted to measure the accuracy of gene family
inference of GFC with a semi-automatic curated gold
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Table 4 Similarity and statistical dependence between homology inference methods. Mutual information scores are found above the
diagonal and Jaccard similarity coefficient are found below the diagonal

Mutual information/ GenFamClust Neighborhood correlation SiLiX MCL hcluster_sg

Jaccard coefficient Aver Comp Sing Aver Comp Sing

GFC Average 0.146 0.628 0.139 0.145 0.517 0.149 0.167 0.159

Complete 0.599 0.604 0.123 0.094 0.497 0.112 0.158 0.125

Single 0.117 0.071 0.618 0.605 0.785 0.581 0.631 0.613

NC Average 0.815 0.725 0.096 0.121 0.508 0.130 0.164 0.143

Complete 0.621 0.925 0.073 0.758 0.498 0.113 0.158 0.125

Single 0.169 0.103 0.573 0.138 0.106 0.477 0.518 0.505

SiLiX 0.273 0.339 0.037 0.320 0.345 0.053 0.154 0.126

MCL 0.733 0.520 0.122 0.647 0.537 0.176 0.261 0.173

hcluster_sg 0.586 0.646 0.083 0.623 0.658 0.119 0.277 0.496

The eight highest values for Jacquard’s similarity coefficient (below the diagonal) and mutual information (above the diagonal) are bold-faced to show the pair of software
with most similarity and statistical dependence

standard on a dataset with good syntenic support. The
pipeline employed by YGOB uses an automatic clus-
tering (where each cluster/gene family is referred to as
pillars) based on BLAST scores and synteny, followed
by a round of manual curation [38]. Some additional

genes are assigned based on indirect evidence, via a
mutual homolog or by a combination of other observa-
tions: synteny in the other post-WGD genomes (genomes
that underwent a whole genome duplication event) and
pre-WGD genomes (genomes that did not undergo
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Fig. 8 Cluster coherence for GFC-Single with other gene family inference methods. The bar chart displays coherence at cluster level between
GFC-Single and other gene family inference methods. A cluster is termed common cluster if it can be found with exactly the same members in both
softwares. A cluster is termed as subset if the first software contains two or more clusters merged together as a single cluster in the second software.
Any cluster which is neither common nor subset (or superset) is considered contradictory. As expected, NC-based methods, i.e., NC-Single,
NC-Average, NC-Complete, GFC-Average and GFC-Complete have the most number of clusters in common with GFC-Single (shown with blue parts
of the bar) and there are no contradictory clusters between these software and GFC-Single. However, other software (HiFiX, MCL, hcluster_sg and
SiLiX) have relatively less common clusters with GFC-Single and a few contradictory clusters can also be observed for HiFiX and SiLiX
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% Proteins in clusters superset of a GFC-S cluster % Proteins in clusters not coherent with GFC-S

Fig. 9 Protein distribution by GFC-Single in comparison with other gene family inference methods. Bar chart displays the protein distribution
according to the cluster a protein is found in, where clusters can be common, subset, superset or contradictory as discussed before. The protein
distribution in each class shows aggressive clustering behavior of GFC-based clustering methods w.r.t. other software, i.e., when compared with the
corresponding bar in Fig. 8, we notice that the percentage proteins contained in common clusters is significantly less than the percentage of
common clusters while the percentage proteins contained in subset clusters of GFC-Single has substantially increased than the percentage of
subset clusters of GFC-Single for all software

whole genome duplication) at that locus, two copies of
the gene in other post-WGD genomes, correct clades
in phylogenetic trees, or similar protein lengths [38].
Thanks to the manual curation, YGOB can be used
to benchmark clusters/gene families formed by GFC.
Note that there is relatively strong synteny in yeasts,
so the synteny-support used by YGOB is not as gen-
erally applicable for other datasets as it is for yeasts
whereas the synteny quantification method of GFC can
be used for datasets with various degrees of syntenic
conservation.
The YGOB pillars contain only orthologs and ohnologs,

while GFC clusters infer homologs that also contain par-
alogs. Hence, relating clusters and pillars, a successful
cluster is either identical to, or a superset of, a YGOB
pillar. We first mapped GFC clusters to the YGOB pil-
lars, see Fig. 10a–b, and looked at both single linkage
and average linkage clustering with GFC. More than
96% of pillars in YGOB are coherent with both sin-
gle and average linkage clusters from GFC. Only 2.7%
of the pillars are broken up into smaller clusters by
GFC-Average and 1.3% by GFC-Single. There is disagree-
ment for 1.0% of pillars with GFC-Average and for 0.6%
with GFC-Single. Therefore, 3.7% of YGOB pillars dis-
agree with GFC-Average clusters and 1.9% of them with
GFC-Single clusters. This illustrates that most of YGOB
pillars are also inferred by GFC-Single and GFC-Average
clustering.

We wanted to see if clusters inferred from GFC can
be predicted as “novel pillars”, i.e., pillars that YGOB
has missed. For this purpose, we mapped YGOB pillars
onto GFC-Single or GFC-Average clusters and classified
clusters as coherent, contradictory and putative novel
pillars as shown in Fig. 10c–d. Clusters from GFC-
Average or GFC-Single containing complete YGOB pil-
lars are termed as coherent. If a cluster of GFC-Single
or GFC-Average cluster contains an incomplete YGOB
pillar, then this cluster is classified as contradictory.
Putative novel pillars consist of those genes that exist
as singleton genes or in two or more disjoint pillars
in YGOB dataset, but are brought together by GFC-
Single/GFC-Average, forming a multi-gene or a multi-
pillar cluster. 14.6% of GFC-Average clusters are puta-
tive novel pillars while 12.5% of GFC-Single clusters
are putative novel pillars. Most of the genes in these
putative pillars are paralogs (two or more genes for
at least one species), but a few clusters can be char-
acterized as pillars based on their one-to-one species
correspondence.

Analysis of novel and contradictory predictions of
GenFamClust
We further investigated clusters fromGFC-Single or GFC-
Average that contradicted YGOB pillars, i.e., those clus-
ters that contain at least one partial YGOB pillar. We
analyzed gene order support for both YGOB pillars and
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A

C

B

D

Fig. 10 GFC cluster agreement with YGOB pillars. The figure shows bar charts displaying the agreement and disagreement between YGOB pillars
and clusters formed by single linkage and average linkage on homologs inferred from GFC. First, clusters determined by GFC are mapped onto
YGOB pillars in (a) for GFC-Average and in (b) for GFC-Single, where each bar displays the percentage of YGOB pillars in that category. Second, YGOB
pillars are mapped onto clusters inferred by GFC-Average in (c) and in (d) by GFC-Single, where each bar represents percentage of GFC clusters in
that category. The track “additional pillars” displays the percentage of clusters looking like a pillar, with genes are from different species and
containing singleton genes in YGOB. The track “GFC clusters superset of YGOB pillars” represents the percentage of GFC clusters that contain one or
more YGOB pillar(s) completely. The track “contradictions” represents the percentage of YGOB pillars/GFC clusters where GFC places two genes
from same YGOB pillar in different clusters

GFC Single or GFC-Average clusters by looking for a sim-
ilarity hit in neighborhood of all gene pairs in cluster.
Since GFC uses a synteny correlation score explicitly in
homology inference and YGOB also uses synteny for pillar
inference, both GFC-Single or GFC-Average clusters and
YGOB pillars show good syntenic support (89.0% for GFC

clusters and 91.2% for YGOB pillars contain a homolo-
gous gene pair within 5 neighboring genes). It is through
phylogenetic analysis that the differences between YGOB
pillars and clusters of GFC-Single or GFC-Average are
highlighted. We inferred phylogenetic trees and com-
puted gene/species tree reconciliations with associated

Table 5 Phylogenetic analysis of all contradicting GFC cluster and YGOB pillars

Pillars Method Dupl’s Losses D/L scores # genes Score per gene

YGOB pillars not found in GFC YGOB 53 219 298.5 196 1.523

GFC - - - - -

GFC clusters containing probable pillars YGOB - - - - -

GFC 68 269 371 306 1.212

YGOB pillars containing GFC clusters YGOB 438 1837 2494 1321 1.888

GFC 367 1448 1998.5 1221 1.637

GFC clusters containing YGOB pillars YGOB 43 164 228.5 126 1.813

GFC 58 210 297 188 1.580

The phylogenetic quality of clusters formed by GFC-Average linkage clusters and alternatives suggested by YGOB is shown here. The pillars/clusters are of size≥ 4 and includes
pillars not clustered together by GFC and vice versa, GFC clusters contained in YGOB and probable pillar-like clusters (at most one member from each pre-WGD species and at
most twomembers from each post-WGD species with at least one ortholog) that contain YGOB clusters. The numbers of genes in each cluster are summed up to find the total
number of genes. NOTUNG’s D/L score divided by the total number of genes gives the average score per gene, where a lower ratio indicates a better fit according to the MPR
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Fig. 11 Case study: Difference between GFC cluster and YGOB pillars - Phylogenetic analysis. a displays a portion of 6 YGOB pillars, where we are
interested in the two pillars (red and blue columns). YGOB classifies them as separate clusters as shown in (a) but GFC-Single and GFC-Average
classifies Ecym_1340 to be part of blue pillar and AEL037C to be a singleton gene. a also shows that both the cluster and the pillar has good syntenic
support via neighboring pillars. b displays the D/L score and the most parsimonious reconciliation of gene tree with species tree constructed from
GFC cluster with/without Ecym_1340 added and highlighted here in blue. The cluster given by GFC-based methods (Ecym_1340 added to the blue
cluster in a) has the lowest D/L score to gene ratio and is, therefore, phylogenetically most probable. There exist multiple genes in the blue pillar that
have a BLAST hit with Ecym_1340 and there does not exist a BLAST hit with evalue 10 between Ecym_1340 and AEL037C showing similarity support
for GFC cluster and lack of similarity for the genes in red pillar in (a)
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D/L scores (from NOTUNG) for clusters and pillars, see
Table 5. All clusters/pillars with size < 4 were excluded as
they always have a D/L score of 0. For all three cases, i.e.,
novel pillars proposed by GFC, pillars contained within
GFC and GFC clusters contained within YGOB pillars, the
average D/L score per gene of clusters from GFC-Single
or GFC-Average is significantly lower than that of YGOB
pillars implying that on average, each cluster from GFC-
Single or GFC-Average is phylogenetically more parsimo-
nious than the corresponding YGOB pillar. Our manual
inspection of the data suggests that GFC finds pillars with
high sequence divergence that are mistakenly split up by
YGOB. Manual curation is supposed to find and correct
such cases in YGOB, but the automated use of synteny in
GFC seems more successful.
In Fig. 11, we present a case where a cluster deter-

mined by GFC-Average and its corresponding YGOB
pillar do not agree. In Fig. 11a, each column represents
a YGOB pillar and the specific pillars concerning this
case are differentiated from other pillars by using red
and dark blue colors. YGOB places E.cym_1340 (E. cym-
balariae) along with AEL037C (E. gossypii) as displayed in
Fig. 11a (pillar shown with red). However, GFC-Average
places E.cym_1340 in the pillar containing TDEL0D02320
(T. delbrueckii) and KLLA0A10989g (K. lactis) (pillar
shown by dark blue) and shows AEL037C as a single gene
cluster. While both placements of Ecym_1340 are syn-
tenically supported, there are a couple of drawbacks with
placing it alongside AEL037C. First, Ecym_1340 has weak
BLAST hits with most of the members of the blue pillar in
Fig. 11a but no BLAST hit with AEL037C within E-value
of 10. Therefore placing Ecym_1340 within the pillar con-
taining TDEL0D02320 is better choice on account of sim-
ilarity with other members of the pillar than placing with
AEL037C. Second, as shown in Fig. 11b (same number of
duplications and losses with/without adding Ecym_1340
to the blue cluster) phylogenetic analysis reveals that GFC
cluster easily accommodates Ecym_1340 without adding
any duplication or loss to the reconcialiation, which
means that the GFC cluster has lower duplication and
loss score per gene than the corresponding YGOB pillar.
Therefore, in this case, both phylogenetically and through
sequence similarity analysis, it is concluded that the clus-
ter inferred on GFC-homologs is more plausible than the
YGOB pillar.

Conclusions
Homology and gene family inference are important tasks
and prerequisites to functional, structural, and phyloge-
netic characterization of genes and proteins. Multido-
main proteins constitute a long-standing challenge, both
in terms of interpretation and prediction of homol-
ogy. Based on the Neighborhood Correlation framework
[24, 25], we have in previous work suggested a novel

method, GenFamClust that makes use of network struc-
ture of synteny and similarity across multiple genomes
[36]. Here, we have evaluated GenFamClust in compar-
ison with other homology inference like Neighborhood
Correlation and BLAST using clustering approaches like
single linkage, complete linkage, average linkage, Markov
Clustering, hcluster_sg, SiLiX and HiFix on accuracy,
similarity, dependence and/or other characteristics on
complete genomes of metazoan dataset and validating
accuracy of all software on simulated datasets. Cluster-
ing algorithms applied on GenFamClust show maximum
similarity with other gene family inference methods using
mutual information and Jaccard similarity coefficient.
Moreover, we compared performance of GenFamClust on
complete genomes of a fungal dataset with semi-manually
curated orthologs and ohnologs (genes related by a whole
genome duplication event) to determine accuracy of Gen-
FamClust and show that the clusters, where GenFamClust
and Yeast Gene Order Browser pillars disagree, the ones
formed by GenFamClust have on average a lower duplica-
tion loss score per gene, are on average closer to the most
parsimonious reconciliation with the fungal species tree
and thereforemore accurate than the pillars. Furthermore,
quantitative synteny is a useful way of incorporating gene
order conservation information in homology inference.
There was significant improvement in results, particularly
for datasets containing homologs with syntenic support
(e.g., orthologs, and paralogs related by segmental dupli-
cation), despite GenFamClust’s relatively simple approach
to assessing gene order. From this work, we conclude
that GenFamClust is a more accurate method to infer
homology than most other common homology inference
approaches and its synteny measure is simple and bio-
logically realistic as seen in diverse biological datasets
as well as in simulated datasets. Importantly, it is a tool
that uses both similarity and synteny to explicitly predict
multidomain homology.
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