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Abstract

Background: Genital diversity may arise through sexual conflict over polyandry, where male genital features function
to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is
consistent with this view, but a link between genital complexity and mating rates remains to be established. In
sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form
genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test
whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism,
relate to the evolution of mating systems.

Results: Using a combination of comparative tests, we show that male genital complexity negatively correlates with
female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm
a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with
a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals.

Conclusions: These results are consistent with the predictions from sexual conflict theory, although sexual conflict may
not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our
comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and
sexual cannibalism by females coincides with monogyny.

Keywords: Sexual selection, Sexual size dimorphism, Sexual conflict, Female gigantism, Sexually antagonistic
coevolution, Nephila
Background
Sexual conflict over mating frequency [1] may create a
sexually antagonistic selective regime, thought to be re-
sponsible for the coevolution of male and female traits
that facilitate protection of evolutionary interests within
each sex, and at the same time limit the mating fre-
quencies of the other sex [2–4]. Sexually antagonistic
co-evolutionary stages are characterized by the inter-
action between sets of male persistence traits and female
resistance counter-adaptations [5]. A classic example of
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sexual conflict is when male traits that protect male pater-
nity by inhibiting polyandry subsequently act as selection
pressures favoring counter-acting female traits that pre-
vent male monopolization [5, 6]. Male persistence traits
may include harmful genitalia [7], accessory gland
products [8], and genital mutilation and plugging [9].
Female counter-adaptations may include modifications
of female genital anatomy [10], physiological adjust-
ments [11], and concealment of paternity [12]. Females
may also engage in pre- or post-copulatory sexual canni-
balism, thereby preventing unwanted copulations [13–16].
The intensity of sexual conflict and thus strength of
selection acting on these traits may be influenced by the
potential mating rates of both males and females [2, 17].
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Sexual conflict is an ongoing process, the intensity of
which varies between populations and species, and may
drive diversification, speciation, and extinction rates [17].
The nature of sexual conflict and its role in phenotypic
evolution remain elusive [18, 19], and may be either a
cause or consequence of evolving traits. Consequently,
phylogenetic comparative studies are a useful approach to
elucidating the role of sexual conflict at macroevolution-
ary scales [5].
Animal genitalia are diverse and evolve relatively rapidly

compared with somatic traits [20–23]. The extraordinary
diversity of male and female genitalia may partially derive
from sexual conflict over mating rates, where particular
features of the genitalia of one sex function to manipulate
mating frequency against the interest of the other sex [17].
The correlated evolution of male and female genitalia, re-
vealed by comparative analyses [7, 10, 22, 24–27] may be
consistent with the predictions of sexual conflict over
mating frequency, which also requires sexual selection
as its component [28]. Critically, the nature of the sex-
ual conflict is not revealed by the majority of these
studies [18, 19], which do not explore how the evolu-
tionary trajectory of genital traits, such as complexity,
is linked to the mating rates of males, females or both.
Studies that integrate these aspects have measured

female mating rates and the intensity of sexual conflict
in a clade of water striders [17, 22, 29]. However, the
evolutionary role of sexual conflict beyond water striders
remains poorly understood, and this is particularly true
for spiders, a mega-diverse invertebrate order with im-
pressive variation in somatic and genital morphology,
and extreme sexual repertoires [14, 18, 30–33]. Golden
orbweaving spiders (family Nephilidae) are extremely
sexually size dimorphic with females on average up to
125 times heavier than their mates [34]. The evolution
of body size in nephilids is decoupled between the sexes
[35, 36]. The resulting extreme female biased sexual size
dimorphism introduces issues of genital size mismatches
between males and females [37], and as a consequence,
components of male and female genitalia may evolve at
differing rates to compensate for such mismatches [38].
The suggested evolutionary link between male genital

complexity and its impact on female mating rates has
not been tested in a phylogenetic framework. Relatively
small nephilid males of certain species engage in extreme
mating strategies, including severing terminal parts of
their pedipalps (sperm transferring appendages), which
are used to plug female copulatory openings [39, 40].
Experimental studies on selected species found that plugs
from males with complex genitals commonly prevent
female polyandry, whereas plugs from simple genitals do
not [39, 41]. Assuming that male strategies to monopolize
paternity with a single female via genital plugging are not
in the interest of the female [20], females ought to evolve
counter-adaptations. These could be behavioral and might
include aggression and sexual cannibalism [14, 33], or
might involve morphological adjustments in genital
morphology [26].
Using all nephilid species from a recent phylogeny

[42], we retest the pattern of genital complexity coevolu-
tion between the sexes in nephilid spiders [26, 43], then
examine phylogenetic associations between mating rates
and male morphological and female behavioral traits.
Specifically, we predict a negative correlation between
female mating rates and male genital complexity, if more
elaborate male palps function to prevent female polyan-
dry. We also predict a negative correlation between male
mating rates and sexual cannibalism if post-copulatory
cannibalism functions as a female mechanism of pre-
venting male-imposed monandry.

Methods
Genital complexity scores
Genital complexity scores (Additional file 1: Table S1)
were obtained from a prior study [26] that used 10 geni-
tal features per sex as counts of summed complexity.
Briefly, this approach scores the presence of male fea-
tures such as sclerite ridges, flaps and hooks (Additional
file 2: Figure S1, Additional file 3: File S1), that contrib-
ute to overall palpal complexity, and female features
such as hooks and duct curls that contribute to com-
plexity of external (epigynal) and internal (vulval) genital
anatomy [26]. We modified this dataset for a more precise
taxonomic match with the new phylogeny, thus adding
data for Herennia oz scored from the genus revision [44],
for both sexes of Clitaetra thisbe updated from two Cli-
taetra taxonomic treatments [45, 46], and with updated
Nephilingis taxonomy [47]. We left the outgroup Zygiella
unscored as it is unclear whether or not this taxon pos-
sesses the embolic conductor shared by nephilids and the
group Deliochus + Phonognatha [43], a morphological fea-
ture central to nephilid genital complexity scoring.

Genital damage and mating rates
In nephilid spiders, males break off distal parts of their
pedipalps to form genital plugs, but these plugs, lodged
in female copulatory openings, do not necessarily pre-
vent female polyandry. Our morphological examinations
on the prevalence of genital plugs, consisting of palpal
parts from a single versus multiple males [43, 44],
helped score for male genital damage presence or ab-
sence for most taxa in the phylogeny (Additional file 1:
Table S1). Additional evidence comes from detailed spe-
cies level experimental studies [39, 41, 48–53].
We simplified the male and female mating rates to a di-

chotomy that reflects monogamy (monandry or monogyny)
versus polygamy (polyandry or polygyny). We define poly-
gyny as male mating with more than one female, whereas
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monogynous males invest into repeated mating with the
same female in an attempt to plug both of her copulatory
openings. We based the inferred mating rates in nephilids
and outgroups (Additional file 1: Table S1) on available ex-
perimental studies [13, 39–41, 48–73] and on genital dam-
age data where single versus multiple male mating plugs
per female copulatory opening predict monandry and poly-
andry, respectively [26, 35, 40, 41, 53]. Most Nephila spe-
cies, and Phonognatha graeffei, are polyandrous [49, 61].
Based on experimental studies, we deemed a male-enforced
monogamy in Herennia, Nephilengys and Nephilingis [74].
While little is known about the sexual biology of Clitaetra,
their genitals are never plugged, hinting at possible polyan-
dry. Our inferred mating rate scores match the established
mating systems in those cases where experimental data are
available (Additional file 1: Table S1).

Body length, SSD, and sexual cannibalism
We used sexual size dimorphism (SSD) indices [36] as
ratios of mean female body length to male body length
(Additional file 1: Table S1). Because sexual cannibalism
strongly depends on the mating status of the female, we
translated the experimental data on post-copulatory
sexual cannibalism by virgin females [13, 39, 48, 49, 51,
56, 60–62, 64, 72, 75–77] to average percentage scores
per species (Additional file 1: Table S1).

Phylogeny
The coevolutionary pattern of nephilid male and female
genital complexity [26] relied on a phylogeny that lacked
branch lengths (Additional file 4: Figure S2A; [43]). The
reference nephilid phylogeny used here was recently
proposed through rigorous analyses of 4 k bp nucleotide
data obtained for 28 out of 40 nephilid species and nu-
merous outgroups (Additional file 4: Figure S2B; [42]).
We pruned the reference phylogeny for any redundant
ingroup taxa and for most outgroup taxa retaining only
the immediate sister clade to nephilids. The resulting base
phylogeny had 30 terminals (Additional file 1: Table S1).
Note that all comparative analyses are based on the same
reference topology, but adjust terminal numbers to avoid
missing taxon scores that would preclude specific com-
parative testing (see below).

Comparative analyses
We tested for correlations between pairs of continuous
variables (genital complexity, body size, SSD, sexual
cannibalism) using phylogenetically independent con-
trasts (PIC) analysis [78] in the PDAP module of
Mesquite 3.0 [79]. All continuous variables passed the
PDAP test for data conformity, thus we used the in-
ferred, untransformed branch lengths in combination
with two tailed P values.
We explored the relationships between continuous
(male and female genital complexity, male and female
body length, SSD, cannibalism rate; Additional file 1:
Table S1) and discrete (inferred male and female mating
rates; Additional file 1: Table S1) traits using three dif-
ferent analyses. We explored associations between male
and female mating rates on the one hand and each con-
tinuous trait on the other using phylogenetic ANOVA
[80] implemented as function ‘phylANOVA’ in the R
package ‘phytools’ [81], and generalized estimating
equations (GEE) [82] implemented via function ‘com-
par.gee’ with default settings in the R package ‘ape’
[83]. We then ran multiple variable regression analyses
using a Bayesian generalized linear mixed model
(GLMM) with a logit link function within the R package
‘MCMCglmm’ [84]. This approach takes into account
phylogenetic relationships by using phylogeny as a co-
variate [85] and analyzes continuous traits as independ-
ent variables simultaneously to test their association
with the dependent factor, in our case male and female
mating rates. To avoid the collinearity in the GLMM
analysis, we first conducted an exploratory factor ana-
lysis of the five independent variables with direct obli-
min rotation using ‘fa’ function in R package ‘psych’
[86]. Exploratory factor analysis revealed three inde-
pendent factors that were used in subsequent GLMM
analyses (Additional file 5: File S2): MR1 related to SSD
and female body length, MR2 related to male and
female body length, and MR3 related to male and
female genital complexity.
Results
PIC analyses reveal a significant positive correlation
between male and female genital complexity (R2 = 0.437,
t = 4.851, d.f. = 27, P < 0.001; Fig. 1), confirming the prior
pattern of concerted male and female genital evolution
[26]. Neither female nor male genital complexity showed
any phylogenetic correlation with sexual size dimorphism
(SSD) or with male body size (Female genital complexity
vs. SSD: R2 = 0.012, P = 0.586; Male genital complexity vs.
SSD: R2 = 0.010, P = 0.612; Female genital complexity vs.
male body size: R2 = 0.024, P = 0.427; Male genital com-
plexity vs. male body size: R2 = 0.051, P = 0.248). However,
in species with larger females, male and female genitals
were simpler (Female genital complexity vs. Female
body size: R2 = 0.163, P = 0.029; Male genital complexity
vs. Female body size: R2 = 0.153, P = 0.035).
Phylogenetic reconstructions (Figs. 1 and 2) suggest

that the evolution of male genital complexity is negatively
associated with female mating rates: the evolutionary
maintenance of polyandry-reconstructed as an ancestral
trait-coincides with repeated shifts to simplified genital
anatomy, while two independent origins of monandry in



Fig. 1 Summarized trait optimization in nephilid spiders. Ancestral states are reconstructed using parsimony optimization on a Bayesian
phylogeny. Terminal names and branch length information are omitted for clarity; instead, typical male palpal anatomies are shown, and
simple scores for male genital damage and female mating rates are given. Male and female genital complexity show positive phylogenetic
correlation (PIC, P < 0.0001)
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Nephilidae (though not in the outgroup Deliochus) coin-
cide with shifts to increased male genital complexity.
Consistent with our first prediction, phylogenetic

ANOVA and GEE analyses (Table 1, Additional file 6:
Figure S3) reinforce this pattern by establishing a sig-
nificant negative association between female mating
rates and male genital complexity (with polyandry being
more likely in species with simpler male genitals).
These analyses also suggest that male mating rates are
negatively associated with male and female genital com-
plexity (with polygyny being more likely in species with
simpler male and female genitals).
GLMM analyses (Additional file 5: file S2) establish a
negative correlation between male mating rates and factor
MR3 that combined male and female genital complexity.
This implies that monogyny can be predicted by high
genital complexity in both sexes. By not revealing a sig-
nificant correlation between female mating rates and
MR1-3, these analyses do not directly support our pre-
diction about female mating rates and male genital
complexity.
Consistent with our second prediction, both phylo-

genetic ANOVA and GEE analyses (Table 1) establish
that male mating rates are negatively associated with



Fig. 2 Reconstructed evolution of male genital complexity and female mating rates. Comparative analyses suggest that these variables are negatively
correlated (phylogenetic ANOVA, P = 0.002; GEE, P < 0.001)
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rates of sexual cannibalism (with monogynous species
being more cannibalistic).

Discussion and conclusions
The results from our comparative analyses, summarized
in Fig. 3, support our prediction that female mating rates
are negatively associated with male genital complexity.
We also found male mating rates to be negatively associ-
ated with male genital complexity. As predicted, sexual
cannibalism is negatively correlated with male mating
rates (Fig. 3). Interestingly, we found no association be-
tween female mating rates and female gigantism (or SSD),
and thus the evolution of body size per se does not appear
to be linked with mating systems.
Complex male genital organs, functioning as effective

mating plugs to enforce monandry, have evolved from an
ancestral polyandrous mating system (Fig. 2). Experimental
studies reveal that these complex male genitals, when
mutilated, effectively plug female copulatory openings
[40, 41, 51] but subsequently limit male re-mating
opportunities. A negative correlation between female
mating rates and male genital complexity provides sup-
port for the idea that in relatively tiny nephilid spider
males, observed increases in palpal complexity limit
female remating opportunities, and thus the evolution
of genital complexity promotes sexual conflict. We in-
terpret these patterns to imply that complex male geni-
tals act as a male persistence mechanism by enforcing
monandry through effective genital plugging.
While the specific costs of reduced mating rates to

plugged females are rarely documented, the general
benefits of polyandry [20] suggest that male-enforced
monandry in nephilids does not serve female interests
[26]. Hence one would expect to detect female resistance



Table 1 The results of phylogenetic ANOVA and generalized estimating equations (GEE) analyses testing for association between
discrete traits and continuous characters

Phylogenetic ANOVA GEE

F value P value Slope (±SE) P value

Female mating rate

vs. female genital complexity 16.494 0.106 −0.191 (1.019) 0.096

vs. male genital complexity 75.296 0.002 −3.747 (0.692) <0.001

vs. female body length 1.951 0.550 1.811 (7.611) 0.818

vs. male body length 1.079 0.656 0.099 (1.307) 0.941

vs. sexual size dimorphism 0.370 0.797 0.121 (1.630) 0.942

vs. sexual cannibalism rate 4.750 0.219 −0.242 (0.169) 0.224

Male mating rate

vs. female genital complexity 25.112 0.002 −1.851 (0.417) 0.002

vs. male genital complexity 52.721 0.001 −1.936 (0.411) 0.001

vs. female body length 1.511 0.487 7.272 (3.276) 0.056

vs. male body length 0.329 0.746 0.430 (0.575) 0.476

vs. sexual size dimorphism 0.087 0.893 0.372 (0.722) 0.619

vs. sexual cannibalism rate 9.667 0.018 −0.277 (0.081) 0.025

Significant associations are bolded
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mechanisms, either through morphological adjustments
(genital complexity), or behavioral adaptation, e.g., sexual
cannibalism. While the latter seems to coevolve with
monogyny, the former is not directly supported by our
analyses. To elaborate, our analyses confirmed the pre-
dicted negative association between sexual cannibalism
and male mating rates, and additionally found that species
with larger females have simpler genitals. We interpret
these results to imply that post-copulatory sexual canni-
balism acts as female resistance mechanism to male
monopolization. However, female resistance traits should
also reassert polyandry, but it does not seem that
Male 
genital 

complexity

Male 
mating 
rates

Female 
genital 

complexity

Sexual 
cannibalism

Female 
mating 
rates

Fig. 3 Summary relationships between studied phenotypes detected by
different comparative analyses. Lines mark significant associations; green
and red lines denote positive and negative associations, respectively.
Arrows imply direction as derived from specific predictions
adjustments to female genital complexity function in this
manner. Namely, the absence of a correlation between fe-
male genital complexity and female mating rates suggests
that genital morphology modifications do not serve as fe-
male resistance mechanism [26].
These emerging patterns should be interpreted cau-

tiously for several reasons. First, evolutionary processes
that generate genital variation may not be detectable by
correlated patterns alone [22]. In an antagonistic coevo-
lutionary process, adaptations and counter adaptations
are ongoing processes that counterbalance each other,
and whose continuum blurs the imprint of sexual conflict
[17]. Following this logic, it is the evolutionary outliers, i.e.,
adaptations of one sex departing from the continuum, that
are informative of evolutionary processes [17]. We cannot
claim with any certainty that the phenotypes comprising
the present study represent such outliers. Nevertheless, in-
tegrative comparative analyses may inform evolutionary
processes [87], and our study, which integrates the cur-
rently available behavioral, experimental and functional
evidence (Additional file 1: Table S1) with phylogenetically
controlled comparative analyses, supports at least a partial
role of sexual conflict in spider phenotypic evolution.
A second caveat is that our study inferred mating rates,

and simplified them into scores of monogamy versus pol-
ygamy. Ideally, mating rate data would include real vari-
ation on measured mating frequencies, but currently these
data are largely unavailable for nephilid spiders, and
would, in any case, likely differ between populations. The
inferred female mating rates are based on our under-
standing of a morphological-behavioral outcome, i.e.,
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single versus multiple mating plugs. This approach aligns
with rates reported for taxa for which experimental data
are available (Additional file 1: Table S1).
While several studies of insects and arachnids have

detected coevolutionary patterns of reproductive traits
between the sexes (e.g., fruit flies [88]; and harvestmen
[89]), ours differs because it specifically links genital
complexity with sex-specific mating rates (see also Rowe
and Arnqvist [22] for water striders). The previously re-
ported positive correlation between male and female
genital complexity [26], is stronger with the new phylo-
geny (Fig. 1), which is topologically quite different from
the prior hypothesis (Additional file 4: Figure S2) and
implies that the evolutionary signal is robust.
Sexual conflict is not the only possible explanation for

patterns of correlated evolution of genitalia found in
several animal groups [7, 88, 90]. Such coevolutionary pat-
terns could also result from the lock and key mechanism,
male-male competition, or female choice, or a combin-
ation of them [91]. Thus, our discussion of the evidence in
support of sexual conflict in spiders does not imply the
absence of other mechanisms related to sexual selection.
For example, features of male palps may function to

stimulate females, thereby introducing the possibility of
cryptic female choice [92, 93]. However, the literature on
the functional significance of male palpal hooks and
processes (Additional file 3: File S1) suggests their func-
tion in grasping, mounting, and manipulating the fe-
male, and a role in genital mutilation and plugging. This
functional morphological evidence, the detected phylo-
genetic correlations among phenotypes, and the lack of
described behavioral and physiological stimulatory
mechanisms, combined suggest that stimulation is an
unlikely explanation for these male morphologies, but
rather points towards monopolization of females via
genital plugging.

Additional files

Additional file 1: Table S1. Nephilid spider and outgroup data for all
variables used in phylogenetic comparative analyses. Mating rates are
inferred based on experimental and morphological evidence. Separate
(Excel) file. (XLSX 16 kb)

Additional file 2: Figure S1. Relatively simple (left; Clitaetra) and complex
(right, Herennia) genital morphology in nephilid spiders. Upper images show
distal parts of the male pedipalp, lower images show female epigyna. Note
that the male embolic conductor (EC) interacts with the copulatory opening
(CO) of the female, and if broken off, may form an elaborate mating plug
(lower right). (EPS 7104 kb)

Additional file 3: File S1. Morphological features contributing to scores
of genital complexity and their hypothesized function. Separate (Word) file.
(DOCX 16 kb)

Additional file 4: Figure S2. Contrasting phylogenetic topologies: A,
cladogram from Kuntner et al. (2008) with no branch length information;
B, Bayesian tree from Kuntner et al. (2013) with rearranged taxonomic
relationships and branches proportional to evolutionary change. See Methods
for additional detail. Separate (pdf) file. (PDF 290 kb)
Additional file 5: File S2. The code and the results of the GLMM
analyses. Separate Word file. (DOCX 523 kb)

Additional file 6: Figure S3. Relationships of studied phenotypes with
female and male inferred mating rates (raw, species data). Relationships
that become significant after phylogenetic correction are highlighted.
(PDF 25 kb)

Abbreviations
FBL: Female body length (mm); FGC: Female genital complexity; MBL: Male
body length (mm); MGC: Male genital complexity; SSD: Sexual size
dimorphism
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