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Background: The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the common terminal reaction
in the gluconeogenic/glycogenolytic pathways and plays a central role in glucose homeostasis. In most mammals,
different G6PC subunits are encoded by three paralogous genes (G6PC, G6PC2, and G6PC3). Mutations in G6PC and
G6PC3 are responsible for human mendelian diseases, whereas variants in G6PC2 are associated with fasting glucose

(FG) levels.

Results: We analyzed the evolutionary history of G6Pase genes. Results indicated that the three paralogs originated
during early vertebrate evolution and that negative selection was the major force shaping diversity at these genes
in mammals. Nonetheless, site-wise estimation of evolutionary rates at corresponding sites revealed weak correlations,
suggesting that mammalian G6Pases have evolved different structural features over time. We also detected pervasive
positive selection at mammalian G6PC2. Most selected residues localize in the C-terminal protein region, where several
human variants associated with FG levels also map. This region was re-sequenced in ~560 subjects from Saudi Arabia,
185 of whom suffering from type 2 diabetes (T2D). The frequency of rare missense and nonsense variants was not
significantly different in T2D and controls. Association analysis with two common missense variants (V219L and 5342C)
revealed a weak but significant association for both SNPs when analyses were conditioned on rs560887, previously
identified in a GWAS for FG. Two haplotypes were significantly associated with T2D with an opposite effect direction.

Conclusions: We detected pervasive positive selection at mammalian G6PC2 genes and we suggest that distinct
haplotypes at the G6PC2 locus modulate susceptibility to T2D.
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Background

The endoplasmic reticulum enzyme glucose-6-
phosphatase catalyzes the hydrolysis of glucose-6-
phosphate (G6P) to glucose and inorganic phosphate.
The enzyme is part of a multicomponent integral mem-
brane system that includes the catalytic subunit (G6PC,
hereafter referred to as G6Pase) as well as transporters
for glucose-6-phosphate, inorganic phosphate, and glu-
cose [1, 2]. G6Pase catalyzes the common terminal
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reaction in the gluconeogenic and glycogenolytic path-
ways, resulting in the release of glucose into the blood-
stream [1]. These results led to the identification of
Go6Pase as a key player in glucose homeostasis.

In most mammals, different G6PC subunits are
encoded by three paralogous genes (G6PC, G6PC2, and
G6PC3), usually referred to as the G6PC gene family [1,
2]. The protein products of the three genes display mod-
erate sequence identity and a common topological
organization with nine transmembrane domains and
intralumenal catalytic residues [1].

G6PC is mainly expressed in the liver and kidney and
at lower levels in the intestine and pancreatic islets, and
has a critical function in maintaining euglycemia in
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fasting conditions [1, 2]. In humans, mutations in the
gene cause glycogen storage disease type la (GSD1A),
which results in severe hypoglycemia and glycogen
accumulation-associated hepatomegaly, as well as
growth retardation, lactic acidemia, hyperlipidemia, hy-
peruricemia, and increased incidence of hepatic aden-
omas [1, 2]. Mutations in G6PC3 are also associated
with pathology in humans. Thus, although the gene is
ubiquitously expressed, its function is particularly im-
portant in white blood cells, and G6PC3 deficiency
causes autosomal recessive severe congenital neutro-
penia type 4 (SCN4) [1, 2]. SCN4 patients are particu-
larly susceptible to bacterial infections and may display
additional non immunologic symptoms. Conversely, in
both humans and in the knock-out mouse model,
G6PC3 only marginally contributes to the regulation of
blood glucose levels or hepatic glycogen content [1, 2].
Finally, G6PC2 is specifically expressed in pancreatic is-
lets where its function is still incompletely understood
[1, 2]. g6pc2™~ mice display a reduction in blood glucose
levels after a 6 h fast, whereas plasma insulin and gluca-
gon concentrations are unaffected [1, 2]. These data led
to the hypothesis that G6PC2 regulates the glycolytic
flux by hydrolyzing G6P, thereby opposing the action of
glucokinase. G6PC2 and glucokinase are, therefore sug-
gested to function as beta islet glucose sensors [1, 2]. In
humans, common and rare variants in G6PC2 have been
associated with fasting glucose (FG) levels and with de-
creased insulin secretion during glucose tolerance tests
[3-9]. This observation led to the suggestion that
G6PC2 may also regulate the pulsatility of insulin secre-
tion [1, 2].

Variation in FG is clinically important in humans, as it
is associated with the risk of developing type 2 diabetes
(T2D) and ischemic heart disease [10, 11] as well as be-
ing an important determinant of offspring birth weight
in pregnant women [12].

In humans and other mammals, FG levels are influ-
enced by the feeding status. Prolonged fasting causes a
reduction in blood glucose levels, which can result in
life-threatening hypoglycemia; the gluconeogenic path-
way is the major contributor to the maintenance of glu-
cose levels during fasting and starvation [13]. Mammals
display a wide variety of diets, different lifestyles (that
may or may not include recurrent prolonged fasts), and
distinct energy requirements. These characteristics influ-
ence the ability of a species to resist prolonged fasting
[13], a situation that is common in nature and that is
likely to exert a strong selective pressure. It is thus con-
ceivable that genes involved in the regulation of FG have
been targeted by positive (or diversifying) selection dur-
ing mammalian evolution. Indeed, positive selection was
previously demonstrated to act on genes with a role in
carbohydrate absorption and digestion in mammals [14,

Page 2 of 14

15]. In humans, aside from the textbook example of lac-
tase persistence [16], signals of diet-driven selection in-
clude variants in genes involved in starch and sucrose
metabolism [15, 17], copy number variation at genes en-
coding salivary amylase (AMYI) [18], as well as poly-
morphisms in genes that may be associated with the
consumption of cooked food [19]. In fact, humans likely
underwent several dietary shifts associated with cultural
innovations such as the use of fire for cooking (likely
predating the split of modern humans from Neander-
thals/Denisovans) [19, 20], the exploitation of starch-
rich plant underground storage organs [21], and the
agricultural revolution. Because these cultural changes
modified diet composition and caloric intake, genes in-
volved in glucose homeostasis, such as G6PC genes, rep-
resent likely target of positive selection in humans.

Herein we use both inter- and intra-species compari-
sons to analyze the evolution of the three G6Pase genes
in mammals and human populations. We also perform
an association study to assess the role of G6PC2 variants
in T2D susceptibility in a population with high incidence
of metabolic disorders.

Results
Evolutionary origin of the G6PC gene family
We first investigated the evolutionary origin of the three
mammalian G6PC paralogs. Analysis of a gene gain/loss
tree of 70 animal species through the Ensembl Compara
utility [22, 23] indicated that a single G6PC gene is
present in the Drosophila genome, whereas lamprey
(Petromyzon marinus, Cyclostomata) displays two genes
and most bony fishes, birds, reptiles, amphibians and
mammals have at least three paralogs. Possibly due to
gene loss, no G6PC gene is described in the two Tuni-
cata genomes included in the Ensembl Compara dataset.
Overall, these observations suggest that the first dupli-
cation of an ancestral G6PC gene occurred during the
vertebrate/invertebrate split and a second duplication
took place either in the ancestor of all Gnathostomata
(jawed vertebrates) or in the ancestor of bony verte-
brates (i.e. after the split of bony and cartilaginous
fishes). To more precisely map these duplication events,
we constructed a phylogenetic tree using protein se-
quence information for the animal species included in
the Ensembl database plus additional organisms selected
to resolve the timing of the duplication events (Fig. 1,
Additional file 1: Table S1). Results indicated that ar-
thropods, mollusks, and echinoderms display one single
G6PC gene, with the only exception of Limulus polyphe-
mus, which has two highly similar genes suggesting a re-
cent duplication event in this lineage. One G6PC gene is
also observed in the hemichordate Saccoglossus kowa-
levskii. No G6PC gene was identified in the genomes of
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tunicates and cephalochordates, suggesting lineage-
specific losses.

Analysis of the G6PC phylogeny indicated that an ini-
tial duplication event in the lineage basal to all verte-
brates originated G6PC3 and the G6PC/G6PC2
ancestor. In lamprey, one of the two G6PC sequences
clusters with G6PC3 proteins, whereas the other is basal
to G6PC2 and G6PC (Fig. 1), suggesting that the dupli-
cation events that originated G6PC and G6PC2 occurred
after the split of gnathostomes and cyclostomes but be-
fore the divergence of cartilaginous and bony fishes, as

the three Callorhinchus milii sequences (the elephant
shark) indicate (Fig. 1).

Evolutionary analysis of the glucose-6-phosphatase
(G6PC) catalytic subunit gene family in mammals

We next analyzed in detail the evolutionary history of
the three genes encoding G6Pases in eutherian mam-
mals. To this aim, coding sequence information for ~64
species were retrieved (Table 1 and Additional file 1:
Table S2). Specifically, all available sequences with good
coverage were retrieved for the study. The rat sequence
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Table 1 Average non-synonymous/synonymous substitution rate ratio (dN/dS) and percentage of negatively selected sites fot the

three G6Pase genes

Gene ALIAS Protein size (amino acids) Tree Lenght N° of species Average dN/dS (95% confidence intervals) % of FEL negatively selected sites
G6PC  G6PT 357 8.65 64 0.167 (0.156, 0.178) 66.39%
G6PC2 IGRP 355 6.44 64 0.206 (0.191, 0.222) 52.11%
G6PC3  UGRP 346 762 62 0.159 (0.147, 0.171) 66.18%

was not included for G6PC2, as the gene is non func-
tional in this rodent species [24]. GARD (genetic algo-
rithm recombination detection) [25] detected no
recombination breakpoint in any alignment. To obtain
an estimate of the extent of functional constraint acting
on these genes, we calculated the average non-
synonymous substitution/synonymous substitution rate
(dN/dS, also referred to as w) using the single-likelihood
ancestor counting (SLAC) method [26]. As is the case
for most mammalian genes [27], dN/dS was always
lower than 1 (Table 1), indicating that purifying selection
is the major force shaping diversity at mammalian
Go6Pase genes. Indeed, analysis based on the fixed effects
likelihood (FEL) method [26] detected a considerable
proportion of negatively selected sites in all three genes
(Table 1). The protein products of the three genes share
a common topological structure, display considerable se-
quence identity, and perform the same molecular func-
tion, albeit in different cell types. To test whether
structural/functional constraints represent major drivers
of molecular evolution, we used FEL to calculate the
normalized dN-dS value at each site and we correlated
this parameter across corresponding sites (on the basis
of the pairwise protein alignments). Although a sig-
nificant correlation between dN-dS values was de-
tected for G6PC and G6PC2 (Spearman’s rank
correlation, p =0.0062), as well as for G6PC and
G6PC3 (Spearman’s rank correlation, p =0.0025), the
correlation coefficients were small (p=0.15 and 0.16,
respectively). No significant correlation was detected
for the G6PC2-G6PC3 pair (Spearman’s rank correl-
ation, p =0.123, p = 0.08).

A common expectation is that mutations at highly
constrained codons are more likely to disrupt protein
structure/function and, therefore, to cause disease. To
date, 57 independent GSD1A missense mutations in-
volving 47 unique codons have been reported. We ob-
served that codons that carry at least one missense
mutation are significantly more likely to show statistical
evidence of negative selection (FEL p value <0.1) than
codons where no mutation has been described (Fisher’s
Exact Test, two tailed, p =0.044, odds ratio = 2.19, 95%
confidence intervals: 0.99-5.34). The same calculation
was not performed for G6PC3 mutations, as too few of
such mutations are actually known (number of mutated
codons =9, seven of which negatively selected).

Positive selection at the mammalian G6PC2 gene

Positive selection may act on specific sites in a protein
that is otherwise selectively constrained; to test for evi-
dence of positive selection in the three G6Pase genes,
we applied likelihood ratio tests (LRT) implemented in
the codeml program [28, 29]. The total tree length for
eutherian mammals sequences varied between 6.44 and
8.65 (Table 1); these values are within an optimal accur-
acy range for codeml sites models [30]. codeml was ap-
plied to compare models of gene evolution that allow
(NSsite model M8 and M2a, positive selection models)
or disallow (NSsite models Mla, M8a and M7, null
models) a class of codons to evolve with dN/dS > 1. As
reported in Table 2, all null models were rejected in
favor of the positive selection models for G6PC2; the
same result was obtained using different codon fre-
quency models (F3x4 and F61) (Table 2). Conversely, no
evidence of positive selection was obtained for G6PC
and G6PC3 (Additional file 1: Table S3). These results
indicate that G6PC2 alone evolved adaptively in mam-
mals. The Bayes Empirical Bayes (BEB) analysis (from
model M8) [30, 31] identified 5 codons showing strong
evidence of positive selection (posterior probability >
0.95); most of these were also detected by FEL or REL
(Table 2) [26]. With the exclusion of codon 137, selected
sites were located in the C-terminal portion of the pro-
tein, often within highly constrained regions (Fig. 2a).
Human coding polymorphisms that modulate glycemic
traits are mainly located in this C-terminal highly con-
strained region (Fig. 2a); most of these variants affect co-
dons that were targeted by negative selection during
mammalian evolution (Fig. 2a).

Evolutionary analysis of G6Pase genes in humans and
great apes

We next applied a population genetics-phylogenetics ap-
proach to study the evolution of G6Pase genes in the
human, chimpanzee, and gorilla lineages. Specifically, we
ran the gammaMap program [32] that jointly uses intra-
specific variation and inter-specific diversity to estimate
the distribution of fitness effects (i.e. population-scaled
selection coefficients, y) along coding regions. gamma-
Map categorizes codons into 12 classes of y, ranging
from strongly beneficial (y =100) to inviable (y = -500);
a y equal to O indicates neutrality. The overall distribu-
tion of selection coefficients indicated that G6PC
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Table 2 Likelihood ratio test statistics for models of variable selective pressure among sites in G6PC2

—2ALnL¢

Codon frequency model  LRT Models Degrees of freedom p value % of sites (average dN/dS)  Positively selected sites
F3x4
Mla vs M2a® 2 1833 1.05x107* 0.99% (2.72)
M7 vs M8° 2 4636 858x107"" 467% (1.49) G137 (BEB, REL, FEL),
M8aSvs M8 1 11.79 596x10~ /QEB 7F(EBSIB)E'3L1269?B(EBBEF'
G351 (BEB, REL)
F61
Mlavs M2a 2 9.15 1.03x1072  0.75% (240)
M7 vs M8 2 39.46 2.69x107° 4.93% (1.32)
M8a vs M8 1 668 9.77x107

#M1a is a nearly neutral model that assumes one w class between 0 and 1 and one class with w = 1; M2a (positive selection model) is the same as M1a plus an

extra class of w>1

PM7 is a null model that assumes that 0 < w < 1 is beta distributed among sites; M8 (positive selection model) is the same as M7 but also includes an extra

category of sites with w > 1

“M8a is the same as M8, except that the 11th category cannot allow positive selection, but only neutral evolution
92AInL: twice the difference of the natural logs of the maximum likelihood of the models being compared

evolved under strong purifying selection in all lineages
(median y<-10, Fig. 2b). This was also the case for
G6PC2 in non-human primates (median y=-100),
whereas the human gene showed weaker constraint
(Fig. 2b). Finally, the distribution of fitness effects for
G6PC3 was very different in distinct lineages. In fact, the
codon distribution was almost homogeneous across the
range of y values in humans and chimpanzees, although
the median remained below 0. In contrast, the gorilla
lineage showed evidence of strong purifying selection
(Fig. 2b). We thus assessed whether this pattern may de-
rive from a relaxation of constraint in humans and
chimpanzees. To test this possibility we applied the
RELAX methodology [33] to the G6PC3 primate phyl-
ogeny (Fig. 2c). Results were consistent with relaxed se-
lection on the human/chimpanzee branches (p =0.037,
k =0), but not on the gorilla lineage (p =0.958, k = 1.05)
(Fig. 2c¢). The same analysis for the human G6PC2
branch revealed no relaxation of selective pressure (p =
0.866, k = 1.21). gammaMap also identified two positively
selected codons (cumulative probability >0.80 of y=>1)
for human G6PC2 (Fig. 2, Additional file 1: Table S4).
One selected codon was also identified for human
G6PC3 (site 243), whereas no positively selected sites
were detected for G6PC in any lineage.

Evolutionary analysis in human populations

We finally investigated whether positive selection acted
on G6Pase genes during the recent evolutionary history
of human populations. Using the 1000 Genomes Phase 1
data for Yoruba, European, and Chinese we calculated
pairwise Fst [34], an estimate of population genetic dif-
ferentiation. We also performed the DIND (Derived
Intra-allelic Nucleotide Diversity) and iHS (integrated
haplotype score) tests [35, 36] for all SNPs mapping to
these genes. Statistical significance (in terms of

percentile rank) for the Fgr statistic and for the DIND
test was obtained by deriving empirical distributions. For
the iHS test, absolute values higher than 2 were consid-
ered as significant [36]. No SNP in any G6Pase gene
reached statistical significance (rank > 0.95) for both Fgst
and for the DIND tests, and none had an [iHS| higher
than 2. Overall, these results indicate that no variant/
haplotype can be confidently called as positively selected.
Likewise, nucleotide diversity (calculated as Oy and m
[37, 38]) for the entire gene regions was unexceptional if
compared to those calculated for a reference set of 2000
genes. We conclude that G6Pase genes did not represent
selection targets in recent human history.

Association of G6PC2 variants with T2D

Several genome-wide association studies (GWAS) have
identified a functional non-coding variant (rs560887) in
G6PC2 that is associated with fasting glucose (FG) levels
[3-7]. More recently, multiple rare and common coding
variants in this gene were shown to influence FG [39, 40].
As mentioned above, all these coding variants are located
in the two terminal exons of G6PC2, where most sites that
are positively selected in mammals also map (Fig. 2a). The
best characterized variants (H177Y, Y207S, V219L, and
R283X) exert an effect independent of each other and of
the GWAS SNP, indicating that haplotype analysis rather
than single variant association is better suited to assess the
contribution of G6PC2 variants to metabolic traits [39,
40]. Despite their replicated effect on FG, the contribution
of rare and common G6PC2 variants to T2D susceptibility
has remained controversial [6, 39, 41, 42]. We thus inves-
tigated a possible role for G6PC2 variants in modulating
the susceptibility to T2D in subjects from Saudi Arabia, a
region with a high prevalence of metabolic disorders, in-
cluding T2D [43, 44]. Specifically, we resequenced the two
terminal exons of G6PC2 (Fig. 3) in 562 subjects from
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Saudi Arabia, 185 of whom suffering from T2D Finally, to assess the effect of rare and common
(Additional file 1: Table S5). To limit phenotype hetero- G6PC2 variants on T2D risk, we applied a SNP-set
geneity only non-obese individuals (BMI< 30) were in- based method, the Sequence Kernel Association Test
cluded. The rs560887 GWAS variant was also genotyped. (SKAT) [45]. SKAT was run either by inclusion of all
No novel missense or nonsense variant was detected variants identified through re-sequencing (n =13, Fig. 3,
in either T2D subjects or healthy controls (HC) and the  Additional file 1: Tables S6 and S7) or by limiting ana-
frequency of known rare missense and nonsense variants  lysis to missense SNPs plus the GWAS variant
was not significantly different in T2D and HC (Add- (rs560887). No significant association was detected.
itional file 1: Table S6). Two common missense variants  However, as for single-variant associations, the power of
were nevertheless detected in the last G6PC2 exon: SKAT is limited when small samples are analyzed [45].
rs492594 (V219L) and rs2232328 (S342C). The two vari-
ants display very limited linkage disequilibrium (LD) Discussion
(Fig. 3). To address their contribution to T2D risk, logis-  In this study we have analyzed the evolutionary history
tic regression using age, sex, and BMI as covariates were  of three genes (G6PC, G6PC2 and G6PC3) encoding the
used. After FDR correction for multiple tests, no associ-  catalytic subunits of glucose-6-phosphatase, a central en-
ation with T2D was observed (Table 3); conditioning on  zyme for glucose homeostasis. The analysis was moti-
the GWAS variant, though, revealed a significant associ- vated by the well-accepted concept that the availability
ation for the two missense variants (Table 3). Haplotype  of food resources is a driver of pivotal importance in the
analysis using the same covariates indicated above de-  evolution in mammals and that, in natural settings, most
tected two haplotypes significantly associated with T2D  mammals commonly face prolonged fasting and/or star-
(Table 4). Both the predisposing and the protective haplo-  vation [13]. Consequently, homeostatic mechanisms that
type carry the glucose-raising allele at rs560887. The pre-  sense plasma glucose levels and modulate them in re-
disposing haplotype also includes the loss-of-function sponse to the feeding status are expected to represent
L219 allele (glucose-lowering) and the minor allele (C342)  natural selection targets.
at rs2232328 (Table 4). These results should be regarded Commonly, positive and negative selection act in con-
as preliminary due to the small sample size. cert on the same protein-coding gene. In fact, due to
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Sample/SNP (Variant)  Genotype frequency ~ Minor/Major allele

Minor allele freq (%)

Corrected  OR (IC 95%)
p value

Corrected  OR (IC 95%)
p value

Unconditional Conditional on rs560887

rs560887, intronic, (GWAS)

cC cT T
0038 T/C 19.7
0.045 183

0.643
0679

0319
0.276

Diabetic cohort
Control cohort
15492594 (p.Val219Leu)
GG GC CC
0475 0.9 c/G 429
0483  0.149 39.1

0.334
0.368

Diabetic cohort
Control cohort
rs2232328 (p.Ser342Cys)
CC CcG GG
0619 0299 0081 G/C 23.1
0688 0274 0038 17.5

Diabetic cohort

Control cohort

0.368 1.23 (0.78-1.95) - -
0.099 1.50 (1.03-2.18) 0.018 1.70 (1.14-2.54)
0.099 1.51 (0.97-236) 0034 1.64 (1.04-2.58)

structural and functional constraints, most amino acid
replacements are deleterious and are eliminated by nega-
tive selection. Conversely, at a minority of sites, amino
acid replacements may be favored because, without
impairing protein function, they confer new advanta-
geous properties [27]. In line with this view, we found all
Go6Pase genes to display an overall dN/dS lower than 1,
indicating a preponderance of negative selection. Recent
evidence showed that structural and folding require-
ments (i.e. the ability of a protein to fold properly and
stably) represent major determinants of the evolutionary
rate at protein sites [46]. The 3D structures of mamma-
lian G6Pases has not been solved and we could not
therefore assess whether among-site variation in evolu-
tionary rates is correlated with parameters such as solv-
ent accessibility or packing density [46]. Nonetheless, we
reasoned that because the three proteins share consider-
able identity in terms of amino acid sequence and the
same topological organization [1], they should also dis-
play a similar 3D structure and, consequently, corre-
sponding residues should display similar evolutionary
rates. In fact, this was only partially true, as the correl-
ation of dN-dS at corresponding sites were either weak
or non-significant. This suggests that, despite a similar

Table 4 G6PC2 haplotype analysis

Haplotypes Frequency in Frequncy in OR  Association
T2D (%) unaffected (%) p value

rs560887 | rs492594|

rs2232328

CCG 20.16 13.27 200 0.007

CGC 34.00 4094 062 0017

CcCcC 2520 2531 1.02 0916

TGC 18.56 16.52 1.31 0280

membrane topology ad the maintenance of the catalytic
function, mammalian G6Pases have evolved different
structural features over time. Indeed, the three genes
have been diverging for a long time, as the duplications
that originated the three mammalian paralogs occurred
during early vertebrate evolution. It is generally accepted
[47] that two whole genome duplication events occurred
in the lineage basal to all vertebrates, before the diver-
gence of gnathostomes and cyclostomes, although some
authors favored a model with a single whole genome du-
plication [48]. It is thus possible that G6PC3 and the
G6PC/G6PC2 ancestor originated and were fixed after
whole genome duplication(s) in the ancestral vertebrate.
However, the basal position of one lamprey sequence
with respect to gnathostome G6PC and G6PC2 proteins
suggests that the duplication event that originated the
two genes occurred after the gnathostome/cyclostome
split. After gene duplications, gene losses occurred in
several species or lineages; for instance most marsupials
and the platypus only have one G6PC gene. Additional
G6PC duplications also occurred during vertebrate evo-
lution; several bony fishes have 4 G6PC paralogs, pos-
sibly as a results of a whole genome duplication that
occurred in the ancestor of teleosts [47]. A similar ob-
servation was reported for the rainbow trout, a glucose-
intolerant fish, which displays 5 G6PC genes possibly
fixed in this species after the salmonid-specific whole
genome duplication [49]. Overall, these observations in-
dicate that the G6PC gene family is highly dynamic and
gene maintenance or loss in some lineages may be re-
lated to specific feeding needs or strategies.

In line with this view, we detected pervasive positive
selection at mammalian G6PC2 genes. Most residues
targeted by selection are located in the C-terminal pro-
tein region, which is also subject to strong negative
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selection. Because of the role of G6PC2 as a glucose sen-
sor, it is possible to speculate that adaptive changes in
distinct mammals relate to trophic strategies including
diet, hybernation, and feeding behavior. Interestingly,
positively selected sites in the human G6PC2 gene were
detected as well. It is worth mentioning that the two se-
lected residues are fixed or almost fixed in human popu-
lations; checking against the genome sequences of
archaic hominins indicated that the C46 and A119 vari-
ant were already present in the genomes of Neandertals
and Denisovans [50, 51]. These observations suggest
that, as for other variants in metabolic genes [15], these
changes were not driven to high frequency in humans as
an adaptation to the dietary shift determined by agricul-
ture. Indeed, population genetics analysis of modern hu-
man populations detected no recent selective event.

Unexpectedly, given its association with a human dis-
ease, two different analyses indicated that G6PC3 genes
have experienced a relaxation of selective pressure in the
human and chimpanzee lineages. We note, however, that
this finding does not imply that relaxed constraints are
observed at all sites in the protein. Conversely, in
humans this effect is driven by 4 nonsynonymous substi-
tutions (either fixed or polymorphic relative to the com-
mon ancestor of Hominidae), including the positively
selected 243 site, in the absence of synonymous substitu-
tion. Three of these changes are clustered in ~60 amino
acid region (residues 216-275) suggesting that, for un-
known reasons, this protein portion is tolerant to change
in humans. To date, no SNC4 missense mutation has
been described at these sites.

Among the three G6Pase genes, mutations in G6PC2
have never been associated with a Mendelian human
disease. This is in line with the mild phenotype of the
KO mouse model, as well as with the observation that
G6PC2 is a pseudogene in rats. Moreover, recent func-
tional data indicated that coding variants that reduce the
expression of G6PC2, most likely by impairing its fold-
ing, segregate at appreciable frequency in human popu-
lations [39]. Notably, variants in G6PC2 have been
consistently associated with FG levels, whereas their
contribution to T2D risk remains controversial. In par-
ticular, the rs560887 SNP is one of the strongest signals
associated to FG (and related traits), and one of the most
commonly replicated in large-scale analyses [3-6, 52—
54]. Moreover, the variant was shown to be functional
and to modulate G6PC2 pre-mRNA splicing [7]. Al-
though this latter finding does not necessarily imply that
rs560887 is the causal variant, the effect of the glucose-
raising allele (C) on increased splicing efficiency is sug-
gestive [7]. However, distinct studies found either no as-
sociation of rs560887 with T2D risk [42] or indicated a
weak protective effect of the glucose-increasing allele [6,
41]. Recently, Mahajan and coworkers reported a
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glucose-increasing effect of the common V219
(rs492594-G) allele that modestly increases the risk of
T2D as well [39]. The authors suggested that association
analysis for G6PC2 should be performed through haplo-
type reconstruction as multiple rare and common vari-
ants independently affect FG levels, and the direction of
effect for rs492594 is reversed when analysis is condi-
tioned on rs560887 [39]. Nonetheless, most large-scale
analyses of T2D susceptibility performed single variant
association tests, rather than haplotype inference, leaving
the role of G6PC2 in T2D partially unexplored.

Our sequencing analysis in the Saudi sample was mo-
tivated by the high prevalence of T2D in this population.
The frequency of rare variants was not different in T2D
and HC, but the small sample size is not well suited to
this type of analysis. Haplotype analysis with common
variants detected two haplotypes that associated with
T2D susceptibility in Saudi subjects. The haplotypes in-
clude the rs2232328 (S342C) variant, that is not covered
in exome chip arrays and was thus not analyzed in re-
cent association studies of G6PC2 variants for FG levels
[39, 40]. In a genome-wide meta-analysis [53],
rs2232328 showed a strong association with FG (p value
adjusted for BMI=5.1 x 107'°), which is likely inde-
pendent of the lead variant rs560887, as their LD is low
in all populations (r* < 0.05) (http://analysistools.nci.nih.-
gov/LDlink/). The functional effect of the S342C substi-
tution is presently unknown. Codon 342 is negatively
selected in mammals and located in a highly constrained
region; indeed, a cystein residue was present in all ana-
lyzed mammals with the only exception of macaques
(Additional file 1: Figure S1). These observations suggest
that the derived S342 allele impairs G6PC2 function.
Surprisingly, though, the V219 allele which also involves
a negatively selected site and represents the ancestral
state conserved in all mammals (with the only exception
of the tree shrew), was recently shown to result in re-
duced function [39]. Indeed, G6PC2 molecules carrying
the V219 allele are expressed at lower abundance due to
proteasomal degradation [39]. This observation indicates
that the functional effect of G6PC2 variants is difficult
to predict, and in the case of the S342 substitution will
need experimental testing.

The data we report herein, although preliminary, may
help reconcile the contrasting results obtained for
rs560887 on T2D risk, as its effect might depend on
haplotype context and may vary in different populations
depending on LD between rs560887 and other func-
tional variants.

Clearly, further studies will be necessary to confirm
the role of G6PC2 variants on T2D susceptibility. First,
the size of the Saudi sample is small and the associations
we detected are weak, thus requiring validation in an in-
dependent larger sample. Second, variants in the 5’
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region of G6PC2 (rs13387347, rs1402837) and in the
intergenic spacer downstream the transcription end site
of the gene (rs563694) were also associated with FG [4,
55, 56]. These variants possibly contribute independently
to FG levels and show variable levels of LD with the
SNPs we analyzed. Because the focus of our work was
on coding missense variants, we did not analyze these
SNPs. However, they may contribute to T2D susceptibil-
ity either alone or in combinations with coding variants,
warranting their inclusion in future efforts aimed at
assessing the contribution of G6PC2 genetic variability
to T2D risk.

Conclusions

In conclusion, we detected pervasive positive selection at
mammalian G6PC2 genes, with almost all selected sites
located in the C-terminal portion of the protein.

We then investigated a possible role for G6PC2 vari-
ants in modulating the susceptibility to T2D in subjects
from Saudi Arabia. We detected two haplotypes, one
predisposing and one protective, significantly associated
with T2D. These preliminary results suggest that distinct
G6PC2 haplotypes modulate susceptibility to T2D.

Methods

Phylogenetic analysis in metazoans

Protein sequences of G6PC genes for 65 animal species
were retrieved from the Ensembl Compara database
(Additional file 1: Table S1). The genomes of the follow-
ing metazoans were searched for G6PC orthologs and
paralogs: Strongylocentrotus purpuratus, Aplysia califor-
nica, Callorhinchus milii, Saccoglossus kowalevskii, Lim-
ulus polyphemus. Searches were performed using
BLASTp using the three human G6PC proteins as quer-
ies, as well as the two lamprey proteins and the single
protein of sea urchin. All hits corresponded to predicted
proteins derived from genomic sequences.

The genomes of three Cephalochordata (Branchios-
toma lanceolatum, Branchiostoma belcheri, and Asym-
metron lucayanum) was also searched for the presence
of G6PC genes but no hit was obtained.

A maximum likelihood phylogenetic tree of 188 G6PC
proteins was constructed using RAxML v8.2.9 [57] with
100 bootstrap replicates and the best protein substitu-
tion model automatically determinated by the software.

Evolutionary analysis in mammals

Available mammalian sequences for G6PC, G6PC2 and
G6PC3 were retrieved from the NCBI database (http://
www.ncbi.nlm.nih.gov/). A list of species is available as
Additional file 1: Table S2. DNA alignments were per-
formed with the RevIrans 2.0 utility (http://
www.cbs.dtu.dk/services/RevIrans/, MAFFT v6.240 as
an aligner) [58], which uses the protein sequence
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alignment as a scaffold for constructing the correspond-
ing DNA multiple alignment. All alignments were
screened for the presence of recombination using GARD
(Genetic Algorithm Recombination Detection) [25], a
Genetic Algorithm implemented in the HYPHY suite
[59]. Gene trees were generated by maximum-likelihood
using phyML with a maximum-likelihood approach, a
General Time Reversible (GTR) model plus gamma-
distributed rates and 4 substitution rate categories [60].

The SLAC (Single-Likelihood Ancestor Counting) and
FEL (Fixed Effects Likelihood) methods from the HYPHY
package were used to calculate the overall dN/dS, to iden-
tify negatively selected sites (FEL significance cut-off = 0.1)
and for calculating dN-dS (rate of nonsynonymous
changes-rate of synonymous changes) at each site [26].

The site models implemented in PAML were devel-
oped to detect positive selection affecting only a few
aminoacid residues in a protein. To detect selection, site
models that allow (M2a, M8) or disallow (Mla, M7 and
MS8a) a class of sites to evolve with w > 1 were fitted to
the data using the F3x4 (codon frequencies estimated
from the nucleotide frequencies in the data at each
codon site) and the F61 (frequencies of each of the 61
non-stop codons estimated from the data) codon fre-
quency model. Positively selected sites were identified
using the Bayes Empirical Bayes (BEB) analysis (with a
cut-off of 0.95). BEB calculates the posterior probability
that each codon is from the site class of positive selec-
tion (under model M8) [30]. The REL (Random Effects
Likelihood) [26] and FEL (with the default cutoff of 0.1)
tools were also applied to identify positively selected
sites. REL models variation in nonsynonymous and syn-
onymous rates across sites according to a predefined dis-
tribution, with the selection pressure at an individual
site inferred using an empirical Bayes approach; FEL dir-
ectly estimates nonsynonymous and synonymous substi-
tution rates at each site [26].

Tests for potential-relaxed selection of G6PC2 and
G6PC3 genes in primates were performed using the hy-
pothesis testing framework in RELAX from the HYPHY
package [33]. RELAX calculates a selection intensity par-
ameter, k, by taking into account that relaxation will
exert different effects on sites subjected to purifying se-
lection (w< 1) and sites subjected to positive selection
(@ >1). Relaxation will move w toward 1 for both cat-
egories. RELAX tests whether selection is relaxed or in-
tensified on a subset of test branches compared with a
subset of reference branches in a predefined tree. In the
null model, the selection intensity is constrained to 1 for
all branches, whereas in the alternative model k is
allowed to differ between reference and test groups. The
selection on test branches is intensified or relaxed com-
pared with background branches when k>1 or k<1,
respectively.
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Positive selection in Homininae

For gammaMap [32] analysis, genotype data from the
phase 1 of the 1000 Genomes Project were retrieved
from the dedicated website [61]; we retrieved SNP infor-
mation for the three human populations: African
(Yoruba), European, and Chinese. For the chimpanzee
and gorilla analyses, genotype information were retrieved
from [62] for 25 and 27 individuals, respectively.

Ancestral sequences were reconstructed by parsimony
from the human, chimpanzee, orangutan and macaque
sequences.

Analysis was performed assuming 0 (neutral mutation
rate per site), k (transitions/transversions ratio), and T
(branch length) to vary among genes following log-
normal distributions. For p (the probability that adjacent
codons share the same population-scaled selection coef-
ficient) we assumed a uniform distribution. For each
gene we set the neutral frequencies of non-STOP codons
(1/61). For selection coefficients, we considered a uni-
form Dirichlet distribution with the same prior weight
for each selection class. For each gene we run 500,000 it-
erations with a 20,000 iteration burn-in and a thinning
interval of 10 iterations.

G6PC and G6PC3 mutations

The list of G6PC and G6PC3 mutations was obtained
from the Human Gene Mutation Database (HGMD,
http://www.hgmd.cf.ac.uk/ac/) and the ClinVar database
(http://www.ncbi.nlm.nih.gov/clinvar/). Only missense
mutations were included in the analyses.

Population genetics analyses

Genotype information from the Phase 1 of the 1000 Ge-
nomes Project were retrieved from the dedicated website
(http://www.1000genomes.org/) [61].

Genotype information was obtained for the 3 genes
(G6PC, G6PC2 and G6PC3); in particular, three human
populations with different ancestry were analyzed: Euro-
peans (CEU), Africans (Yoruba,YRI), and East Asians
(Han Chinese in Bejing, CHB). A control set of ~2,000
randomly selected genes was used as a reference set
(hereafter referred to as control set). These gene were
selected to be longer than 5000 bp and have more than
80% human-outgroup (chimpanzee, orangutan or ma-
caque genomes) aligning bases; orthologous regions in
the outgroups were retrieved using the LiftOver tool.
These data were used to calculate By [37], m [38] and
their relative distruibutions.

The pairwise Fst [34] and the DIND (Derived Intra-
allelic Nucleotide Diversity) [35] test were calculated for
all SNPs mapping to the analyzed genes, as well as for
SNPs mapping to the control set. Fsr values are not in-
dependent from allele frequencies, so we binned variants
in 50 classes based on the minor allele frequency (MAF)
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and calculated Fs7 empirical distribution for each MAF
class using the control set data. The same procedure was
applied for the DIND test; thus, we calculated statistical
significance by obtaining an empirical distribution of
DIND values for variants located within control genes;
in particular, the DIND test was calculated using a con-
stant number of 40 flanking variants (20 upstream and
20 downstream), as previously described [63]. DIND
values for the three human populations were binned in
100 derived allele frequency (DAF) classes, and for
each class the distributions were calculated. As sug-
gested [35], for values of imp=0 we set the DIND
value to the maximum obtained over the correspond-
ing class plus 20.

The iHS statistic was calculated as previously de-
scribed [36] for all variants mapping to G6PC genes.
Specifically, the iHS value was calculated using all SNPs
surrounding each variant in a 5 kb region.

Human subjects, genotyping and statistical analysis

A total of 562 subjects from the Biomarker Screening in
Riyadh Project (RIYADH COHORT) were enrolled
(Additional file 1: Table S5). Diagnosis of T2D was based
on World Health Organization proposed cut-off: fasting
plasma glucose > or =7.0 mmol/L or 126 mg/dl. Subjects
with medical complications (coronary artery disease, ne-
phropathy, and end stage renal disease or liver disease)
were excluded and a similar percentage of males and fe-
males was enrolled among T2D patients and controls.
Anthropometry included measurement of height (to the
nearest 0.5 cm) and weight (to the nearest 0.1 kg); BMI
was calculated as kg/m® According to the WHO cri-
teria, individuals were classified as non obese if their
BMI was < 30 kg/m? Written consent was obtained from
all participants, and ethical approval was granted by the
Ethics Committee of the College of Science Research
Center, King Saud University, Riyadh, Kingdom of Saudi
Arabia (KSA).

The two terminal exons of G6PC2 were resequenced
through PCR amplification and direct sequencing (pri-
mer sequences are available upon request). PCR prod-
ucts were treated with ExoSAP-IT (USB Corporation
Cleveland Ohio, USA), directly sequenced on both
strands with a Big Dye Terminator sequencing Kit (v3.1
Thermo Fisher Scientific), and run on an Applied Bio-
systems ABI 3130 XL Genetic Analyzer. Sequences were
assembled using DNA Baser Sequence Assembler ver-
sion 4.10. A summary of all variants identified through
resequencing is available (Fig. 3, Table 3, Additional file 1:
Table S6 and S7).

Genetic association was investigated by logistic regres-
sion with age, sex and BMI as covariates, conditioning
or not on the GWAS variant (rs560887). Analyses were
performed using PLINK [64].
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The SKAT test is implemented in the SKAT R package
[45]. The SKAT_commonRare function was used to
combine the effect of common and rare variants. The
suggested threshold (1/vV2n, where n is the number of
subjects) was used to define rare variants [45]. Analyses
were performed either by deriving variant weights from
a beta density function [45] or by using weights based
on the minor allele frequency in the analyzed popula-
tions. As in PLINK analysis, age, sex and BMI were en-
tered as covariates.

Additional files

Additional file 1: Table S1. List of metazoan species used for the
phylogenetic analysis. Table S2. List of mammalian species used for the
evolutionary analysis. Table S3. Likelihood ratio test statistics for models
of variable selective pressure among sites in G6PC and G6PC3. Table S4.
Positively selected sites in GGPC2 and G6PC3 in the human, chimpanzee
and gorilla lineages. Table S5. Characteristics of the Saudi cohort. Table S6.
Rare missense variants in G6PC2. Table S7. Non-coding polymorphic
variants in G6PC2. Figure S1. Multiple protein alignment of G6PC2 genes.
(PDF 186 kb)
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