- Research article
- Open Access
Impacts of mutation effects and population size on mutation rate in asexual populations: a simulation study
https://doi.org/10.1186/1471-2148-10-298
© Jiang et al; licensee BioMed Central Ltd. 2010
- Received: 7 March 2010
- Accepted: 30 September 2010
- Published: 30 September 2010
Abstract
Background
In any natural population, mutation is the primary source of genetic variation required for evolutionary novelty and adaptation. Nevertheless, most mutations, especially those with phenotypic effects, are harmful and are consequently removed by natural selection. For this reason, under natural selection, an organism will evolve to a lower mutation rate. Overall, the action of natural selection on mutation rate is related to population size and mutation effects. Although theoretical work has intensively investigated the relationship between natural selection and mutation rate, most of these studies have focused on individual competition within a population, rather than on competition among populations. The aim of the present study was to use computer simulations to investigate how natural selection adjusts mutation rate among asexually reproducing subpopulations with different mutation rates.
Results
The competition results for the different subpopulations showed that a population could evolve to an "optimum" mutation rate during long-term evolution, and that this rate was modulated by both population size and mutation effects. A larger population could evolve to a higher optimum mutation rate than could a smaller population. The optimum mutation rate depended on both the fraction and the effects of beneficial mutations, rather than on the effects of deleterious ones. The optimum mutation rate increased with either the fraction or the effects of beneficial mutations. When strongly favored mutations appeared, the optimum mutation rate was elevated to a much higher level. The competition time among the subpopulations also substantially shortened.
Conclusions
Competition at the population level revealed that the evolution of the mutation rate in asexual populations was determined by both population size and mutation effects. The most striking finding was that beneficial mutations, rather than deleterious mutations, were the leading force that modulated the optimum mutation rate. The initial configuration of the population appeared to have no effect on these conclusions, confirming the robustness of the simulation method developed in the present study. These findings might further explain the lower mutation rates observed in most asexual organisms, as well as the higher mutation rates in some viruses.
Keywords
- Mutation Rate
- Mutation Effect
- Deleterious Mutation
- High Mutation Rate
- Beneficial Mutation
Background
Understanding the genetic structure of populations requires knowledge of the mutation rate, an important parameter of evolution. One of the essential problems in population genetics is determining how natural selection acts on the mutation rate of an organism during long-term evolution. Although mutation provides the ultimate source of genetic variation, it typically leads to decreased fitness. Even when a population is in the process of adaptation, the majority of its mutations are still deleterious and will ultimately be eliminated by selection. This type of selection pressure was first observed by Sturtevant [1], who questioned why the mutation rates never fall to zero.
Since Sturtevant's pioneering work, the evolution of mutation rate has been researched by many evolutionary biologists and our understanding of this question has been improved in many respects. At present, several methods have been proposed for characterization of the evolution of mutation rate, including direct estimates from mutation accumulation experiments [2–5], indirect estimates from comparisons of DNA sequences among related species [6–8], and theoretical analysis [9–12]. Overall, these methods have been successful in detecting and estimating mutation rates, as well as in describing the relationship between natural selection and mutation rate. Drake [13] suggested that the genome mutation rate (U) in DNA-based microbes was about 0.0034 per generation despite a wide variation in genome size. This relatively constant observed value indicates that the genome mutation rate in microbes has evolved perfectly to fit the pace of environmental changes through natural selection. Several theoretical methods have the potential to explain Drake's observation from different perspectives [11, 12, 14, 15]. For instance, a previous classical research on the evolution of mutation rate was investigated by Leigh based on mathematical analysis [11]. He described the long-term fate of a modifier in infinite asexual populations, and showed that the error rate of DNA replication was exactly equal to the rate of environmental changes. Orr [15] found that the optimum mutation rate was equal to the harmonic mean of the selection coefficients of deleterious mutations when selection for beneficial mutations was assumed milder than selection for deleterious mutations. However, most theoretical analysis methods have focused solely on individual competition within a population. Competition among populations has not yet been sufficiently investigated with respect to the evolution of mutation rates.
In any finite population, the process of evolution is well known to be influenced by population size and mutation effects [16]. Beneficial mutations are more frequently fixed in large populations than in small ones, whereas deleterious mutations are more frequently eliminated. Two studies, one based on a theoretical mathematical model [17], and one on experiments of digital organisms [18], arrived at a similar conclusion; namely, that mutational robustness tended to decline with increasing population size, and thus selection in small populations would favor robustness mechanisms. In a population of a given size, the process of evolution will depend on the relative rate of appearance of deleterious and beneficial mutations as well as their actual mutational effects. Selection associated with deleterious mutations will favor lower mutation rates, while beneficial mutations will favor higher mutation rates [9]. Nevertheless, the evolution of extremely high mutation rates is unlikely to occur unless organisms are under special circumstances [19] for the reason that beneficial mutations rarely compensate for deleterious mutations. The importance of this interplay between mutation rate and its effects was pointed out by Keightley [20], who showed that the genome-wide mutation rate and the distribution of fitness effects of mutations could not be simultaneously estimated because they are confounded with one another: a high mutation rate can usually be explained by a low variance in fitness effects, or a low mutation rate with a high variance in fitness effects. Unfortunately, this conclusion is true only for deleterious mutations and further investigation is needed for cases where beneficial mutations also occur.
When both deleterious and beneficial mutations are present, it is necessary to explore whether an organism could evolve to an "optimum" mutation rate under these two opposing forces. The nature of the dominating factors that shape the optimum mutation rate also needs to be determined. In the present paper, we have developed a simulation method based on competition among subpopulations with different mutation rates to examine how selection may impact the evolution of genome mutation rate. Our results indicate that a larger population could tolerate a higher mutation rate than could a smaller one. The optimum mutation rate depends almost exclusively on the effects of beneficial mutations regardless of the extent of deleterious mutation effects. Possible reasons for these findings are discussed in comparison with previous studies.
Methods
The model
We consider a finite strictly asexual haploid population (with constant population size N) that comprises 10 subpopulations, each of which has N/10 individuals and a different mutation rate, with everything else equal. The rationale of the method is that these subpopulations compete for existence under natural selection and random drift. At the end of a simulation, only one subpopulation remains and the rest are extinct. The mutation rate of the remaining population becomes the "fixed" mutation rate in that competition. By simulating the process many times, we can define the most frequently fixed mutation rate as the "optimum" mutation rate.
Each of the ten subpopulations is assigned with a distinct mutation rate per genome per generation (see parameters). Both deleterious and beneficial mutations occur in each subpopulation with fractions for beneficial and deleterious mutations represented by p b and p d (i.e. 1- p b ), respectively. The effects (selection coefficients) of both beneficial and deleterious mutations are drawn from continuous probability distributions. We denote s b as the effects of beneficial mutations (in which case fitness w is increased by a factor 1+ s b ), while s d represents the effects of deleterious mutations (in which case fitness w is decreased by a factor 1- s d )[21].
We assume that s b follows an exponential distribution: with 1/λ as the mean value of the distribution. This assumption has good theoretical support from extreme-value theory and has been widely used in population genetics models [22–24]. The effects of deleterious mutations may be complex and no general assumption yet exists about the distribution of s d in analytical calculations; however, empirical studies support a gamma distribution with shape parameter smaller than one (other distributions are not necessarily excluded)[25, 26]. In the present study, we assume that s d follows a skewed gamma distribution (α≤1). The gamma distribution used in our simulations is truncated with the value 1.0, which is necessary to avoid producing a negative fitness. In addition, we assume that the mean effects of beneficial mutations () are much smaller than the mean effects of deleterious ones (), which seems to be reasonable in most cases [27, 28].
Parameters
Some estimates of mutation parameters from previous experiments on microbes
Deleterious | Beneficial | ||||
---|---|---|---|---|---|
Taxon | p d |
| p b |
| Reference |
Vesicular stomatitis virus | 29.2% | 0.24 | 4.2% | 0.042 | Sanjuan et al. (2004)a[29] |
Tobacco etch potyvirus | 36.4% | 0.41 | 0 | 0 | Carrasco et al. (2007)b[30] |
S. cerevisiae | - | 0.22 | - | - | Zeyl and DeVisser (2001)[2] |
Diploid S. cerevisiae | - | - | 5.75% | 0.061 | Joseph and Hall (2004)[31] |
E. coli | - | - | - | 0.02 | Imhof and Schlotterer (2001)[32] |
E. coli | - | - | - | 0.054 | Hegreness et al. (2006)[33] |
E. coli | - | - | 0.67%c | 0.01 | Perfeito et al. (2007)[34] |
P. fluorescens | - | - | - | 0.023~0.089 | Kassen and Bataillon (2006)[35] |
One example of distribution of mutation effects. (A) The effects of deleterious mutations follow a gamma distribution with α = 0.6 (shape parameter), β = 0.5 (scale parameter) and the mean effects is . (B) The effects of beneficial mutations follow an exponential distribution with λ = 100 and the mean effects is . (C) The distribution of fitness changes by both deleterious and beneficial mutations with p d = 97% and p b = 3%.
Summary of different mutation rates assigned initially to ten subpopulations
Subpopulation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R u | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1 | U | 0.0001 | 0.0003 | 0.001 | 0.003 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.1 |
lgU | -4.0 | -3.5 | -3.0 | -2.5 | -2.0 | -1.7 | -1.5 | -1.4 | -1.2 | -1.0 | |
2 | U | 0.0001 | 0.0003 | 0.001 | 0.002 | 0.004 | 0.006 | 0.01 | 0.02 | 0.05 | 0.1 |
lgU | -4.0 | -3.5 | -3.0 | -2.7 | -2.4 | -2.2 | -2.0 | -1.7 | -1.3 | -1.0 | |
3 | U | 0.0001 | 0.0002 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 |
lgU | -4.0 | -3.7 | -3.3 | -3.0 | -2.7 | -2.3 | -2.0 | -1.7 | -1.3 | -1.0 | |
4 | U | 0.0002 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 |
lgU | -3.7 | -3.3 | -3.0 | -2.7 | -2.3 | -2.0 | -1.7 | -1.3 | -1.0 | -0.7 | |
5 | U | 0.00005 | 0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 | 0.05 | 0.1 | 0.5 | 1 |
lgU | -4.3 | -4.0 | -3.3 | -3.0 | -2.3 | -2.0 | -1.3 | -1.0 | -0.3 | 0.0 |
Numerical Simulations
Offspring are sampled with repetition according to a multinomial distribution, weighted by the fitness of their respective parent. We label each offspring with a unique identifier for its particular subpopulation.
We trace the numbers of individuals of each subpopulation until the population size of one subpopulation reaches N and the sizes of other subpopulations become zero. At this point, the process is stopped and the corresponding mutation rate of the remaining subpopulation is recorded. In addition, the number of generations one competition takes is also traced. We run simulations that vary both the population size and the mutation effects to evaluate how and to what extent these influence the competition results (see Results). Some initial conditions of the population are also relaxed to test the robustness of the method (see Discussion).
Results
Our extensive simulations were designed to test whether natural selection could shape the optimum mutation rate, given the initial configuration of the population. Each curve represents one simulation result with 300 competitions among all the figures and each point represents the frequency of being fixed of the corresponding mutation rate. For convenience of description, we used the symbol U opt as the optimum mutation rate and G as the mean number of generations required for competition in one simulation. We also used R u to represent which group of mutation rates was adopted in Table 2. The simulation results suggested that the distribution of the frequencies of the fixed mutation rates was similar to a bell shape, revealing that the optimum mutation rate will be maintained within an intermediate range under natural selection rather than be kept at a minimal one.
Change in the frequencies of fixed mutation rates vs . lg( U )-given different population size N ( R u = 1). In all cases, the conditions were constant: p b = 3%, , .
Change in the frequencies of fixed mutation rates vs . lg( U )-given different fraction of beneficial mutations p b ( R u = 1). In all cases, the conditions were constant: N = 105, , .
Change in the frequencies of fixed mutation rates vs . lg( U )-given different scale parameter β of the gamma distribution ( R u = 1). (A) In all cases, the conditions were constant: α = 0.6, N = 105, p b = 5%, . (B) In all cases, the conditions were constant: α = 0.3, N = 105, p b = 1%, .
Change in the frequencies of fixed mutation rates vs . lg( U )-given different shape parameter α of the gamma distribution ( R u = 1). (A) In all cases, the conditions were constant: β = 1/2, N = 105, p b = 1%, . (B) In all cases, the conditions were constant: β = 1/3, N = 105, p b = 1%, .
Change in the frequencies of fixed mutation rates vs . lg( U )-given different parameter λ of the exponential distribution ( R u = 4). In all cases, the conditions were constant: N = 105, p b = 3%, .
Discussion
In this study, we developed a simulation method based on competition among subpopulations in order to explore the pattern of evolution of mutation rate in large asexual populations. Our simulation results showed that populations tended to form an optimum mutation rate based on their initial configuration. This optimum mutation rate depended on the influx of favorable mutations as well as on their corresponding effects. Below, we first discuss the influence of the initial configuration of the population. We then discuss why beneficial mutations are important in asexual populations. Finally, we compare the present results to previous studies about mutators.
Influence of the initial configuration of the population
Change in the frequencies of fixed mutation rates vs . lg( U )-given different mutation range R u . (A) In all cases, the conditions were constant: N = 105, p b = 3%, , . (B) In all cases, the conditions were constant: N = 105, p b = 5%, , .
Change in the frequencies of fixed mutation rates vs . lg( U )-given different initial individual fitness ( R u = 1). y 1 represents normal distribution with mean μ = 0.5 and variance σ2 = 0.1; y 2 represents gamma distribution with α = 20, β = 20; and y 3 represents the initial fitness of all individuals equal to a unified value 1.0. In all cases, the conditions were constant: N = 105, p b = 3%, , .
Change in the frequencies of fixed mutation rates vs . lg( U )-given different fertility limitation ( R u = 1). '*' represents no limitation in fertility. In all cases, the conditions were constant: N = 105, p b = 3%, , .
To summarize, the initial configuration of the population had little influence on the optimum mutation rate, demonstrating the robustness of the developed method based on competition among subpopulations.
Beneficial mutations are crucial in shaping the optimum mutation rates
In this study, we have made three assumptions about mutation effects: first, the mean effects of deleterious mutations are much larger than those of beneficial ones; second, beneficial mutation effects are exponentially distributed; and finally, deleterious mutations effects follow a gamma distribution. However, our simulation results hinge mainly on the first two assumptions. The first assumption is likely to be biologically realistic in many cases, although surely not universally true. Indeed, theory analysis [27, 28] and empirical research (see Table 1) have shown that the mean effects of deleterious mutations are greater than those of beneficial ones. In addition, we assumed that the effects of beneficial mutations followed an exponential distribution, which has good theoretical [22–24] and empirical support [32, 35, 37]. Therefore, the exponential distribution seems a reasonable choice. As for the third assumption, we do not yet have a good understanding of the distribution of deleterious mutation effects due to their complexity. However, the effects of deleterious mutations had little influence on the optimum mutation rate as long as not producing an excessive amount of slightly deleterious mutations. If the mean effects of deleterious mutations was too small to counteract the beneficial mutation effects (e.g., is smaller than 0.01), the optimum mutation rate might reach a higher value than the one presented.
In general, organisms are well adapted to their living environments, so only a few changes lead to fitness increases and these beneficial mutations have very small effects [32, 34, 35, 37]. In a recent study, Cowperthwaite et al [38] used an in silico system to show that beneficial mutations with small effects have always existed in the process of evolution. Although beneficial mutations are much rarer compared to deleterious mutations, they supply the driving force for adaptive evolution and contribute to survival of populations in tough environments [39]. As shown in our results, an increase in either the fraction or the effects of beneficial mutations led to a parallel increase in the optimum mutation rate. It is established that in asexual populations, two problems affect the adaptation: clonal interference and multiple mutations; clonal interference causes beneficial mutations in different genetic backgrounds compete with one another, while multiple mutations in the same background could assist each other's spread toward fixation [40–44]. How the both factors determine the rate at which asexual population evolve has been investigated in recent studies and their actions are related to influx of beneficial mutations, including their fraction (p b ) and effects (s b ) [41, 43].
If the fraction of beneficial mutations (p b ) is relatively high, the clonal interference becomes important. However, in this case, there will also be more chances for multiple beneficial mutations to occur in the same genetic background. Whenever clonal interference is important, so are multiple mutations. As Desai and Fisher showed, evolution in asexual budding yeast populations was dominated by the accumulation of multiple mutations of moderate effect [43]. Individuals that carry multiple beneficial mutations probably have higher fitness than those with one original beneficial mutation. Thus, a subpopulation with a higher mutation rate could benefit from more multiple beneficial mutations, as Figure 3 shown.
On the other hand, if the effects of the majority of new arising beneficial mutations (s b ) are small, these mutations need more generations to be fixed and remain at low frequency in the population for quite a long time [45]. This provides a sufficient chance for competing mutations to occur in the ensuring generations, causing the beneficial mutation with small effects to be wasted [46]. By contrast, if the beneficial mutation effects increase (i.e., strong beneficial mutation appears), natural selection increases their fixation probability and shortens its fixation time, thus reducing the effect of clonal interference [42, 45, 47]. This may explain why competition time among subpopulations was significantly shortened when s b increased. As Wilke pointed out, in the presence of clonal interference, adaptation speed in asexuals still continued to grow with the mean beneficial mutation effects [21], although in a decelerating way. Therefore, reduction in the effect of clonal interference due to increasing s b may further increase the adaptation rate of populations considerably. In this case, the population favored a much higher mutation rate. Our simulation results indicated that if strong beneficial mutations () were produced, the population would evolve to a much higher optimum mutation rate (Uopt = 0.05).
This might provide an alternate explanation for why viruses are capable of evolving to a much higher mutation rate [48] under the influence of the responding rate of immune systems [49]. To survive in extremely stressful environments, the virus populations must evolve more beneficial mutations with large effects.
Selection on mutation rate in asexual populations
The action of selection on mutation rate can be classified as either direct or indirect: direct action is dependent on the effects of modifier alleles on fitness, while indirect action is dependent on the "linkage disequilibrium" between modifier alleles and alleles at other loci affecting fitness [19]. Strong effect modifiers that increase mutation rates are called mutators [12, 50]. Considerable theoretical literature exists on the evolution of mutation rates based on the evolutionary fate of mutators [11, 12, 51]. For instance, Ander and Godelle [12] elucidated the fate of modifiers of mutation rates and obtained three results: first, when adaptation has a significant role, a strong-effect mutator will emerge. Second, the modifier with large effects is likely to appear only when the fitness cost of deleterious mutations is very weak. Third, in small populations, the mutation rate is always blocked at a lower level. In the present study, the optimum mutation rate increased with the effects of beneficial mutations, in agreement with their first result. We also pointed out that effects of deleterious mutations had little influence on the optimum mutation rate unless an excessive number of slightly deleterious mutations were produced, in agreement with their second result. Finally, in our study, when everything else being equal, large populations would evolve to higher optimum mutation rates, in agreement with their third result.
Nevertheless, it should be noticed that in all of the previous studies, high genome mutation rates were generally disfavored in asexual populations except when organisms were under extreme conditions. Gerrish et al. suggested that in the case of complete linkage, the mutation rate would continue to increase until it reached an intolerable level and then lead to organism extinction, rather than elevate without a ceiling [51]. The intuitive picture is that selection would drive mutation rate toward a maximum value when beneficial mutations are occurring [19]. However, as Gerrish et al. pointed out that natural selection, although very robust, is a short-sighted process that favors individuals with immediate fitness benefits. A mutator could get such immediate profits from a beneficial mutation, whereas its action might be weakened by the eventual increase in deleterious mutations.
Other studies involving modifiers also suggested that even if a high mutation rate increased the rate of adaptation in the short term, due to deleterious mutations, selection would be likely to decrease the mutation rate in the long term evolution [19, 52–54]. Thus the evolution of mutation rate in an asexual system would yield an optimum compromise between deleterious and beneficial mutations, as the present study indicated.
Conclusions
Based on competition among subpopulations with different mutation rates, we investigated the evolution of mutation rates in finite asexual populations. The efficiency of natural selection on mutation rate was shown to depend on population size and mutation effects. Large populations tend to have high mutation rates. The optimum rate is also the result of a balance between two opposing forces: a decreasing rate caused by deleterious mutations and adaptation caused by beneficial mutations. However, the influx of favorable mutations is the critical factor and largely determines the optimum mutation rate in large asexual populations. Contrary to our intuition, the effects of deleterious mutations have little impact on this rate as long as there is no an abundance of deleterious mutations with tiny effects. We hope this simulation method and these findings provide useful inspiration for further modeling of the evolution of mutation rates in asexual populations.
Declarations
Acknowledgements
We thank Wenwu Wu for polishing the article and Mingchuan Fu for drawing the figures in this article. We also thank Jian Cheng and Professor Zhao Xu in the college of science in Northwest A&F University for their useful suggestions on our computer simulation. And special thanks to three anonymous reviewers for their valuable and instructive advice to manuscript revision.
Authors’ Affiliations
References
- Sturtevant AH: Essays on evolution. I. On the effects of selection on mutation rate. The Quarterly Review of Biology. 1937, 12 (4): 464-467. 10.1086/394543.View ArticleGoogle Scholar
- Zeyl C, DeVisser JA: Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 2001, 157 (1): 53-61.PubMed CentralPubMedGoogle Scholar
- Denver DR, Morris K, Lynch M, Thomas WK: High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature. 2004, 430 (7000): 679-682. 10.1038/nature02697.View ArticlePubMedGoogle Scholar
- Lang GI, Murray AW: Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics. 2008, 178 (1): 67-82. 10.1534/genetics.107.071506.PubMed CentralView ArticlePubMedGoogle Scholar
- Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Houle D, Charlesworth B, Keightley PD: Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature. 2007, 445 (7123): 82-85. 10.1038/nature05388.View ArticlePubMedGoogle Scholar
- Kondrashov AS, Crow JF: A molecular approach to estimating the human deleterious mutation rate. Hum Mutat. 1993, 2 (3): 229-234. 10.1002/humu.1380020312.View ArticlePubMedGoogle Scholar
- Eyre-Walker A, Keightley PD: High genomic deleterious mutation rates in hominids. Nature. 1999, 397 (6717): 344-347. 10.1038/16915.View ArticlePubMedGoogle Scholar
- Nachman MW, Crowell SL: Estimate of the mutation rate per nucleotide in humans. Genetics. 2000, 156 (1): 297-304.PubMed CentralPubMedGoogle Scholar
- Johnson T: The approach to mutation-selection balance in an infinite asexual population, and the evolution of mutation rates. Proc Biol Sci. 1999, 266 (1436): 2389-2397. 10.1098/rspb.1999.0936.PubMed CentralView ArticlePubMedGoogle Scholar
- Johnson T: Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics. 1999, 151 (4): 1621-1631.PubMed CentralPubMedGoogle Scholar
- Leigh JEG: Natural Selection and Mutability. The American Naturalist. 1970, 104 (937): 301-305. 10.1086/282663.View ArticleGoogle Scholar
- Andre JB, Godelle B: The evolution of mutation rate in finite asexual populations. Genetics. 2006, 172 (1): 611-626. 10.1534/genetics.105.046680.PubMed CentralView ArticlePubMedGoogle Scholar
- Drake JW: A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. 1991, 88 (16): 7160-7164. 10.1073/pnas.88.16.7160.PubMed CentralView ArticlePubMedGoogle Scholar
- Woodcock G, Higgs PG: Population evolution on a multiplicative single-peak fitness landscape. J Theor Biol. 1996, 179 (1): 61-73. 10.1006/jtbi.1996.0049.View ArticlePubMedGoogle Scholar
- Orr HA: The rate of adaptation in asexuals. Genetics. 2000, 155 (2): 961-968.PubMed CentralPubMedGoogle Scholar
- Silander OK, Tenaillon O, Chao L: Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol. 2007, 5 (4): e94-10.1371/journal.pbio.0050094.PubMed CentralView ArticlePubMedGoogle Scholar
- Krakauer DC, Plotkin JB: Redundancy, antiredundancy, and the robustness of genomes. Proc Natl Acad Sci USA. 2002, 99 (3): 1405-1409. 10.1073/pnas.032668599.PubMed CentralView ArticlePubMedGoogle Scholar
- Elena SF, Wilke CO, Ofria C, Lenski RE: Effects of population size and mutation rate on the evolution of mutational robustness. Evolution. 2007, 61 (3): 666-674. 10.1111/j.1558-5646.2007.00064.x.View ArticlePubMedGoogle Scholar
- Sniegowski PD, Gerrish PJ, Johnson T, Shaver A: The evolution of mutation rates: separating causes from consequences. Bioessays. 2000, 22 (12): 1057-1066. 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W.View ArticlePubMedGoogle Scholar
- Keightley PD: Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics. 1998, 150 (3): 1283-1293.PubMed CentralPubMedGoogle Scholar
- Wilke CO: The speed of adaptation in large asexual populations. Genetics. 2004, 167 (4): 2045-2053. 10.1534/genetics.104.027136.PubMed CentralView ArticlePubMedGoogle Scholar
- Gillespie JH: A simple stochastic gene substitution model. Theor Popul Biol. 1983, 23 (2): 202-215. 10.1016/0040-5809(83)90014-X.View ArticlePubMedGoogle Scholar
- Gillespie JH: Molecular evolution over the mutational landscape. Evolution. 1984, 38 (5): 1116-1129. 10.2307/2408444.View ArticleGoogle Scholar
- Orr HA: The distribution of fitness effects among beneficial mutations. Genetics. 2003, 163 (4): 1519-1526.PubMed CentralPubMedGoogle Scholar
- Eyre-Walker A, Woolfit M, Phelps T: The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics. 2006, 173 (2): 891-900. 10.1534/genetics.106.057570.PubMed CentralView ArticlePubMedGoogle Scholar
- Loewe L, Charlesworth B: Inferring the distribution of mutational effects on fitness in Drosophila. Biol Lett. 2006, 2 (3): 426-430. 10.1098/rsbl.2006.0481.PubMed CentralView ArticlePubMedGoogle Scholar
- Daniel L, Hartl CHT: Compensatory Nearly Neutral Mutations Selection without Adaptation. J theor Biol. 1996, 182 (3): 303-309. 10.1006/jtbi.1996.0168.View ArticleGoogle Scholar
- Orr HA: the population genetics of adaptation: the distribution of factors fixed during adaptation evolution. Evolution. 1998, 52 (4): 935-949. 10.2307/2411226.View ArticleGoogle Scholar
- Sanjuan R, Moya A, Elena SF: The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci USA. 2004, 101 (22): 8396-8401. 10.1073/pnas.0400146101.PubMed CentralView ArticlePubMedGoogle Scholar
- Carrasco P, de la Iglesia F, Elena SF: Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco Etch virus. J Virol. 2007, 81 (23): 12979-12984. 10.1128/JVI.00524-07.PubMed CentralView ArticlePubMedGoogle Scholar
- Joseph SB, Hall DW: Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics. 2004, 168 (4): 1817-1825. 10.1534/genetics.104.033761.PubMed CentralView ArticlePubMedGoogle Scholar
- Imhof M, Schlotterer C: Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci USA. 2001, 98 (3): 1113-1117. 10.1073/pnas.98.3.1113.PubMed CentralView ArticlePubMedGoogle Scholar
- Hegreness M, Shoresh N, Hartl D, Kishony R: An equivalence principle for the incorporation of favorable mutations in asexual populations. Science. 2006, 311 (5767): 1615-1617. 10.1126/science.1122469.View ArticlePubMedGoogle Scholar
- Perfeito L, Fernandes L, Mota C, Gordo I: Adaptive mutations in bacteria: high rate and small effects. Science. 2007, 317 (5839): 813-815. 10.1126/science.1142284.View ArticlePubMedGoogle Scholar
- Kassen R, Bataillon T: Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nat Genet. 2006, 38: 484-488. 10.1038/ng1751.View ArticlePubMedGoogle Scholar
- Kimura M: On the probability of fixation of mutant genes in a population. Genetics. 1962, 47: 713-719.PubMed CentralPubMedGoogle Scholar
- Rokyta DR, Joyce P, Caudle SB, Wichman HA: An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nat Genet. 2005, 37 (4): 441-444. 10.1038/ng1535.View ArticlePubMedGoogle Scholar
- Cowperthwaite MC, Bull JJ, Meyers LA: Distributions of beneficial fitness effects in RNA. Genetics. 2005, 170 (4): 1449-1457. 10.1534/genetics.104.039248.PubMed CentralView ArticlePubMedGoogle Scholar
- Eyre-Walker A: The genomic rate of adaptive evolution. Trends Ecol Evol. 2006, 21 (10): 569-575. 10.1016/j.tree.2006.06.015.View ArticlePubMedGoogle Scholar
- Drake JW: Too many mutants with multiple mutations. Crit Rev Biochem Mol Biol. 2007, 42 (4): 247-258. 10.1080/10409230701495631.PubMed CentralView ArticlePubMedGoogle Scholar
- Fogle CA, Nagle JL, Desai MM: Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics. 2008, 180 (4): 2163-2173. 10.1534/genetics.108.090019.PubMed CentralView ArticlePubMedGoogle Scholar
- Barrett RD, M'Gonigle LK, Otto SP: The distribution of beneficial mutant effects under strong selection. Genetics. 2006, 174 (4): 2071-2079. 10.1534/genetics.106.062406.PubMed CentralView ArticlePubMedGoogle Scholar
- Desai MM, Fisher DS, Murray AW: The speed of evolution and maintenance of variation in asexual populations. Curr Biol. 2007, 17 (5): 385-394. 10.1016/j.cub.2007.01.072.PubMed CentralView ArticlePubMedGoogle Scholar
- Park S, Simon D, Krug J: The Speed of Evolution in Large Asexual Populations. J Stat Phys. 2010, 138 (1): 381-410. 10.1007/s10955-009-9915-x.View ArticleGoogle Scholar
- Gerrish PJ, Lenski RE: The fate of competing beneficial mutations in an asexual population. Genetica. 1998, 102-103 (1-6): 127-144. 10.1023/A:1017067816551.View ArticlePubMedGoogle Scholar
- Gerrish P: The rhythm of microbial adaptation. Nature. 2001, 413 (6853): 299-302. 10.1038/35095046.View ArticlePubMedGoogle Scholar
- Rozen DE, de Visser JA, Gerrish PJ: Fitness effects of fixed beneficial mutations in microbial populations. Curr Biol. 2002, 12 (12): 1040-1045. 10.1016/S0960-9822(02)00896-5.View ArticlePubMedGoogle Scholar
- John W, Drake JJH: Mutation rates among RNA viruses. Proc Natl Acad Sci USA. 1999, 96 (11): 13910-13913.Google Scholar
- Kamp C, Bornholdt S: Coevolution of quasispecies: B-cell mutation rates maximize viral error catastrophes. Phys Rev Lett. 2002, 88 (6): 68104-10.1103/PhysRevLett.88.068104.View ArticleGoogle Scholar
- Miller JH: Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol. 1996, 50: 625-643. 10.1146/annurev.micro.50.1.625.View ArticlePubMedGoogle Scholar
- Gerrish PJ, Colato A, Perelson AS, Sniegowski PD: Complete genetic linkage can subvert natural selection. Proc Natl Acad Sci USA. 2007, 104 (15): 6266-6271. 10.1073/pnas.0607280104.PubMed CentralView ArticlePubMedGoogle Scholar
- Crotty S, Cameron CE, Andino R: RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA. 2001, 98 (12): 6895-6900. 10.1073/pnas.111085598.PubMed CentralView ArticlePubMedGoogle Scholar
- Eigen M: Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA. 2002, 99 (21): 13374-13376. 10.1073/pnas.212514799.PubMed CentralView ArticlePubMedGoogle Scholar
- Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI: Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA. 1999, 96 (4): 1492-1497. 10.1073/pnas.96.4.1492.PubMed CentralView ArticlePubMedGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.