Skip to main content
Figure 1 | BMC Evolutionary Biology

Figure 1

From: Evidence of a chimeric genome in the cyanobacterial ancestor of plastids

Figure 1

PhQ/MQ methabolic pathway and phylogeny of MenFD proteins. (a) Shown are the Men proteins that control the enzymatic steps necessary for the conversion of chorismate to the final product MQ in bacteria and PhQ in cyanobacteria and in photosynthetic eukaryotes. (b) Bayesian majority rule consensus tree of a concatenated alignment of MenF and MenD proteins. The nodal numbers represent bootstrap support values inferred using PHYML (left of slash mark) and neighbor joining (1000 replicates, right of slash mark). Only bootstrap values >50% are shown. For the sake of clarity only support values at nodes of highest interest have been included in the figure. The thick branches have a BPP > 0.95. The branch lengths in this tree are proportional to the number of substitutions per site (see scale in figure). Men genes encoded as clusters in chromosomes of prokaryotes and in the plastid genome of Cyanidiales (black boxes), as well as the architecture of the PHYLLO gene (yellow boxes) in nuclear genomes of photosynthetic eukaryotes, are indicated for each taxon. The break in the 5' terminus of PHYLLO in higher plants indicates a gene-splitting event during evolution [18]. In addition, in plants menF is an individual gene distinct from PHYLLO. The men gene cluster in the plastid of Galdieria maxima was only partially sequenced. White boxes with numbers inside indicate the number of genes with functions unrelated to the menaquinone biosynthesis that separate the men genes. Double slashes indicate a large chromosomal separation between men genes. According to their structure, gene clusters can be divided in two groups (Group 1 and Group 2) that are correlated with the tree topology. This tree was arbitrarily rooted on the branch leading to the Actinobacteria.

Back to article page