Skip to main content
Fig. 4 | BMC Evolutionary Biology

Fig. 4

From: Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype

Fig. 4

Wingless queens from the Northern and the Southern Sky Islands show different growth patterns. a Surface area (μm2) of leg discs (x-axis) versus vestigial wing disc (y-axis) for wingless queen last instar larvae from different mountain ranges. A line was fitted through with a Standardized Major Axis bivariate line-fitting analysis. The slopes are significantly different from each other (p-value = 0.00017), reflecting an evolutionary change affecting developmental trajectories of imaginal discs among different mountains since their isolation. b Winged queen larvae shows extensive cell division in imaginal discs in last larval instar. Wingless queen larvae from the Northern Sky Islands c Pinals and the d Catalinas show very few cell divisions in their vestigial wing discs while the Southern Sky Islands, the e Huachucas and f Chiricahuas show more. Red is PH3, green is DAPI, and yellow arrowheads indicate a cell that is expressing PH3. g Map of the Sky Islands indicating the position of Northern and Southern Sky Islands. h Graph of the number of dividing cells per unit area in vestigial discs of wingless queen larva from different Sky Islands. The x-axis shows the different mountain ranges and the y-axis the number of cells dividing per (μm2). The number of dividing cells per unit area in vestigial wing discs differs between Northern and Southern Sky Islands (ANOVA, p <0.0001). Thus, the vestigial wing discs of queens from Southern Sky Islands show significantly higher levels of cell division and are larger than vestigial wing discs of queens from Northern Sky Islands

Back to article page