Skip to main content
Fig. 1 | BMC Evolutionary Biology

Fig. 1

From: Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae

Fig. 1

Mitonuclear interactions contribute to phenotypic differences in S. cerevisiae. a. Neighbor-joining tree of 13 (of 15) yeast isolates used as parental strains for the mitonuclear collection. Genetic distances, clades and ecological origins are from [49]. Lower resolution genetic data [54] places one additional parental strains as wine/European and a second as mosaic. See Table S1 for strain details. b. Mating strategy for creation of the mitonuclear strain collection. mtDNAs were passaged from 15 parental strains through kar1–1 cargo strains to recipient strains to create 225 unique mtDNA-nuclear genotypes. Selection and screening regimes explained in methods. c. Fitness measures (colony sizes) of the mitonuclear strain collection in all conditions, including standard laboratory media containing fermentable (CSM) and non-fermentable (CSMEG) carbon sources, and media simulating ecological habitats including synthetic grape must (SGM), maple sap (MSy) and synthetic oak exudate (SOE) at three temperatures (20, 30, and 37 °C), are shown as violin plots. Proportion of variances due to mtDNA (yellow), nuclear genetic background (blue), mitonuclear interactions (red) and residual (gray) are indicated in bar graphs. d. Temperature-dependent mitonuclear effects. In most media, mitonuclear interactions contribute to a higher proportion of Vp under low or high temperature stress

Back to article page