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Abstract

Background: Estimating the variability in isolation times across co-distributed taxon pairs that may have
experienced the same allopatric isolating mechanism is a core goal of comparative phylogeography. The use of
hierarchical Approximate Bayesian Computation (ABC) and coalescent models to infer temporal dynamics of lineage
co-diversification has been a contentious topic in recent years. Key issues that remain unresolved include the
choice of an appropriate prior on the number of co-divergence events (V), as well as the optimal strategies for data
summarization.

Methods: Through simulation-based cross validation we explore the impact of the strategy for sorting summary
statistics and the choice of prior on ¥ on the estimation of co-divergence variability. We also introduce a new
setting () that can potentially improve estimation of ¥ by enforcing a minimal temporal difference between pulses
of co-divergence. We apply this new method to three empirical datasets: one dataset each of co-distributed taxon
pairs of Panamanian frogs and freshwater fishes, and a large set of Neotropical butterfly sister-taxon pairs.

Results: We demonstrate that the choice of prior on ¥ has little impact on inference, but that sorting summary
statistics yields substantially more reliable estimates of co-divergence variability despite violations of assumptions
about exchangeability. We find the implementation of 3 improves estimation of ¥, with improvement being most
dramatic given larger numbers of taxon pairs. We find equivocal support for synchronous co-divergence for both of
the Panamanian groups, but we find considerable support for asynchronous divergence among the Neotropical
butterflies.

Conclusions: Our simulation experiments demonstrate that using sorted summary statistics results in improved
estimates of the variability in divergence times, whereas the choice of hyperprior on ¥ has negligible effect.
Additionally, we demonstrate that estimating the number of pulses of co-divergence across co-distributed taxon-
pairs is improved by applying a flexible buffering regime over divergence times. This improves the correlation
between W and the true variability in isolation times and allows for more meaningful interpretation of this
hyperparameter. This will allow for more accurate identification of the number of temporally distinct pulses of co-
divergence that generated the diversification pattern of a given regional assemblage of sister-taxon-pairs.
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Background

Over the last three decades, comparative phylogeo-
graphic studies have used population-level genetic data
from regional biotic assemblages to investigate how
earth history dynamics have contributed to regional
patterns of biodiversity and community assembly [1-5].
The implementation of hierarchical Approximate Bayesian
Computation [6-9] has become a key statistical approach
in comparative phylogeography for using coalescent
models to test hypotheses of vicariance and dispersal [10],
synchronous isolation [11], and models of co-expansion
[12, 13] and has subsequently been adopted in a diversity
of fields including neurobiology and astronomy [8, 9].
Other statistical approaches have been recently developed
for the analysis of comparative phylogeography under
unified multi-species models [14], and hABC models using
random-forest classification has been recently expanded to
accommodate reduced-genome SNP data [4, 14, 15]. How-
ever, hABC was initially developed for the purpose of
quantifying patterns of co-isolation across taxon-pairs
[12] based on datasets typically consisting of animal
mtDNA sequences.

In recent years, there has been some disagreement
[16-18] concerning two key details of how hABC is
implemented in the MTML-msBayes software pipeline
[7]. Leaving aside the disagreements about careful choice
of the prior distribution of divergence times, Pr(r), and
its impact on the finite sampling of hyperparameter
space when implementing hABC [17], two other con-
tested issues are how best to sample from the prior on
the number of co-divergence events (¥) and whether to
sort the summary statistic vector prior to the rejection
step. For the former, it has been argued that implement-
ing a Dirichlet-process prior (DPP) over ¥ reduces bias
that leads to incorrect inference of synchronous diver-
gence given a discrete uniform prior over ¥ [19]. For
the latter, an argument has been made that sorting the
summary statistic vector by ascending values of average
pairwise divergence (i), in order to improve computa-
tional efficiency and accuracy in estimating the disper-
sion index of divergence times (Q = Var(1)/E(1)),
introduces bias favoring overestimation of the degree of
synchronicity in divergence times [19]. Furthermore, it
has been argued that using the sorting option leads to
biased results and should be avoided because it treats
species-specific elements within any one of the summary
statistic classes as exchangeable across taxon-pair sam-
ples, irrespective of differences across taxa with regards
to sequence length, number of sequences, DNA substi-
tution model, as well as differences in mutation rates,
and ploidies [19]. However, most of the summary statis-
tic classes have equal expectation across numbers of
individuals and sequence length (they are largely scaled
per base pair) yet will have unequal variances.
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Furthermore, if there are differences in mutation rates,
substitution models, or ploidies (which are all accommo-
dated in the simulation step), this will be reflected con-
sistently across simulations and the associated sorted
vectors accordingly. While this sorting violates some of
these aforementioned assumptions, it is likely that hABC
estimation is robust to these deviations in most if not all
single locus mtDNA datasets. In this case, violations of
exchangability by sorting the vector are outweighed by
information gained about the distribution of divergence
times, similar to how the rank abundance curve extracts
information about species abundance distributions in
community ecology. As is common in models of popula-
tion genetics, minor violations of some assumptions can
lead to improved inference, and in this case the sorted
vector can result in a greater potential correlation be-
tween the variability in divergence times and the distribu-
tion of summary statistic values within each summary
statistic class of the sorted vector. Luckily one can always
use simulation experiments to compare the efficacy of alter-
native summary statistic options by quantifying differences
in accuracy and bias in posterior estimates given identical
datasets simulated under known parameter values.

Beyond disagreements over these options, the far more
fundamental factor underlying the difficulty in estimating
the W hyperparameter is the inherent lack of correlation
between ¥ and the actual variability in divergence times.
For example, if many distinct divergence events are tem-
porally clustered in time, the correspondingly high ¥
value will have little relevance to the overall level of high
synchronicity of divergences in a given assemblage. At the
other extreme, ¥ = 2 could involve two co-divergence
pulses that were 1 million years apart, corresponding
to an overall high level of temporal discordance in
the assemblage as manifested by high variability in
pairwise divergences.

To improve upon estimation of ¥, we introduce and
demonstrate the implementation of a user-defined
buffer, B, to enforce a minimum time between any two
co-divergence pulses [4, 14, 15]. Appropriate values of
should increase the correlation between ¥ and the true
variability in divergence times, thereby increasing the
utility of ¥ for meaningful interpretation in the context
of answering biogeographic questions at Pleistocene and
Pliocene time scales. For example, if co-divergence
events are hypothesized in the context of Quaternary
glaciation cycles, one may be interested in testing
whether a temperate community assemblage became sig-
nificantly fractured during any one of the late Pleistocene
glacial maxima or minima. In this case, one might
consider using B values equivalent to 25,000 years such
that divergences occurring within temporal windows of
50,000 years would be considered effectively part of the
same co-divergence pulse.
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In this paper, we use simulation-based cross-validation
to evaluate how different B values impact the estimation
of ¥ and Q. We also implement a simulation-based
two-by-two experiment to compare ¥ and Q estimators
under contrasting options for sorting the summary
statistic vector, as well as contrasting the use of discrete
uniform and DPP prior for W. Finally, using what we
learned from these simulation experiments, we reanalyze
three sets of empirical data from assemblages representing
a range of life-histories, data configurations, and sample
sizes, such as are routinely analyzed in mitochondrial-
based comparative phylogeographic studies.

Methods

Implementing buffered divergence times

Under the msBayes model, the number of co-divergence
times is parameterized by W under a discrete uniform
prior. The value of ¥ can range from 1 to ¥, where Y
equals the number of taxon-pairs in question. A ¥ value
of 1 signifies simultaneous divergence of all taxa,
whereas ¥ = Y indicates fully asynchronous divergence.
Given any history of more than one divergence time
(¥ > 1), any subset of the divergence times within the
vector {1, ..., Ty} can be tightly clustered in time,
making this parameter difficult to meaningfully interpret
with respect to understanding the distribution of co-
divergence pulses. In other words, this original
parameterization of W results in a poor correlation with
the actual variability in divergence times and the
summary statistics underlying this variability (m, and
Thhey [20]) and is a poor indicator for how many pulses
of co-divergence there might actually have been. Al-
though overall variability in T is well quantified by Q,
the dispersion index of divergence times (Var(t)/E(1)),
having good estimates of ¥ can be important for testing
more detailed biogeographic hypotheses.

A more desirable property for ¥ would be for it to
better reflect the effective number of divergence pulses.
To this end, we implemented a modification to the
MTML-msBayes [7] algorithm for sampling divergence
times (7) between pairs of sister taxa. As in the original
implementation, 1 to ¥ different divergence times are
randomly sampled from a prior distribution for 1. How-
ever, during the sampling process we incorporate a con-
dition such that any two pulses of co-divergence within
the vector {1, ..., Ty} of divergence times are separated
by at least  units of time, effectively generating a buffer
around divergence times of width 2*B. The process of
randomly drawing each of the divergence times from the
prior given each hyperprior draw of ¥ continues until all
taxon-pairs are assigned divergence times conditional
that all ¥ times are at least 3 coalescent time units from
each other. Due to the dynamic between P and the uni-
form prior for T, the upper limit of the discrete uniform
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prior for ¥ may be truncated since this limit is deter-
mined by t / 2. For example, if 1,,,, = 0.75 and P is set
to 0.1, Tax / 2P = 3.75 and therefore the maximum pos-
sible value of W, will be 3.

Simulation experiments assessing impact of 3

We investigated the impact of varying 3 values on esti-
mation of ¥ and Q under a range of data configurations.
To maintain direct comparison with previous simulation
experiments of MTML-msBayes conducted by [21], we in-
cluded a data configuration consistent with 18 sister-
taxon-pairs of parasitoid wasps codistributed across the
Iberian and Balkan regions. We also included two smaller
data configurations of co-distributed Panamanian frogs
(n = 4 taxon-pairs) and fishes (n = 3 taxon-pairs) (Bagley
et al. in review). These data configurations reflect numbers
of taxon-pairs, numbers of samples per taxon, and num-
bers of base pairs per locus commonly evaluated in single
locus comparative phylogeographic studies [22—24]. In all
three cases, we used simulation experiments to explore
the bias and accuracy in estimates of ¥ and Q given four
different B values (0.0, 0.01, 0.05, and 0.1), using leave-
one-out cross-validation [25]. For each P value and data
configuration, we generated a reference table of 3 x 10°
random draws from the hyperprior. We then generated
100 PODS under the same {3 value and data configuration
to compare the true values and mode estimates of ¥ and
Q. We quantified the impact of B on these estimates by
calculating root mean squared error (RMSE) rates in
aggregate, as well as RMSE as a function of the true
parameter values.

Simulation experiments assessing summary statistic
sorting options and hyperprior on ¥

It has been suggested that the default option of resorting
the summary statistics within the vector D by the mag-
nitude of 1, as described in [7], should be avoided for
most empirical datasets [19] due to the possible lack of
exchangeability of summary statistic classes across
taxon-pairs potentially biasing towards the inference of
synchronous co-divergence. Additionally, it has been
suggested that the discrete uniform prior on ¥ also
biases toward inference of synchronous co-divergence
[19]. To directly compare the ability to estimate ¥ and
Q given these different decisions, we conducted a two-
by-two experiment including both sorting strategy and
the two hyperpriors for V: the DPP as described by [19],
and the discrete uniform hyperprior first introduced by
[12]. We accomplished this by porting the implementa-
tion of the DPP from DPP-msbayes [19] into MTML-
msBayes [7]. The new implementation along with all
iPython notebook code for reproducing simulations and
analyses are available on GitHub (https://github.com/
Hickerlab/msBayes).


https://github.com/Hickerlab/msBayes
https://github.com/Hickerlab/msBayes
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To increase comparability of the results for each
hyperprior for ¥, the sorted and unsorted reference
tables of 3 x 10° draws were generated from identically
sampled random draws from the hyperprior with the
only difference being the sorting strategy for D. This was
done for all four combinations of sorting strategies and
alternative hyperpriors for ¥ (DPP and uniform) to
generate four different combinations of hABC options
hereafter referred to as sorted uniform (Usg), sorted DPP
(DPPg), unsorted uniform (Uy), and unsorted DPP
(DPPy). For each estimate given an associated POD, we
retained 1000 posterior samples for each hABC posterior
estimate under each of the four reference tables associ-
ated with the four different hABC settings (i.e. U, DPPg,
Uy, and DPPy). We used non-linear neural network
regression during the post-acceptance rejection adjust-
ment for W [26], and local linear regression for Q [27].
For this simulation experiment, we used the same three
data configurations as above (3, 4, and 18 taxon-pairs).
As above, we quantified error by calculating aggregate
RMSE, as well as RMSE as a function of the true
parameter values.

Applications to empirical data: Neotropical butterflies,
frogs, and fishes
To explore the effects of various magnitudes of f on
estimation of ¥ and Q for real data, we reanalyzed three
empirical datasets. This included data from Bagley et al.
(in review) that tested variation in diversification times
among population-pairs of Panamanian frogs (n = 4
taxon-pairs) and freshwater fishes (n = 3 taxon-pairs)
using one mitochondrial sequence from each of 10 to 28
individuals per taxon. We also reanalyzed a large dataset
of 116 sister species-pairs of Neotropical butterflies con-
sisting of an average of 3.4 mitochondrial cytochrome ¢
oxidase subunit I sequences per taxon [28]. Guided by
our simulation investigation, we adopted a uniform prior
on ¥ with order-independent sorting of the summary
statistic vector and report results based on = 0.0, 0.05,
0.01, and 0.1 (See Additional file 1 for complete details
of empirical analysis methods).

To test the goodness of fit of our model, we used prior
and posterior predictive simulations [29] implemented
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in the abc R package. For the the prior predictive good-
ness of fit, we plot the first two principal components of
the observed and accepted simulated summary statistics
given the approximate posterior distribution. For the
posterior predictive goodness of fit test, we tested
whether the observed summary statistics fell within the
distribution of summary statistics that were calculated
from re-simulated data given the approximate posterior
distribution of .

Results

Impact of 8 on estimation of ¥ and Q

For the 18-taxon-pair configuration, implementation of the
B threshold generally resulted in substantial improvements
for estimating ¥, while improvements on () estimates were
more conditional on true values of Q. The highest accur-
acy in estimating W was achieved with f = 0.05 or 0.1,
whereas a B = 0.01 resulted in negligible improvement in
estimation over p = 0 (Table 1; Figs. 1 and 2). In contrast
to the 18-taxon case, there was little improvement in the
estimation of W given the smaller 3 and 4 taxon-pair data-
sets across all the values of [ that we explored (Table 1;
Additional file 1: Figs. S9, S10, S11, S12, S13, S14, S15 and
S16). Although overall estimates of ) did not markedly
improve with increasing  for the 3 or 4 taxon-pair cases,
the probability of incorrectly inferring synchronous diver-
gence (Q < 0.01) was lowest with the highest value of
modeled (f = 0.1).

Impact of summary statistic ranking and hyperprior of ¥
on the estimation of Q and ¥

The summary statistics sorting strategy had consider-
able effects on estimating Q, while it had lesser im-
pact on estimating ¥, dependent on the size of the
dataset. This dynamic was most apparent for the lar-
ger dataset of 18 taxon-pairs, for which RMSE scores
were 3-fold lower for the estimation of QO when using
the sorting algorithm (Us and DPPg), regardless of prior
choice for W (Table 2). This result contrasts sharply with
previously published studies that advocate using an un-
sorted summary statistic vector and DPP hyperprior for ¥
[19, 30]. Not only does sorting improve estimation of Q

Table 1 RMSE on estimates of ¥ and Q sampling the prior and PODS with varying {3

B 18 taxon- 18 taxon- 18 taxon- 18 taxon- 4 taxon- 4 taxon- 3 taxon- 3 taxon-
pairs Ug pairs Us pairs Uy pairs Uy pairs Us pairs Us pairs Us pairs Us
Yy Q Y 0 Yy Q Yy Q

0 4443 00314 5.0695 0.064 0.866 0.1347 0.7874 0.0895

0.01 44531 0.0273 52278 0.0761 0911 0.102 0.8062 0.0959

0.05 1.5264 0.0276 1.8055 0.0507 0911 0.146 0.8 0.1048

0.1 06164 0.0298 0.8646 0.0392 09747 0.1317 0.7681 0.0909

Mean RMSE in estimation of ¥ and Q averaged across 100 PODS for each of the three data configurations under varying B values. These experiments were
conducted with a uniform prior on ¥, sorted summary statistics vectors, and 3 x 10° samples from the prior distribution
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Fig. 1 PODS results for estimation of ¥ under varying values of {3 for the 18 taxon-pair configuration. Scatterplots of true versus estimated values
of Y for 100 PODS across different buffering regimes for the 18 taxon-pair data configuration. PODS were simulated and analyzed with a uniform
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markedly, but we also found that it had some impact on
improving the estimation of ¥ given larger datasets.

The effects of the two alternative hyperpriors on ¥ have
only minor effects on posterior estimates of ¥ and Q.
Across the three taxon-sample sizes (n = 3, 4, and 18
taxon-pairs) and sorting algorithms, choice of the hyper-
prior on ¥ did not strongly impact estimation of ¥ (Fig. 3,
Additional file 1: Figs. S1 and S2) or Q (Fig. 4, Additional
file 1: Figs. S3 and S4). However, using the DPP (DPPg

and DPPy) hyperprior consistently resulted in slightly
more accurate estimates of WV given the smaller 3 and 4
taxon-pair cases, whereas given the 18 taxon-pair case,
the uniform prior on ¥ (Us and Uy) resulted in slightly
improved estimates of ¥ (Table 2).

However, the effects of the chosen hyperprior on ¥
were dependent upon the true ¥ and Q values across all
taxon-pair configurations. Given the 18 taxon-pair
configuration and the DPP hyperprior on ¥ (DPPs or
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of Q for 100 PODS across different buffering regimes for the 18 taxon-pair data configuration. PODS were simulated and analyzed with a uniform
prior on ¥ and sorted summary statistics using reference tables composed of 3 x 10° samples from the prior. The dashed line is the identity line,
and the red line is a simple linear regression of estimated Q onto true Q.a=0b B =001 cB=005d B =0.1
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Table 2 RMSE on ¥ and Q varying the prior on ¥ and the sorting method

18 taxon-pairs Y 18 taxon-pairs Q

4 taxon-pairs ¥

4 taxon-pairs Q 3 taxon-pairs Y 3 taxon-pairs Q

Us 4.6079; 0.0298; 0.9695;
4141 0.0295 0.974
Uy 5.1069; 0.0867; 0.9592;
4.892 0.0856 1.038
DPPs 5.339; 0.0286; 1.0149;
5.317 0.0303 0.698
DPPy 5.8853; 0.0868; 0.9;
5.058 0.0854 0.92

0.1052; 0.8000; 0.0850;
0.0952 0.8069 0.087
0.1242; 0.8367; 0.0949;
0.1139 0.7625 0.091
0.1158; 0.8246; 0.0720;
0.1073 0.7937 0.0845
0.1262; 0.8124; 0.0954;
0.1245 0.7454 0.092

Mean RMSE in estimation of ¥ and Q averaged across 100 PODS for each of the three data configurations under each of the four models we tested. In the baseline text
of each model “U” and “DPP” refer to the two priors on ¥ that were tested; the uniform distribution and the Dirichlet-process prior, respectively. In the subscript text “S”
and “U" refer the sorting method applied; sorted and unsorted summary statistics vectors, respectively. The first value in each cell was calculated from reference tables
composed of 3 x 10° samples from the prior. The second value in each cell was calculated using 5 x 107 samples from the prior (in bold)

DPPy), we found a concave pattern of error probabilities
quantified by RMSE, with the lowest error at true ¥ = 7
regardless of sorting options. This yielded moderately
increasing error rates as ¥ approached 1 and 18, with the
highest error rates occurring when true ¥ > 12 (Fig. 5).
Given the 3 and 4 taxon-pair configurations and the DPP
hyperprior on ¥ (DPPg or DPPy), the RMSE decreased as
true ¥ increased regardless of sorting method. Unlike the
error in estimation of ¥, the RMSE on the estimation of Q
was dependent on sorting method and true Q value
(Fig. 6). For the 18 taxon-pair configuration and
DPPg, the RMSE was low and unbiased given true Q.
However, with DPPy, RMSE was generally higher and
demonstrated an upward bias for decreasing values of
true Q. This bias was also present in the 3 and 4

taxon-pair configurations, but was less pronounced
(Additional file 1: Figs. S5, S6, S7 and S8).

Unlike the error dynamics associated with DPPg
and DPPy, use of Ug and Uy, under all three data
configurations (3, 4, and 18 taxon-pairs) resulted in
estimation error that was more evenly distributed
across all simulated true ¥ values regardless of sort-
ing method (Fig. 3). Likewise, the RMSE on the esti-
mation of Q was generally low and unbiased across
all true Q values when using the sorting method (Us).
On the other hand, with Uy there was an increasing
bias in RMSE with decreasing true values of Q (Fig. 4).
This pattern was similar across all data configurations,
but was most pronounced with the
configuration.

18 taxon-pair

18 taxon-pairs W, varying prior on ¥ and sorting method
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Fig. 3 PODS results for estimation of ¥ under varying prior on ¥ and sorting method for the 18 taxon-pair configuration. Scatterplots of true versus
estimated values of ¥ for 100 PODS under different models of prior distribution on ¥ and applying different sorting strategies for the 18 taxon-pair
data configuration. PODS were analyzed using reference tables composed of 3 x 10° samples from the prior. Points in the plot are slightly perturbed
to visualize the number of points for each estimate. The dashed line is the identity line, and the red line is a simple linear regression of estimated ¥
onto true Y. a) Dirichlet-process prior with sorted summary statistics. b) Dirichlet-process prior with unsorted summary statistics. €) Uniform prior with
sorted summary statistics. d) Uniform prior with unsorted summary statistics
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18 taxon-pairs Q, varying prior on ¥ and sorting method
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Fig. 4 PODS results for estimation of Q under varying prior on Y and sorting method for the 18 taxon-pair configuration. Scatterplots of true versus
estimated values of Q) for 100 PODS under different models of prior distribution on W and applying different sorting strategies for the 18 taxon-pair
data configuration. PODS were analyzed using reference tables composed of 3 x 10° samples from the prior. The dashed line is the identity line, and
the red line is a simple linear regression of estimated Q onto true Q. a) Dirichlet-process prior with sorted summary statistics. b) Dirichlet-process prior
with unsorted summary statistics. €) Uniform prior with sorted summary statistics. d) Uniform prior with unsorted summary statistics

Application to empirical datasets

For both the frogs (n = 4 taxon-pairs) and fishes
(n = 3 taxon-pairs), using a B value of 0.05 resulted in
equivocal inference of simultaneous divergence across
both datasets given both estimates of O and ¥ (Bayes
factor 1.80 and 1.41 for the frogs and fishes,

respectively; Table 3). Our simulation experiments sug-
gested that the use of B does not appreciably change
the estimation of co-divergence given a small number
of taxon-pairs, and as such, it is unsurprising that
dropping this setting also resulted in a similar infer-
ence of simultaneous divergence with BE(W =1, ¥ > 1

18 taxon-pairs PODS W RMSE, varying prior on ¥ and sorting method
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Fig. 5 PODS results for RMSE on estimation of W under varying prior on Y and sorting method for the 18 taxon-pair configuration. Scatterplots
of RMSE in estimation of ¥ as a function of true W for 100 PODS under different models of prior distribution on ¥ and applying different sorting
strategies for the 18 taxon-pair data configuration. PODS were analyzed using reference tables composed of 3 x 10° samples from the prior. Points in
the plot are slightly perturbed to visualize the number of points for each estimate. a) Dirichlet-process prior with sorted summary statistics. b) Dirichlet-
process prior with unsorted summary statistics. €) Uniform prior with sorted summary statistics. d) Uniform prior with unsorted summary statistics
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| B = 0) = 1.14 for the frogs and BF(W = 1, ¥ > 1 |
B = 0) = 1.33 for the fishes (Table 3).

For the reanalyisis of the 116 taxon-pairs of Neotropical
butterflies, estimates of O and ¥ both suggest that
asynchronous divergence was prevalent within butter-
flies across the Neotropics and, as predicted, the imple-
mentation of [ resulted in an estimate of fewer
co-divergence pulses than when B was set to 0. Similar
to the smaller datasets, the mode and 95% HPD of Q
were not significantly different across buffering regimes
(Mode estimate of Q: p(0) = 0.11; B(0.01) = 0.12;
B(0.05) = 0.11; B(0.1) = 0.12). However, increasing
values of B had a strong impact on estimates of V.
Though (Pr(¥ > 1) = 1) held true across all buffering
regimes, mode estimates varied considerably (Mode

Table 3 Mode estimates of W and Q) for empirical datasets
under the most likely model, with and without buffering

B Byeas Wmode E[ QOmode BF(W=1¥>1)
Frogs 0 N/A 1 0.106 00036 1

005 80x 10% 1 0486 0010 1.80
Fishes 0 N/A 1 0.054 00017 1

005 89x10% 1 0.198 0003 141
Butterfly (Full) 0 N/A 15 0378 0.108 ~0

005 32x 10" 5 0389 0.113 ~0

Mode estimates for ¥ and Q, and mean and variance of T estimated for each
of the empirical datasets (three fish, four frog, three butterfly and 116 butterfly
taxon-pairs). B, E[t], and Qpoqe are reported in coalescent units. Byears is size

of the buffer rescaled to years based on the assumed mutation rates and
generation times of the focal taxa. All empirical analyses were performed with
a uniform prior on ¥, sorted summary statistics vectors, and reference tables
composed of 3 x 10° samples from the prior distribution

estimate of W: B(0) = 15; $(0.01) = 24; B(0.05) = 5;
B(0.1) = 5). This finding is in agreement with the diver-
gence time estimates of Garzén-Orduna et al. [25], who
obtained a wide range of divergence times without
accounting for differences in population divergences
and gene divergence predicted under the standard
coalescent.

Goodness-of-fit tests based on the approximate pos-
terior distribution for all three empirical datasets
showed that, for all  values, the observed data fell
within the cloud of simulated points in the PC plots
(Additional file 1: Figs. S17, S18 and S19). Similarly,
results of our posterior predictive simulations indicated
that the observed summary statistics were not signifi-
cantly different from the simulated summary statistics
(p > 0.05 for all values of ), indicating a good fit of our
model. Although the invariance of divergence that is
assumed within each of the ¥ divergence pulses in our
model using [} is a simplified approximation, the prior and
posterior predictive checks we implemented both show an
acceptable goodness of fit demonstrating that our inferen-
tial model can generate all four datasets, a fundamental
step for Approximate Bayesian Computation [29, 31, 32].

Discussion

Buffering improves estimation of co-divergence events
The dynamics between chosen B and 7., values are
important, as these constrain the sampling space of 7 as
well as the maximum value of P, yet these dynamics also
depend on the number of taxon-pairs analyzed. With
few taxon-pairs, even relatively high values of p may not
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reduce the maximum value of ¥ (¥,,.,). However, as the
number of taxon-pairs increases, increasing the value of
B will reduce ¥ .« proportional to the number of taxon-
pairs (Y) and Tmay For example, the B values that we
explored had little impact on ¥, for the 3 and 4
taxon-pairs data configurations. However, in the 18
taxon-pairs case, increasing values of [ proportionally
decreased Wi (B = 0.05, Wiax = 7; P = 0.1, Winax = 3).
It is important to note that if T, / B < Ythen Wi < Y,
which precludes the possibility of inferring fully idiosyn-
cratic divergence. We recommend that researchers care-
fully consider B values that reflect a meaningful time
scale of biogeographic interest in the context of co-
demographic histories, and likewise consider r.,,, values
that are plausible with respect to observed gene-tree
divergence times [17]. Obviously, choosing B = Tyay / 2
would not yield meaningful results, whereas a 3 value
corresponding to 10,000—50,000 years would be within
the level of resolution of interest for many biogeographic
questions. Additionally, as with all comparative phylo-
geographic analysis, care must be taken in properly scal-
ing time across study organism to account for variation
in mutation rates, generation times and/or ploidy. The
msBayes pipeline includes such a scaling factor per
taxon per locus, to ensure meaningful inference of co-
divergence within any given buffering regime.

An important simplification of our  implementation is
that co-divergence times within a pulse are identical. While
this is admittedly unrealistic, it is best to view adding a
chosen [ value to the model as a useful approximation that
captures the overall pattern in the number of meaningful
co-divergence pulses. One possible improvement to
explore would be to allow each taxon-pair assigned to a
particular 7, given a chosen f3, to draw its own 7 value from
a normal distribution centered around r with a standard
deviation of 2. This would maintain the integrity of the
buffer as these taxon-pairs could still be considered to be
“co-diverging”, but would also allow divergence times for
each taxon-pair to vary in a way that could capture differ-
ences in timing due to stochastic and/or ecologically deter-
ministic factors. A related complementary method could
be developed by using the Poisson distribution to construct
a test for overdispersion or clumpiness, with the null being
a random distribution of divergence events across the prior
on divergence times [33].

Impact of hyperprior for ¥

Although the motivation for the DPP is to allow re-
searchers to distribute prior probability across divergence
models conditional on the number of possible models per
Y value [19], thereby reducing bias against inference of
multiple co-divergence events, we find choice of the prior
has little impact on the estimation of W. Here we show
that, given a finite and reasonable number of samples from
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the prior, the concave shape of the plot of RMSE estimates
on ¥ across PODS for the DPP does reflect the prepon-
derance of weight placed on the prior for values of
Y(Fig. 3). By contrast the RMSE of the uniform
estimates are more evenly distributed, reflecting the
reduced constraint and the increased ability of the uni-
form prior to accurately infer a greater range of true ¥
values. While these sampling dynamics make the DPP
less prone to incorrectly reject truly asynchronous
divergence histories if basing such tests on the hyper-
parameter V' [19], this comes with the cost of reducing
power to infer histories of true synchronous divergence.
Moreover, other factors explored here and elsewhere
clearly demonstrate Q) to be a far superior metric for
this test if one implements the sorting option [17, 21].

Application to empirical data

The effects of the choice of hyperprior for ¥, implemen-
tation of B, and sorting of summary statistic elements
were all reduced in the smaller datasets of 3 and 4
taxon-pairs, and as predicted, they did not change the
outcome for the corresponding empirical frog and fish
datasets. Inference from the larger butterfly dataset of
116 taxon-pairs was somewhat sensitive to these choices.
Our estimate of Q = 0.113 is consistent with an estimate
of ¥ = 5 co-divergence pulses given p = 0.05. The prior
and posterior predictive checks we implemented both
show an acceptable goodness of fit, demonstrating that
our inferential model can generate all three datasets, a
fundamental step for hABC analysis [29, 33].

Conclusions

We have demonstrated that estimating the number of
pulses of co-divergence across co-distributed taxon-pairs
is improved by applying a flexible buffering regime over
divergence times. This achieves better statistical proper-
ties by increasing correlation between the number of co-
divergence pulses and the overall magnitude of variabil-
ity in divergence times. This will allow for more accurate
identification of the number of temporally distinct pulses
of co-divergence that generated the diversification pat-
tern of a given regional assemblage of sister-taxon-pairs.
Additionally, we show that the choice of hyperprior on
¥ is not as important as the choice of whether to sort
the summary statistics vector, as our simulation experi-
ments clearly show that using the sorting strategy results
in drastically improved estimates of the overall variability
in divergence. Although the assumptions of exchange-
ability across units within this vector may not be met for
many mtDNA datasets, as with many cases in popula-
tion genetics and phylogenetics, violation of such as-
sumptions can be outweighed by the improved accuracy
gained from using a model with reduced complexity. We
find the differences in bias and accuracy across all
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parameterizations become negligible given datasets com-
posed of smaller numbers of taxon-pairs. Further, we
find summary statistics are more tightly correlated with
parameters of interest for larger numbers of taxon-pairs.
An analysis specifically targeting this question would il-
luminate this dynamic, yet in general it is expected that
estimation of variability in parameter values will improve
with increasing numbers of taxa, as demonstrated in
[14]As with any application of ABC in population genet-
ics and phylogeography [34], we recommend the stand-
ard practice of using simulation experiments to test for
robustness, and the use of goodness-of-fit tests to ex-
plore various summary statistic options, settings, and
model hyperpriors in the context of one’s data and the
computational resources at hand [35, 36].

Additional file

Additional file 1: Supplementary information. File contains Supporting
Materials and Methods, Supplementary Tables S1 & S2, and Supplementary
figs. S1-520. (DOCX 2273 kb)
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