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Abstract

Background: An excess of nonsynonymous substitutions, over neutrality, is considered evidence of positive Darwinian
selection. Inference for proteins often relies on estimation of the nonsynonymous to synonymous ratio (ω = dN/dS)
within a codon model. However, to ease computational difficulties, ω is typically estimated assuming an idealized
substitution process where (i) all nonsynonymous substitutions have the same rate (regardless of impact on organism
fitness) and (ii) instantaneous double and triple (DT) nucleotide mutations have zero probability (despite evidence that
they can occur). It follows that estimates of ω represent an imperfect summary of the intensity of selection, and that
tests based on the ω > 1 threshold could be negatively impacted.

Results: We developed a general-purpose parametric (GPP) modelling framework for codons. This novel approach allows
specification of all possible instantaneous codon substitutions, including multiple nonsynonymous rates (MNRs) and
instantaneous DT nucleotide changes. Existing codon models are specified as special cases of the GPP model. We use GPP
models to implement likelihood ratio tests for ω > 1 that accommodate MNRs and DT mutations. Through both
simulation and real data analysis, we find that failure to model MNRs and DT mutations reduces power in some cases and
inflates false positives in others. False positives under traditional M2a and M8 models were very sensitive to DT changes.
This was exacerbated by the choice of frequency parameterization (GY vs. MG), with rates sometimes > 90% under MG. By
including MNRs and DT mutations, accuracy and power was greatly improved under the GPP framework. However, we
also find that over-parameterized models can perform less well, and this can contribute to degraded performance of LRTs.

Conclusions: We suggest GPP models should be used alongside traditional codon models. Further, all codon models
should be deployed within an experimental design that includes (i) assessing robustness to model assumptions, and (ii)
investigation of non-standard behaviour of MLEs. As the goal of every analysis is to avoid false conclusions, more work is
needed on model selection methods that consider both the increase in fit engendered by a model parameter and the
degree to which that parameter is affected by un-modelled evolutionary processes.
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Background
Markovian models of codon evolution have been exten-
sively developed and tested over the last decade, largely
due to their value in investigations of functional diver-
gence at the molecular level (see Anisimova and Liberles
[1] for a recent review). Unlike an amino acid model, the
rate of evolution prior to selection at the level of the
protein (i.e., the rate of synonymous codon substitution,
or dS) can be readily estimated under a model of codon
substitution. Comparing that rate to the rate of evolu-
tion after the effect of selection on the protein (i.e., the
rate of nonsynonymous codon substitutions, or dN) leads
to an easily interpretable index of natural selection
pressure. Specifically, the ratio ω = dN/dS is estimated
from a dataset and interpreted in terms of purifying se-
lection (ω < 1), neutral evolution (ω = 1), or positive se-
lection (ω > 1). Codon models used in this way can be
divided into two very broad groups based on their
treatment of how physiochemical properties of amino
acids might impact the probability of a nonsynonymous
substitution. One group of models assumes a single
instantaneous rate for all amino acid exchanges. This

leads to a single selective regime (i.e., one ω) for all
nonsynonymous substitutions, regardless of how radical
or conservative a change in amino acid physiochemical
property. We follow Delport et al. [2] in referring to
these as single-nonsynonymous rate (SNR) models (see
Table 1 for definitions of all the model-related acronyms
used in this study). The other group of models attempt
to relax the SNR restriction by permitting multiple-non-
synonymous rates (MNR). Interestingly, SNR models are
much more widely used in studies of protein functional
divergence despite well-known variability in amino acid
replacement rates, as inferred from large protein
sequence databases [3–5].
The primary reason for employing SNR models is

computational convenience. In addition to needing only
a single ω parameter, substitutions between codons
having two or more nucleotide differences are often
assigned zero probability. By employing both restric-
tions, the number of parameters in the codon rate
matrix is reduced from thousands to just a few. For
example, in addition to ω, a typical formulation might
only require parameters for the transition/transversion

Table 1 Descriptions of the model-related acronyms

Acronym Description

DT Indicates that a model allows simultaneous double (D) and triple (T) nucleotide changes between codons

G0 A GPP codon model employing a single ω parameter

G1aX A GPP codon model with the same discrete mixture of two ω parameters as model M1a; the total number of
free parameters in the model is given by X, and varies depending on how DT and exchangeabilities are modeled

G2aX A GPP codon model with the same discrete mixture of three ω parameters as model M2a; the total number of
free parameters in the model is given by X, and varies depending on how DT and exchangeabilities are modeled

GPP General-Purpose Parametric (GPP) modelling framework for codons

GTR General Time Reversible (GTR) model for single nucleotide changes

GY The codon modelling framework of Goldman and Yang [26] where the transition probability is proportional to the
target codon frequency

M0 A codon model employing a single ω parameter as implemented in PAML [54]

M1a A codon model employing a constrained discrete mixture of two ω parameters [45]

M2a A codon model employing a constrained discrete mixture of three ω parameters [45]

M3 A codon model employing an unconstrained discrete mixture of k independent ω parameters [6]

M8 A codon model employing a discretized β distribution to model among site variability in ω [6]

MEP Mixed Empirical and Parametric (MEP) models combine empirical estimates of exchangeabilities with so-called
mechanistic parameters of codon evolution

MG The codon modelling framework of Muse and Gaut [47] where the transition probability is proportional to the target
nucleotide frequency

MNR A class of models allowing Multiple Nonsynonymous Rates (MNR) of exchangeability between codons

PCP Physiochemical-Constrained Parametric (PCP) models parameterize the influence of physiochemical constraints on
nonsynonymous changeability

REV A fully reversible codon model described by a 61×61 matrix Q, where all codon exchangeabilities are independent
parameters of the model.

SNR A class of models allowing only a Single Nonsynonymous Rates (SNR) of exchangeability between codons
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ratio (κ) and the equilibrium codon frequency of the ith

codon (πi). Such simplification facilitates the extension
SNR models to permit variation in selection regimes
among sites (e.g., [6, 7]), branches [8], or both (e.g., [9,
10]) while keeping model complexity low enough for
single-gene datasets. Simulation studies indicate that
extending SNR models in this way substantially increases
power to detect adaptive molecular evolution (e.g., [7, 9,
11]), and experimental assessment of the results of SNR
models has validated their utility in a wide variety of real
datasets (e.g., [12–15]).
One strategy for model improvement is to increase

mechanistic realism while avoiding over parameterization
[16]. Thus, modelling variability in amino acid exchange-
abilities through MNR codon models should improve
inferences about functional divergence [2, 17, 18]. How-
ever, given the size and complexity of the codon rate
matrix, this is a challenging task and a variety of strategies
have been explored. Here, we divide those strategies into
three categories: (i) mixed empirical and parametric
(MEP) models; (ii) physiochemical-constrained parametric
(PCP) models and (iii) general-purpose parametric (GPP)
models. Below we provide a brief review of those models
implemented for the purpose of making inference about
the process of molecular evolution. Note that Schneider et
al. [19] were the first to construct a codon model having
heterogeneous amino acid exchangeabilities. Because the
purpose of their model was to aid the process of align-
ment it will not be considered further.
MEP models combine empirical estimates of

exchangeabilities with so-called mechanistic parameters
of codon evolution (e.g., ω, κ, and πi). Doron-Faigen-
boim and Pupko [17] chose to integrate existing empir-
ical amino acid exchangeability matrices with such
mechanistic parameters. In this situation, nonsynon-
ymous exchangeabilities between codons are set equal to
amino-acid exchangeabilities (189 parameters) previ-
ously derived from large sets of amino acid sequences.
Kosiol et al. [18] used a massive dataset to estimate the
first fully empirical codon model (1830 codon exchange-
ability parameters) and then combined those with mech-
anistic parameters for codon evolution. De Maio et al.
[20] subsequently reduced that model’s complexity while
maintaining comparable performance. The empirical
matrices in these studies represent very broad averages
of the propensity for amino acid change. Miyazawa [21]
and Zoller and Schneider [22] developed different
methods to tailor the information contained within an
empirical exchangeability matrix to a specific dataset.
The advantage of all these MEP approaches is that they
separate the DNA level evolutionary process from the ef-
fect of selection acting on the protein. However, the ω
parameter of MEP models no longer has the same inter-
pretation as other codon models because

database-derived exchangeability values reflect a broadly
averaged effect of selection, and these influence the
data-specific estimates of selection pressure derived from
the ω parameter [18, 23].
Building upon the well-known relationship between

substitution rates and the physiochemical differences of
amino acids (e.g., Clark [24]; Grantham [25]), the PCP
models explicitly parameterize the influence of physio-
chemical constraints on nonsynonymous changeability.
Goldman and Yang [26] and Yang, Nielsen and Hase-
gawa [27] employed explicit mathematical functions to
model the relationship between the ω parameter and
physiochemical properties, and Yang [28] allowed the
influence of the physiochemical property to vary among
sites. Sainudiin et al. [29] and Wong et al. [30] imple-
mented models that partition nonsynonymous changes
into a small number of categories according to a
pre-defined physiochemical property. As the purpose of
those models was to test if certain physiochemical prop-
erties might be subject to natural selection, their
parameterization is focused on comparing the rate of
property-altering substitutions to the rate of property-
conserving substitutions. Conant and Stadler [31]
accounted for multiple amino acid properties by model-
ling exchangeabilities between nonsynonymous codons
as a linear combination of five pre-specified measures of
physiochemical property. The advantage of these PCP
approaches is that they permit investigation of expli-
cit relationships between physiochemical properties
and selection pressure while seeming to avoid over
parameterization of the codon model. However, the
PCP approach requires strong assumptions about the
relative importance of different properties, and they
are not well suited to assessing the fit of alternative
property scales (which are often non-independent).
The space of possible physiological constraints is
vast, and any given set of constraints neglects the
potential importance of unique structural factors.
The GPP models are fundamentally different from the

MEP and PCP models in two ways: (i) they do not im-
pose empirically estimated exchangeabilities on individ-
ual datasets, nor do they require the nonsynonymous
substitution rate to depend on a pre-specified physio-
chemical property, and (ii) they seek to identify the best
approximation of a fully-reversible (REV) codon model
(a 61 × 61 Q matrix that fully determines the dynamics
of the codon substitution process) for a given sequence
alignment. The REV codon model is attractive because it
is a way of relaxing the unrealistic restriction that all
amino acid changes have a single instantaneous rate.
The cost, however, is an independent parameter for the
rate of exchangeability between every unique pair of
amino acids, which is far too parameter-rich for an
individual gene. Hence, the analytical objective of the
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GPP approach is to explain a set of data using as few
MNR parameters as possible. Delport et al. [2] devel-
oped a promising model search-strategy based on a gen-
etic algorithm (GA). The GA is employed to search for
the best assignment of amino acid pairs to a set of
exchangeability parameters, where the number of such
model parameters is also estimated from the data.
Zaheri, Dib and Salamin [32] developed a novel analyt-
ical framework whereby the full instantaneous rate
matrix for codons (3721 elements) can be estimated
from just 19 model parameters. The full codon matrix is
obtained by using Kronecker product to combine three
4 × 4 nucleotide matrices specified for each position of
the codon. Both approaches appear to capture important
aspects of real protein-coding sequence evolution, but
via very different strategies. However, the parameters of
the 4 × 4 nucleotide matrices employed by Zaheri, Dib
and Salamin [32] are not defined with respect to an
explicit process of codon evolution, which limits their
use for testing of codon-level evolutionary processes.
Double and triple (DT) nucleotide substitutions

between codons are biologically possible [33–35] as suc-
cessive changes on a rapid time scale (e.g., promoted by
compensatory pressures [36]), via mechanistic processes
such as error-prone polymerase activity [37] or during the
process of DNA break repair (e.g., Sakofsky et al. [38]).
Although such rates are several orders of magnitude lower
than single nucleotide substitutions between codons [39–
41], models that permit DT changes yield significant
improvements in their fit to real data, suggesting that they
could be an important addition to codon models. Models
allowing DT changes between codons include those of
Doron-Faigenboim and Pupko [17], Kosiol, Holmes and
Goldman [18], De Maio et al. [20], Miyazawa [21], Zoller
and Schneider [22], Zaheri, Dib and Salamin [32], Venkat
et al. [42] and Jones et al. [43].
De Maio et al. [20] suggest that some widely used

models for ω heterogeneity could yield high false posi-
tive rates when applied to data where both MNRs and
DT codon changes occur. The recent study by Venkat et
al. [42] found that double changes alone can induce high
false positive rates when branch-site codon models are
used in branch-specific tests for positive selection. The
MNR models of Delport et al. [2] and Zaheri, Dib and
Salamin [32], as currently implemented, do not yet allow
among-codon heterogeneity in ω. SNR models
developed by Jones et al. [43] and Venkat et al. [42] are
site-heterogeneous and permit multiple changes between
codons, but do not permit MNRs or a general time
reversible (GTR) nucleotide model. Because the GTR
model has the maximum number of exchangeability (6)
and frequency parameters (4) compatible with time-re-
versibility, it should help avoid the negative effect of
model violations for the DNA-level substitution process

[7, 44]. Here we introduce a novel pair of GPP models
that benefit from (i) permitting DT codon changes, (ii) a
full GTR nucleotide model, (iii) MNRs via heteroge-
neous amino acid exchangeabilities, and (iv) estimation
of ω that is not confounded by average amino acid
exchangeabilities estimated from a large database of pro-
teins. These new models, referred to as G1a and G2a,
use a discrete ω distribution similar to those used in the
SNR models M1a and M2a [6, 45]. The ω distributions
similar to M1a and M2a were chosen because the likeli-
hood ratio test (LRT) derived from them appears to have
reasonable power while maintaining some robustness to
model misspecification [46]. These GPP models can be
extended further so that the instantaneous rate matrix
can take any form up to the REV codon model. We use
simulation to evaluate testing for sites under positive
selection under several different formulations of models
G1a and G2a. We conclude by applying these models to
a set of transmembrane proteins from Streptococcus.

Methods
SNR codon models M0, M1a, M2a, M3 and M8
Goldman and Yang [26] and Muse and Gaut [47] inde-
pendently proposed similar formulations for modelling
the Markovian substitution process between sense
codons. Here we present the core formulation of Gold-
man and Yang [26], as it was developed into models that
form some LRTs investigated within this study. The
instantaneous substitution rate between codon i and j
(i ≠ j) at a single site within an alignment of protein
coding sequences is defined as:

qij ¼

0; if i and j differ by more than one nucleotide
π j; if i and j differ by a synonymous transversion

κπ j; if i and j differ by a synonymous transition
ωπ j; if i and j differ by a nonsynonymous transversion

ωκπ j; if i and j differ by a nonsynonymous transition

8
>>>><

>>>>:

where the matrix Q specifies a continuous-time, sta-
tionary, time-reversible Markov process. Parameters πj,
κ and ω specify the stationary frequencies of codon j, the
transitions to transversion rate ratio, and the nonsynon-
ymous to synonymous rate ratio, respectively. Because
this formulation models all nonsynonymous changes
using a single ω parameter, this is an example of a SNR
model. The transition probability matrix P(t) is related
to matrix Q by P(t) = eQt, thereby giving the probabilities
for state changes over a branch of length t. The likeli-
hood of a codon site for a given phylogenetic tree and
branch lengths can then be calculated using the pruning
algorithm of Felsenstein [48]. The above formulation is
widely referred to as model M0, and it assumes that the
intensity of natural selection (as captured by parameter
ω) is the same for all sites in the codon sequence align-
ment. Model M0 was extended to a series of models that
permit the ω parameter to vary among sites [6], which
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includes the models known as M1a, M2a, M3 and M8.
Hereafter, the family of codon models derived from M0
that permit the ω parameter to vary among sites will be
referred as “M-series” models. All members of the
M-series family are SNR models.
Models M1a and M2a [45] are widely used as the basis

of an LRT for positive selection, and for empirical Bayes
identification of positively selected sites within a
multi-species alignment [49]. These models employ a
restricted form of the ω distribution that, although
highly idealized, leads to desirable properties for the
LRT [11, 46]. Model M1a (a.k.a. nearly neutral) is a
discrete mixture of two classes of sites: strictly neutral
sites with ω1 = 1, and sites subject to purifying selection
with ω0 estimated from the data but constrained to take
a value < 1. The mixture weights for these classes of sites
(p0 and p1) also are estimated from the data. Model M2a
extends model M1a by adding a third class of sites for
positive selection (ω+ > 1). As these models are nested
they serve as the basis of a LRT for sites evolving by
positive selection.
Model M3 employs an unconstrained discrete distri-

bution for ω [6]. In this model, sites are assumed to
belong to k discrete classes, each having a parameter
for selection (ωi) and a proportion of sites (pi) within
the gene. An LRT of M3 against M0 (a special case
of M3 where k = 1 and all sites have just a single ω)
constitutes a test for variable selection intensity
among sites [11]. In this study we use the LRT of M0
versus M3k = 2 to pre-screen the real datasets and
thereby ensure each contains signal for among-site
variation in the intensity of natural selection.
Model M8 uses a flexible β distribution to permit ω

to vary among sites within the interval (0,1) and an
extra discrete category that can allow ω+ > 1 [6]. For
computational convenience the β distribution is
divided into 10 bins. An LRT for positive selection is
obtained by comparing a restricted form of M8 (ω+ = 1,
fixed) to an alternative form of M8 (ω+ ≥ 1, estimated). In
both models the mixture weights for the β distribution
(p0) and ω+ (p+) are estimated from the data. This LRT
represents a popular alternative to M1a and M2a as a test
for sites evolving by positive selection.

GPP codon models G1a and G2a
We developed GPP codon models that employ the same
discrete distributions for ω as employed by M1a and
M2a, but without requiring that any other simplifying
assumptions be imposed on the data (e.g., SNRs, zero
probability for DT changes, and restrictions on the
GTR). These models are hereafter referred to as G1a
and G2a. Like M1a, model G1a assumes that data
evolve under one of two discrete selective regimes:
purifying selection and strict neutral evolution. Model

G2a extends this by adding a class of sites evolving
under positive selection. The restrictions, as well as
the notation, are the same for the ω parameters
(ω0 < 1, ω1 = 1, and ω+ > 1) and mixture weights (p0,
p1 and p+).
G1a and G2a are derived from a simple GPP codon

model that includes the current models such as Gold-
man and Yang [26] and Muse and Gaut [47] as special
cases. We refer to the basic form of this model, which
has only a single class of sites, as G0. The GPP model
exploits the fact that a time-reversible process is
expressible as the product of a matrix of exchangeability
parameters (R) and the steady state frequencies (π), and
uses a logarithm link function to link the non-zero
off-diagonal elements of the 61 × 61 instantaneous
codon matrix, Q= Rπ, to a linear model format (see
online Additional file 1 for details). We assume R is
symmetric, and the instantaneous rates can be written as
qij = πjrij, where πjis the equilibrium frequency of the jth

codon, and the parameter rij determines the
exchangeability between codons. In G0 the matrix of
exchangeability parameters, R, is determined by a set of
model parameters, β0, …, βn. For each βk there is a
corresponding matrix X(k), and the value of rij for i ≠ j is
determined by log(rij) = ∑kβk(X

(k))ij. The diagonal
elements of R are set such that rows of Q sum to 0. The
first model parameter, β0, is a scaling factor set so that
the branch lengths can be interpreted as the expected
numbers of substitutions per codon sites, and the other
parameters β1, …, βn are intended to represent different
mechanisms of the evolutionary process. This framework
allows specification of all possible instantaneous codon
substitutions, and any restrictions on the process are
special cases of the general model where the instantan-
eous rate is set to zero (e.g., prohibition of codon substi-
tutions involving DT nucleotide changes is a special case
of the general model).
As the familiar SNR codon model M0 [26] is a special

case of G0, it serves as a convenient way to illustrate
how a GPP model is specified. M0 can be expressed
within the GPP framework as follows:

qij ¼

0; if i and j differ by more than one nucleotide
eβ0π j; if i and j differ by a synonymous transversion

eβ0eβ1π j; if i and j differ by a synonymous transition
eβ0eβ2π j; if i and j differ by a nonsynonymous transversion

eβ0eβ1eβ2π j; if i and j differ by a nonsynonymous transition

8
>>>><

>>>>:

where eβ0 is the required matrix scale factor, eβ1 is
equivalent to the transition/transversion rate ratio (κ),
and eβ2 is equivalent to the nonsynonymous/synonymous
rate ratio (ω). Transitions are indicated by a matrix X(1)

whose entries are 1 for all single nucleotide changes
between codons that are transitions (and 0 for all other
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entries). Nonsynonymous changes are indicated by a
matrix X(2) whose entries are 1 for all single nucleotide
changes that yield a change in the encoded amino acid
(and 0 for all other entries). Note that the requirement
that qij = 0 if i and j differ in more than one nucleotide
position is explicitly enforced after applying the link
function. By removing this requirement and extending
X(1) and X(2) to include DT changes, we obtain an exten-
sion of G0 that permits multiple nucleotide changes
between codons.
Model G0 (like model M0) is a SNR model because

the nonsynonymous exchangeabilities are all equal.
However, nonsynonymous exchangeabilities need not be
constrained in this way. Any number of mechanisms for
differences in nonsynonymous exchangeabilities can be
added to the model through additional βi parameters.
For example, empirical data indicate that differences in
hydrophobicity among pairs of amino acids is well
known to impact the probability of an amino acid substi-
tution (e.g., Clark [24]; Grantham [25]). Taking hydro-
phobicity as an example, a matrix of pairwise differences
in hydrophobicity between amino acids can be con-
structed from a given scale (e.g., HI of Monera et al.
[50]), and the nonsynonymous transition rate can then
be linked to the exponent of the entries in this matrix
via eβHI , where βHI is a fitted parameter in the model.
Any such addition to the model yields a process of
codon evolution having MNRs. Restrictions on the
DNA-level process of evolution also can be relaxed. For
example, rather than the single parameter for the transi-
tion/transverion rate ratio (β1, in the above model), each
DNA-level exchangeability can be modelled with a
separate parameter (βAC, βCT, βAT, βTG, βCG). This leads
to a codon model having a GTR process at the DNA
level, which has been recommended when testing for
positive selection (e.g., Kosakovsky Pond and Frost [7]).
Parameterization of a codon model in terms of β1, …,

βn means that process-variation among sites can be
modelled with different random effects for different
model parameters. In this study we develop GPP models
motivated by M1a and M2a by using constrained
discrete distributions to model among site variation in
the nonsynonymous rate (β2 in the above model). These
models (G1a and G2a) extend M1a and M2a by permit-
ting double and triple changes between codons, a full
GTR process at the DNA level, and model MNRs via the
addition of β1, …, βn for different aspects of physiochem-
ical constraints.

Simulation based assessment of the G-series and M-series
models
Simulation is used to evaluate MLE estimation under
the new G-series models and the performance of several

LRTs for positive selection (e.g., G1a vs G2a). Our over-
all design is comprised of 32 distinct evolutionary sce-
narios (Fig. 1), which serve as the basis for four
simulation studies focused on different ways in which
model based inference could be impacted. Although the
evolutionary details differ between the 32 scenarios, each
is comprised of 100 replicate datasets, each having se-
quences of 300 codons in length.
Simulated datasets were generated using methods im-

plemented in version 1.2 of the COLD program
“www.mathstat.dal.ca/~tkenney/Cold/”. COLD is an open
source software package available for download from the
COLD website “www.mathstat.dal.ca/~tkenney/Cold/”,
and from GitHub “https://github.com/tjk23/COLD”. The
commands used to generate the sequence data for this
study, the relevant Newick tree files, and all multi-se-
quence alignments that were produced for each of the
simulation studies, are available to download from the
DRYAD repository for this study [51].

Simulation study 1
The purpose of this study is to investigate the impact of
DT codon changes on the false positive rate. For this
simulation we start with the 5-taxon tree and branch
lengths of Wong et al. [45] (Fig. 1a). The generating
process for this study is based on a selective regime at
the codon level derived from a strictly neutral model of
codon evolution (Fig. 1b). In this scenario 50% of the
sites are subject to perfect purifying selection (ω = 0)
and 50% are subject to neutral evolution (ω = 1). This
scenario is often included in simulation studies as a
“benchmark case” for LRTs (e.g., Kosakovski Pond and
Frost [7]; Anisimova et al. [11]; Wong et al. [45]; Bao et
al. [46]). Here, we extend this benchmark case by adding
DT changes between codons, with rates 0.06 and 0.03 re-
spectively. These are in accordance with the notion that
their rates are substantially lower than the rate of single
nucleotide substitution between codons [39, 40]. To en-
hance interpretability, we began by setting all GTR ex-
changeabilities to 1 and specified equal nucleotide
frequencies. This scenario is referred to as case 1a
(Fig. 1b). We then extended this simulation study in two
ways. The first extension was to increase the complexity
of the nucleotide-level process by adding unequal GTR
exchangeabilities and nucleotide frequencies (from [6]).
This extension is referred to as case 1b (Fig. 1b). The
next extension was designed to investigate the impact of
taxon sampling. Each terminal branch of the 5-taxon
tree in Fig. 1a was split by the addition of a second
lineage, resulting in a 10-taxon tree. The total length of
the new tree (sum of the branches) was set equal to that
of the 5-taxon tree, but with the tree length
re-distributed evenly among all branches (see online
Additional file 2). Simulation over the 10-taxon tree was
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Fig. 1 (See legend on next page.)
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based on the more complex process of case 1b, and is
referred to as case 1c. Each dataset was analysed with
M1a and M2a, and variants that permit DT changes,
hereafter called G1aDT and G2aDT).

Simulation study 2
The purpose of this study is to investigate model per-
formance using much more complex scenarios than the
strictly neutral case above. The tree and branch lengths
are derived from a set of 17 real β-globin sequences
(Fig. 1a), and thus are the same for all scenarios. This
tree has been used widely in previous simulation stud-
ies (e.g., [6, 11]). This study is comprised of 24 distinct
scenarios (Fig. 1c). Each scenario is based on a mixture
of sites having three distinct selective regimes. All
scenarios have a large fraction of sites (77%) dominated
by purifying selection (ω0 = 0.05). A moderate fraction
of sites (20%) assumed to evolve under moderate puri-
fying selection (ω1 = 0.5) or neutrality (ω1 = 1.0). A
small fraction of sites (3%) evolve with ω ≥ 1 (ω+ = 1.0, 1.5,
2.0 or 5.0). In addition we also employ heterogeneous
GTR exchangeabilities, and unequal nucleotide frequen-
cies at the three positions of the codon, as estimated from
a set of real β-globin sequences. Lastly, we cover a range
of nonsynonymous rate heterogeneity by specifying
hydrophobicity factors ðeβHI Þ of 1.0, 0.4 or 0.05. The
hydrophobicity index of Monera et al. [50] was
re-scaled by a factor of 100, so that it takes values in
the interval [− 1,1], and the absolute value of the dif-
ference between the hydrophobicity of amino acids
was computed for all pairs of amino acids. The
matrix of these scores (online Additional file 3) was
linked to the nonsynonymous substitution rate via a
parameter in the GPP generating process (βHI). When

βHI = 0, the matrix of hydrophobicity scores will have
no impact on nonsynonymous rates, yielding a SNR
codon model (eβHI ¼ 1Þ. When eβHI ¼ 0:4 and 0:05, the
process of codon evolution has MNRs, with eβHI ¼ 0:05
yielding an extremely biased MNR model. As our primary
interest is the effect of MNRs, we do not include DT
codon changes in this study. Note that hydrophobicity is
used for convenience to induce MNRs here; any property
scale can be similarly used within this GPP framework.
Figure 1c indicates the relationship between the different
scenarios in this study.
Each scenario was analysed with three different pairs of

models. The first was the pair of SNR models M1a and
M2a. This pair represents an under-fit modelling scenario.
The second pair was G1ax and G2ax, which represent GPP
models having perfect fit to the generating process. The
superscript of x represents the number of mechanistic
model parameters required for a perfect fit to a given sce-
nario. The third pair of models was G1a13 and G2a13. In
addition to the branch lengths, and each model’s parameters
for the ω distribution, these models have x = 13 additional
parameters. The 13 additional parameters account for DT
changes (2 parameters), 6 amino acid properties (polarity,
volume, hydropathy, isoelectric point, polar requirement &
composition), and GTR exchangeabilities (5 free parame-
ters). Models G1a13 and G2a13 are used here to represent an
over-fit modelling scenario.

Simulation study 3
The purpose of this study is to extend Study 2 by adding
simultaneous DT nucleotide changes between codons.
To minimize the computational burden, the impact of
DT nucleotide changes was explored in a selected subset

(See figure on previous page.)
Fig. 1 Graphical illustration of the design of Simulation Studies 1 and 2. The overall design is comprised of 32 distinct evolutionary scenarios
divided into four distinct Simulation studies focused on different objectives. The details of Simulation studies 1 and 2 are shown in this figure.
The details of Simulation Studies 3 and 4 are derived from Studies 1 and 2, and are further explained in the text. All simulation studies were
comprised of 100 replicates, each having sequences of 300 codons. All datasets were generated using version 1.2 of the COLD program
“www.mathstat.dal.ca/~tkenney/Cold/, https://github.com/tjk23/COLD”. a The 5-taxon and 17-taxon tree topologies. The 5-taxon tree and branch
lengths are the same as those used for simulating sequences in Wong et al. [45]. The 17-taxon tree and branch lengths are the same as those
used for simulating sequences in Yang et al. [6]. The scale for the branch lengths gives the mean number of substitutions per codon. b Sequence
generating process for Simulation Study 1. The purpose of this study is to investigate the impact of DT changes (0.06 and 0.03 respectively) on
the false positive rate. The selective regime is based on a strictly neutral model having just two classes of sites; conserved (50% of data) having ω
= 0 and neutral (50% of data) having ω = 1. The scenarios of this study differ in the complexity of the nucleotide substitution process; case 1a is
simple (everything equal) and case 1b/1c is complex (unequal GTR exchangeabilities and nucleotide frequencies). The GTR exchangeabilities and
nucleotide frequencies for case 1b/1c were obtained from β-globin gene sequences. c Sequence generating process for Simulation Study 2. This
study has 24 scenarios, and covers more complexity than the strictly neutral case of Study 1. Each has a mixture of three selective regimes: a
large fraction of strong purifying selection (77%, ω0 = 0.05), a moderate fraction of sites (22%) with ω1 = 0.5 or 1.0, and a small fraction evolving
with ω≥ 1 (3% ω+ = 1.0, 1.5, 2.0 or 5.0). MNRs were induced using hydrophobicity factors ðeβHI Þ of 1.0, 0.4 or 0.05, which were linked to the codon
model via the GPP parameter βHI. When eβHI ¼ 1 there is no impact on nonsynonymous rates, yielding a SNR codon model.
When eβHI < 1, codon evolution has MNRs. The nucleotide process had heterogeneous GTR exchangeabilities, and unequal nucleotide
frequencies at the three positions of the codon. DT codon changes were not included in Study 2; DT was added to MNRs in Simulation Study 3
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of six scenarios covered in Simulation Study 2. Specific-
ally, we chose three different distributions for ω (see 2b,
2d, 2g in Fig. 1), and applied two hydrophobicity factors
to each one. The hydrophobicity factors ðeβHI Þ were 1.0
(yielding an SNR model) and 0.05 (yielding a highly vari-
able MNR model). One ω distribution excluded positive
selection (77% ω = 0.05 and 23% ω = 1.0). The other two
ω distributions included positive selection (77% ω = 0.05;
20% ω = 0.50; 3% ω = 2.0, and 77% ω = 0.05; 20% ω =
1.0; 3% ω = 2.0). As in Study 2, the tree, branch lengths,
GTR parameters and codon frequencies were derived
from a set of real β-globin sequences. Also like Study 2,
we used an under-fit model pair (M1a and M2a), a per-
fectly fit model pair (G1ax and G2ax), and an over-fit
model (G1a13 and G2a13).

Simulation study 4
The purpose of this study was to investigate the impact
of alternative model formulations on false positive rates
for the M-series LRTs. Users of M-series models have
many choices for how to (i) model the distribution of ω
variability among sites, and (ii) parameterize codon
frequencies within the model. A comprehensive assess-
ment of alternative ω distributions is beyond the scope
of this study. For this reason we chose to assess the LRT
for positive selection that compares M8ω + =1 with
M8ω+ > 1 because it is a popular alternative, and because
M8 is based on a discretized β distribution. There are
two fundamentally different approaches to parameterize
codon frequencies. One of them emphasizes the context
of the nucleotide change within the complete codon,
and employs the equilibrium frequency of the target
codon (πj) to model transition probabilities ([26], here-
after denoted GY). The other emphasizes the independ-
ence of the process of mutation among sites, and
employs the equilibrium frequency of the target nucleo-
tide (j) at a single position (k) averaged over all codons
(πj

k) to model transition probabilities among codons
([47], hereafter denoted MG). Both approaches employ
estimates of four nucleotide frequencies at each position
of the codon (denoted F3 × 4), and thus each requires 9
free parameters. Despite having similar instantaneous
rate matrices, these two Markov processes have different
properties when codon frequencies are uneven (e.g.,
[52]). To investigate the effect of both kinds of model-
ling choices (ω distribution and codon frequencies), we
applied both frequency parameterizations (πj vs. πj

k) to
the LRT of M1a vs. M2a and to the LRT of M8ω + =1

with M8ω+ > 1. This comparison yields four LRTs per
simulation scenario, and because we were interested in
false positive rates we applied those four LRTs to all nine
null scenarios of Simulations Studies 1–3 (SNR: 1a, 1b,
1c, 2a, 2b & 3a; MNR: 2a, 2b & 3a). In these we covered

M-series false positive rates for DT changes, MNRs, and
the combination of DT changes and MNRs.

Real data analyses
We analyzed a set of 24 Streptococcus transmembrane
proteins. The data are derived from a previous phyloge-
nomic analysis of Streptococcus genomes [53]. The hom-
ologous gene clusters identified in that study were
filtered for clusters of transmembrane proteins with ≥4
unique sequences. The sequence alignments for these
gene clusters range from 4 to 19 lineages, and included
pathogens and their non-pathogenic relatives. The data
were then pre-screened with a LRT for among-codon
heterogeneity in ω ([6]: M0 vs M3). Three genes had no
significant evidence for heterogeneity in ω according to
this LRT and were excluded from subsequent analyses.
The remaining 21 genes were tested using a pair of
models that are (presumably) under-fit with respect to
DT changes and MNRs (M1a and M2a), and a pair that
can be considered mechanistically over-fit for at least
some of their parameters (G1a13 and G2a13). As we do
not know the true generating process for these data, we
cannot analyze them using a perfectly fit model pair.

Likelihood calculations and likelihood ratio tests
The values of the model parameters, including branch
lengths, were estimated from the data via maximum
likelihood. The only exception was the equilibrium fre-
quencies, which were obtained from the empirical codon
frequencies within each dataset. The SNR codon models
M0, M3, M1a, M2a and M8 were fit to the data as im-
plemented in the codeml program of the PAML package
[54]. Fitting the G-series models described above was
made possible by an efficient Hessian calculation for
phylogenetic likelihood [55], and the GPP modelling
framework implemented in version 1.2 of the COLD
program “www.mathstat.dal.ca/~tkenney/Cold/”. Model
M1a differs from M2a only in the parameters of the ω
distribution. As these models are nested, and differ by
two free parameters, the log likelihood statistic (2Δ)
should be approximately χ2 distributed with 2 degrees of
freedom. However, the alternative model (M2a) is related
to the null model (M1a) by fixing one of its mixture
weights on the boundary (p+ = 0). This means that the
LRT statistic χ22 is not the correct distribution; however,
we use it here because it is expected to be conservative
in many scenarios. The GPP models used in this study
employ the same ω distributions, and their LRTs are
carried out in the same way.
The method for calculation of phylogenetic likelihood

under a GPP model is fully described in Kenney and Gu
[55]. The implementation of the unique hessian likelihood
calculation, and the optimization routines employed to fit
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the GPP models to sequence data, are distributed via the
COLD package as open source software “www.mathstat.-
dal.ca/~tkenney/Cold/, https://github.com/tjk23/COLD”.
COLD uses a variety of metrics to monitor convergence,
but COLD’s main convergence test is whether the
expected improvement from the next step is less than
1e-10. To deal with some difficult cases, COLD will also
claim convergence if the moving average of either
expected or actual improvement is less than 1e-5, and will
signal if the program has failed to make progress for a
long time. Problematic cases of optimization are indicated
when either (i) COLD fails to converge within the max-
imum number of iterations, or (ii) the likelihood of an
alternative model is lower than the null (indicating con-
vergence to a sub-optimal peak). In this study, if ether
outcome occurred, models were re-run several times with
different initial values for the model parameters.

Results
Simulation study 1: False positives under a strictly neutral
model with DT substitutions
Recent work suggests that the simplified assumptions
employed by models M1a and M2a (e.g., prohibiting DT
changes between codons) could negatively impact the
inference of positive selection in some cases [18, 20]. To
further investigate the impact of DT changes we gener-
ated data under the strictly neutral model, with rate 0.06
and 0.03 for DT substitutions respectively. Previous
studies found that the false positive rate under the
strictly neutral model (without DT substitution) was just
2% for the M1a vs. M2a LRT [11]. By adding DT substi-
tutions, we found that the false positive rate increased to
49% at α = 0.05. Imposing additional process-heterogen-
eity at the DNA level (unequal GTR exchangeabilities
and nucleotide frequencies) did not increase the false
positive rate (rather, it declined to 22%). The analogous
LRTs, carried out under GPP models that exactly match
the generating process (G1aDT & G2aDT; α = 0.05), were
much less sensitive. False positives were approximately 4%

under equal GTR exchangeabilities and nucleotide fre-
quencies, and when both GTR exchangeabilities and nu-
cleotide frequencies were unequal.
The strictly neutral scenario can be a challenging case

for some models because of the large fraction of sites on
the boundary of positive selection (50% at ω = 1) can
make it easy to obtain a false signal for positive selection
(ω+ > 1) by chance at some sites. Indeed, for this reason
it is often included in simulation studies as a “bench-
mark case” (e.g., [7, 11, 45, 46]). The M1a vs. M2a LRT
tended to perform well in many previous studies, which
did not include DT changes, because the estimates for
ω+ under M2a tended to be only a little > 1 and the esti-
mated proportion of such sites (p+) tended to be very
low. However, by including DT changes in our simula-
tion scenario, the estimates of ω+ under M2a become
upwardly biased in the 5-taxon case (Table 2), which
leads to more false positives. To investigate if the rela-
tively long branches in the 5-taxon case represents a
worst-case scenario (a large opportunity for DT changes
to occur along a single branch), we doubled the number
of taxa without increasing the total tree length (case 1c).
While the median estimate of ω+ did get smaller (1.35 in
case 1c), the signal for ω+ > 1 remained significant. This
is because estimated value of p+ increased from 0.28 to
0.49 under M2a when taxon sampling was increased
from case 1b (complex model and 5 taxon tree) to case
1c (complex model, 10-taxon tree having shorter branch
lengths). The effect of this on the LRT of M1a vs. M2a
was an increase in the false positive rate from 22 to 48%
(Table 2). Thus, the strategy of sampling additional taxa
such that longer branches are shortened does not appear
to be effective at mitigating the effect of DT misspecifi-
cation on the LRT of M1a vs. M2a.
Although these results confirm the suggestion that DT

changes can impact the M1a vs. M2a LRT, the strictly
neutral scenario is a very unrealistic model for real pro-
tein coding sequences. Real sequences will have much
more variability among sites in ω, and the fraction of

Table 2 False positive rates under a strictly neutral evolutionary process with DT nucleotide substitutions between codons

Simulation LRT false positive rate median ω+ and p+ MLEs

M1a - M2a G1aDT - G2aDT M2a G2aDT

1a (simple, 5 taxa) 0.49 0.04 ω+ = 6.08 ω+ = 1.16

p+ = 0.37 p+ = 0.33

1b (complex, 5 taxa) 0.22 0.04 ω+ = 10.9 ω+ = 1.37

p+ = 0.28 p+ = 0.20

1c (complex, 10 taxa) 0.48 0.04* ω+ = 1.35 ω+ = 1.02

p+ = 0.49 p+ = 0.35

One hundred replicates (sequence length = 300 codons) were simulated for each scenario. Simulation 1a is based on a simple model (equal DNA exchangeabilities
and equal codon frequencies) evolved over a 5-taxon tree. Simulation 1b is based on a more complex generating process using DNA exchangeabilities and codon
frequencies derived from a real dataset. Simulation 1b was extended to the case of a 10-taxon tree. Codon models fitted to simulation 1a assumed equal codon
frequencies (fequal), and those fitted to simulation 1b used GY94-style F3 × 4 codon frequencies. The asterisk symbol (*) indicates that the results for simulation 1c
under the 10-taxon tree is based on 97 replicates due to convergence problems with some datasets
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strictly neutral sites (i.e., ω = 1), if any, will be much less
than 50% (e.g., Yang et al. [6]). Moreover, in the case of
real data analysis it is extremely unlikely that a fitted
model will be an exact match to the true generating
process; thus, the impact of model misspecification on
the fitted values of ω+ are unavoidable. For these reasons
we explore more realistic evolutionary scenarios in
Simulation Studies 2 and 3, and we employ both
under-fit and over-fit models to carry out the LRTs.

Simulation study 2: MNRs and more realistic distributions
for ω variability among sites
Here we explore more realistic scenarios by adding (i)
greater among-site variability in ω, (ii) a much smaller
fraction of strictly neutral sites, (iii) a different GTR
process for each position of the codon, and (iv) different
levels of MNR evolution (Fig. 1b). We withhold DT
changes from this study in order to focus on the effect
of MNRs (DT changes will be combined with MNR evo-
lution in Simulation Study 3). MNR evolution is induced
by using hydrophobicity to determine the relationship
between pairs of amino acids and their substitution
probability. In this formulation, an H-score of 1 yields
an SNR process, whereas an H-score of 0.05 yields a
large MNR effect. Note that we do not mean to imply
that hydrophobicity is the primary determinant of pro-
tein fitness; rather, we use it here as a simple means of
inducing unequal exchangeabilities between amino acids.
Although far simpler than real data, this MNR-process is
sufficient to permit us to explore the impact on param-
eter estimation and the LRT for positive selection.

Two ω distributions without positive selection (Fig. 1b:
scenarios 2a and 2b) were employed as a means to inves-
tigate false positive rates. Very similar scenarios have
been used before for this purpose [11, 45, 46], but as-
suming a SNR process. Consistent with the results re-
ported in those previous studies, M1a vs M2a (hereafter
LRT-1) has low false positives in the SNR case (Table 3:
eβHI = 1). Results were similar for a LRT based on a null
GPP model that perfectly fits the data (G1ax vs G2ax:
hereafter LRT-2), and a LRT based on a null GPP model
that was over-parameterized (G1a13 vs G2a13: hereafter
LRT-3). False positive rates were at, or below, the specified
level for all three LRTs even after adding low-MNR and
high-MNR to the generating evolutionary process (Table 3:
eβHI = 0.4; eβHI = 0.05). The only challenge to inference that
we observed was a small tendency for convergence prob-
lems when using the over-parameterized models in LRT-3.
This is not surprising given that the models for LRT-3 are
over-parameterized for both number of categories in the ω
distribution and the amount of MNR. Convergence prob-
lems can arise as a consequence of over-parameterization
if the likelihood function becomes irregular or discontinu-
ous over the parameter domain [56]. However, the finding
that the false positive rate was relatively insensitive to a
large MNR effect was surprising given the considerable
amount of attention that has been focused on adding
MNRs to codon models [17, 18, 20–22, 32].
We used scenarios 2c through 2 h to investigate the

power of the same three LRTs over a range of signal for
positive selection. LRT-based inference about positive
selection should get easier with stronger signal for positive
selection; i.e., via a bigger gap between ω1 and ω+, or with

Table 3 False positive rates (null scenarios) and true positive rates (alternative scenarios) for three LRTs when the evolutionary
process includes both ω variability among sites and MNRs

SNR (eβHI = 1) Low MNR (eβHI = 0.4) High MNR (eβHI = 0.05)

ω0 ω1 ω2 LRT-1 LRT-2 LRT-3 LRT-1 LRT-2 LRT-3 LRT-1 LRT-2 LRT-3

Null scenarios False positives

2a 0.05 0.5 1.0 0.00 0.01 0.01* 0.00 0.01 0.00* 0.00 0.00 0.00*

2b 1.0 1.0 0.01 0.04 0.03* 0.00 0.03 0.00* 0.00 0.03 0.00*

Alternative scenarios True positives

2c 0.05 0.5 1.5 0.03 0.36 0.44 0.01 0.24 0.20* 0.00 0.09 0.00*

2d 2.0 0.52 0.82 0.85 0.05 0.65 0.61* 0.00 0.45 0.14*

2e 5.0 1.00 1.00 1.00 1.00 0.99 1.00 0.14 0.99 1.00*

2f 0.05 1.0 1.5 0.06 0.10 0.08 0.00 0.14 0.05 0.00 0.14 0.01*

2 g 2.0 0.33 0.46 0.37 0.00 0.46 0.24 0.00 0.31 0.09*

2 h 5.0 1.00 0.99 1.00 0.98 1.00 1.00 0.09 1.00 0.99*

LRT-1 compares M1a to M2a (under-fit models). LRT-2 compares G1ax to G2ax (perfect-fit models). LRT-3 compares G1a13 to G2a13 (over-fit models). The asterisk
symbol (*) indicates scenarios where either convergence problems or suboptimal peaks were encountered for the models of LRT-3. To overcome these problems,
models were re-fit to the same dataset multiple times, each using a different set of initial parameter values. The number of problematic datasets for SNR was 2a = 21
and 2b = 1; for low MNR was 2a = 27, 2b = 16, 2c = 16 and 2f = 10; and for high MNR was 2a = 29, 2b = 20, 2c = 35, 2e = 15, 2f = 15 and 2 g = 1. Because using multiple
initials for the problematic datasets was successful, the results above are for all 100 replicates
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increasing ω+. This was the case for all three LRTs
(Table 3). Power to reject the null was typically larger
when there was a bigger gap between ω1 and ω+ (2c-2e vs.
2f-2 h in Table 3) and with increasing values of ω+ (e.g.,
2e > 2d > 2c in Table 3). The LRTs based on the GPP
models (LRT-2 & LRT-3) tended to have more power than
the traditional test (LRT-1), however all three LRTs per-
formed very well (~ 100%) when the signal is strong
enough (2e and 2 h in Table 3). Although the true rela-
tionship between these models and any real dataset will be
unknown, it is almost certainly the case that the real
evolutionary process will be more complex. These results
are relevant, as they suggest a tendency for over-simplified
models to have less power to detect positive selection.
Next we focused on the impact of MNRs on power by

conditioning our comparisons on the signal for positive
selection (Table 3: weak = 2c, 2f; moderate = 2d, 2 g;
strong = 2e, 2 h). Inducing a low level of MNRs (by setting
eβHI = 0.4) yielded a reduction in power in all LRTs when
the signal for positive selection was not strong. The de-
cline was largest for LRT-1 in scenarios 2d (0.53 - > 0.05)
and 2 g (0.35 - > 0.00). The effect was similar for LRT-2
and LRT-3 in the same scenarios, but those tests still
retained some power (ranging from 0.26 to 0.69). Power
was reduced in scenarios 2c and 2f as well. Inducing a
high level of MNRs (by setting eβHI = 0.05) increased the
effect. Again, LRT-1 was most affected, as it had substan-
tial reductions in power even in cases where signal for
positive selection was strongest (2e and 2 h).
The relationship between the strength of positive se-

lection, the degree of MNR variation, and the power of
the LRT is complex. The reason that all methods do best
when strong signal for positive selection (ω+ = 5) is com-
bined with either SNR or low MNRs is because there are
more opportunities for nonsynonymous changes having
ω > 1 to occur along a branch and thereby contribute to
the empirical site pattern distributions for those scenar-
ios. Alternatively, when there are high MNRs, nonsynon-
ymous changes having ω > 1 occur less frequently, and
have less of an influence on the site pattern distribution.
For appreciable signal to accumulate in the data, the ω
must be high (≥5) when there are high MNRs. Further-
more, fitting models M1a and M2a to such data with
high MNRs effectively averages the signal over all amino
acid differences, regardless of hydrophobicity, thereby
yielding reduced estimates for its ω values. Hence, the
power is very low for LRT-1 (unlike LRT-2 and LRT-3)
when there are high MNRs because of two related fac-
tors: (i) less signal within the site pattern distribution,
and (ii) lower expected values for the ω parameters. Of
course, the power of all three tests is negatively impacted
by reductions in signal for ω > 1, but LRT-2 and LRT-3

were less affected because the GPP models have larger
expected values for ω. Taken together, the results of
Simulation Study 2 suggest that MNR processes will not
necessarily elevate false positive rates; however, true sig-
nal for positive selection appears to be harder to detect
when a gene has evolved under an MNR process.

Simulation study 3: Combining DT nucleotide changes
between codons with MNRs
This study extends six of the scenarios from Simulation
Study 2 by adding simultaneous DT changes between
codons. We chose three distributions for ω (one null and
two alternative scenarios) and applied both a SNR (eβHI = 1)
and a highly variable MNR (eβHI = 0.05) to each. The null
scenario in this study (case 3a in Table 4) is more complex
as compared to the “benchmark” null (case 1a); this null
scenario includes unequal GTR exchangeabilities, a more
complex mixture of selective regimes (ω distribution) and
DT changes. For LRT-1, adding simultaneous DT changes
to the more complex SNR case resulted in a false positive
rate of 55%. This is consistent with, but larger than, what
was observed for LRT-1 in the case 1a employed in Simula-
tion Study 1 (31%). The false positive rates for LRT-2 and
LRT-3 (Table 4), which are based on models that allow DT
changes, were below the specified significance level of the
LRTs (α = 0.05) in the SNR case. Results, however, differed
substantially when highly variable MNRs were added to the
null scenario. The false positive rate for LRT-1 dropped to
zero, whereas it was 6% for LRT-2 (perfect fit models) and
10% for LRT-3 (over-fit models).
Interestingly, we experienced convergence problems

for some datasets evolved under the null scenario with
highly variable MNRs. Convergence problems were most
frequent for LRT-3, which also had a false positive rate
above the specified level of the test. Both phenomena
could be related to the over-parameterization of the G2a

Table 4 False positive rates (null scenarios) and true positive rates
(alternative scenarios) for three LRTs when the evolutionary process
includes DT nucleotide substitutions between codons, ω variability
among sites, and MNRs

SNR (eβHI = 1) High MNR (eβHI = 0.05)

ω0 ω1 ω2 LRT-1 LRT-2 LRT-3 LRT-1 LRT-2 LRT-3

Null scenarios False positives

3a 0.05 1.0 1.0 0.55 0.02 0.03 0.0 0.06* 0.10*

Alternative scenarios True positives

3b 0.05 0.5 2.0 0.95 0.87 0.92 0.01 0.44 0.26

3c 0.05 1.0 2.0 0.99 0.47 0.46 0.0 0.27 0.18

LRT-1 compares M1a to M2a (under-fit models). LRT-2 compares G1ax to G2ax

(perfect-fit models). LRT-3 compares G1a13 to G2a13 (over-fit models). The
asterisk symbol (*) indicates that the results are based on < 100 replicates due to
convergence problems with some datasets when there was high MNRs. For LRT-2
case 3a is based on 99 replicates. LRT-3 case 3a is based on 91 replicates
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model of LRT-3. Mingrone et al. [57] recently demon-
strated that model M2a employed within LRT-1 could
have MLEs with non-standard behaviour in some cases.
In their study, instabilities in the parameter estimates
arose when the model was over-parameterized relative
to low signal for among-site variability in ω. As models
of LRT-3 are over-parameterized for both among-site
variability in ω and amino acid exchangeability parame-
ters, we may have obtained “irregular estimates” (sensu
Mingrone et al. [57]) in case 3a. If there is model irregu-
larity under this setting, then the assumed large sample
likelihood theory might not be applicable to LRT-3 in
case 3a; this could lead to anti-conservative behaviour
(e.g., Mingrone et al. [58]), which is what we observed. It
is worth noting that the anti-conservative behaviour of
LRT-3 in the high MNR case (10%) was relatively mild
in comparison to the anti-conservative behaviour of
LRT-1 in the SNR case (55%).
Cases 3b and 3c of this study were used to investigate

the combined effect of simultaneous DT nucleotide
changes and MNRs on power. As a baseline, power was
first assessed for 3b and 3c under the SNR scenario with
DT changes. LRT-1 had the highest power in both SNR
scenarios. However, since LRT-1 also had a very high
false positive rate in SNR case 3a, its power may simply
reflect a bias in the direction of the alternative model
(M2a) when DT changes are occurring. Such a bias is
consistent with the results of Simulation Study 1 and
those reported by Kosiol et al. [18] and De Maio et al.
[20]. LRT-2 and LRT-3 had reasonable power (Table 4).
As expected, power was lower in case 3c where the gap
between ω1 and ω+ was the smallest. The addition of
MNRs had a dramatic impact on the power of all three
LRTs. LRT-1 had almost no power to detect positive
selection. Compared to the SNR scenario LRT-2 and
LRT-3 had reduced power, with LRT-3 exhibiting the
larger decrease of the two.
Taken together, the results of this simulation study sug-

gest that appropriately parameterized G-series models can
yield improvements in power over previous LRTs for com-
plex evolutionary scenarios involving both DT changes,
and MNRs. However, model complexity requires careful
management. LRTs based on too simple a model can lead
to excessive false positives in some cases (e.g., LRT-1 in
SNR case 3a), whereas naive over-parameterization of the
model also has negative consequences (e.g., LRT-3 in
MNR cases 3a-3c). In the latter case, failure to meet the
regularity conditions otherwise assumed to be in place for
likelihood-based inference could have led to MLE instabil-
ities and degraded LRTs. With respect to the problem of
meeting regularity conditions, there are several potential
solutions for real data. The first is to use nonparametric
bootstrapping to screen real data for MLE instabilities
(e.g., Baker et al. [15]). However, the computational

burden would be very high for complex models such as
G2a13, making it impractical for large-scale surveys of
genes. The second is to develop a method that penalizes
unstable mixture weights for ω in a way that corrects any
bias in the LRT [58, 59]; development of such a method is
not trivial and is beyond the scope of this paper. The third
is to develop and test parameter selection methods suit-
able for the GPP models. This also poses a computational
burden. Ideally, we need a fast method, perhaps based on
carefully chosen heuristics, for finding a good balance
between model bias and variance. The problem is that
model selection methods that rely on MLEs could be
compromised in those cases where there has been a
breakdown of the usual regularity conditions [57–59].
New methods for model selection may be warranted.

Simulation study 4: Performance of alternative
formulations of the SNR codon models in the null cases
of simulation studies 1–3
We investigated whether an alternative form of either
the ω distribution, or the parameterization of codon fre-
quencies, could be used within the M-series framework
to reduce false positive rates. To investigate the effect of
frequency parameterization, we re-analyzed all nine null
scenarios with LRT-1 (M1a-M2a) after replacing the
F3 × 4 GY frequency parameterization with that of MG
(Table 5). The MG parameterization had no effect on
false positives in those four cases where the rate had
been 0% under GY. In the remaining 5 cases, false posi-
tive rates under MG were comparable to, and in some
cases much larger than, GY. The lowest non-zero false
positive rate was associated with a case with no DT
changes between codons [SNR only: case 2b], whereas
much higher rates were observed in four other cases
where DT changes had occurred [SNR + DT: cases 1a-c,
3a]. This result is not unexpected given that the MG
parameterization emphasizes the independence of the
mutation process between codon positions, and the
process of simultaneous DT change employed to simu-
late those data is a stronger violation of that independ-
ence assumption. It was surprising, however, that the
effect was so potent as to yield false positive rates > 90%
in two cases. More extensive investigation of the rela-
tionship between DT processes and the parameterization
of codon frequencies is warranted.
To investigate if an alternative form of the ω distribution

might help reduce false positive rates within the M-series
framework, we re-analyzed all nine null scenarios using a
popular alternate LRT that compares M8ω+=1 to M8ω + ≥ 1.
We applied this LRT under both the MG and GY codon
frequency parameterization (Table 5). False positive rates
between the two LRTs were generally similar; under the al-
ternate LRT the same four cases had 0 false positives, with
the remaining five cases having comparable false positive
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rates, although slightly higher for M8ω +=1 vs. M8ω+ ≥ 1.
The same relationship between MG and GY was also ob-
served for the alternate LRT; false positive rates were higher
under MG, and exceeded 90% in two of the cases. These re-
sults are interesting because M8 is based on a discretized β
distribution, with typically 10 categories used for ω. Because
this model is far more flexible than the 2 and 3 category ω
distributions used in M1a and M2a, it is usually viewed as a
superior model. Indeed, as measured by likelihood score,
M8 will often fit a real dataset much better than either M1a
or M2a (e.g., [6, 53]). Nonetheless, our results suggest that
the formulation of M8 that yields more power in some sce-
narios also yields more sensitivity to misspecification in
others. We note that greater robustness of the M1a vs. M2a
LRT to model misspecification has been suggested previ-
ously (e.g., [46]). Taken together, these results support the
view that performance depends on a complex relationship
between the parameterization of a model and the nature of
the signal within a given dataset, and that model perform-
ance measured under idealized conditions may not be safely
extrapolated to real data having more complex evolutionary
dynamics [43, 60].

Real data analyses
We applied LRT-1 and LRT-3 to a set of 21 real Strepto-
coccus sequence alignments. LRT-1 is presumed to
represent an under-fit scenario, as it is based on codon
models (M1a and M2a) that assume a SNR process and
which do not permit DT changes. LRT-1 also represents
a typical analysis of real data under the M-series model-
ling approach as implemented in the CODEML program
[54]. LRT-3 is presumed to represent an over-fit
scenario, as the models (G1a13 and G2a13) employ 6
different amino acid properties as a means to model
MNRs, and it seems unlikely that all of these are neces-
sary for a given dataset. LRT-3 is based on the default
model complexity for the COLD program, so it is used
to represent a typical analysis under the G-series model-
ling approach. The real data results (Table 6) are gener-
ally consistent with the simulation results; namely, that

LRTs based on the G-series models should have more
power, but using over-fit models could lead to conver-
gence problems in some datasets. In our real data
analysis, LRT-1 was significant for 1 gene, and marginal
in another 3, whereas LRT-3 was significant for 3 genes,
and there was only a single marginal case. However,
convergence problems were encountered with the
G-series models for some genes.
The models utilized by LRT-1 and LRT-3 permit an

exploration of the impact of model complexity on the
inference of positive selection. The one significant result
for LRT-1 (gene 7) does not appear to be a false positive
due to DT substitutions, as LRT-3 was also significant
for that gene. This is in contrast to the three cases of
borderline significance for LRT-1 (genes 13, 14 and 16),
where LRT-3 was not significant for any of them. Note
that these three borderline cases for LRT-1 occurred in
the datasets with the lowest tree lengths. In nearly all of
the non-significant cases for LRT-1, the MLEs for M2a
indicated either ω+ ≈ 1 or p+ ≈ 0. This is expected for
M2a when it does not provide a significant improvement
over M1a [11, 45, 58]. There was one case (gene 21)
where the LRT-1 was not significant and yet both ω+

and p+ were large. Exceptionally large estimates for p+
have been observed for M2a when there is very low
signal within the data about the parameters of the ω
distribution [57]. This was certainly the case for gene 21,
which is the shortest gene in the dataset (166 codons)
and is represented by just 4 sequences.
In all but three genes (10, 12 and 13), the G-series

models yielded very substantial increases in likelihood
over the M-series models (Table 6), suggesting that the
additional complexity of the G-series models was in
many cases warranted. However, because the G-series
are likely to be over-fit, we will avoid making direct, or
mechanistic, interpretations of the MLEs with respect to
the MNR process, or the rate of DT change (see Jones et
al. [43, 59] for a discussion of the problem of interpret-
ing confounded parameter estimates). Development and
validation of parameter selection methods for the

Table 5 Sensitivity of false positive rates to the choice of model parameterization under the nine different null scenarios of
Simulation Studies 1–3

SNR + DT cases SNR (no DT) High MNR (3a = DT)

model 1a 1b 1c 3a 2a 2b 2a 2b 3a

M1a - M2a GY 0.31 0.22 0.48 0.55 0.0 0.01 0.0 0.0 0.0

M1a - M2a MG 0.25 0.41 0.91 0.94 0.0 0.15 0.0 0.0 0.0

M8ω = 1 - M8ω > 1 GY 0.47 0.24 0.58 0.56 0.0 0.02 0.0 0.0 0.0

M8ω = 1 - M8ω > 1 MG 0.44 0.57 0.94 0.97 0.0 0.18 0.0 0.0 0.0

Scenarios 1a and 1b are based on a 5-taxon tree, and 2a, 2b and 3a are based on a 17-taxon tree (see Fig. 1). GY denotes the frequency parameterization of
Goldman and Yang [26] where the transition probability is proportional to target codon. MG denotes the frequency parameterization Muse and Gaut [47] where
the transition probability is proportional to target nucleotide. Both require frequency estimates for the four nucleotides at each position of the codon (denoted
F3 × 4), and thus each requires 9 free parameters
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G-series models will ultimately permit us to make infer-
ences about such “background” processes. Nonetheless,
our simulation studies indicate that the G-series models,
via LRT-3, can be used to make inferences about the
impact of positive selection within a gene. Consistent

with the expectation for greater power (see Table 4),
LRT-3 was highly significant for genes 2, 5 and 7,
whereas LRT-1 was significant for one gene. In two of
those genes the MLEs for ω+ and p+ suggest a small
fraction of sites under positive selection (p+ < 0.03). If

Table 6 Results of applying LRT-1 and LRT-3 to the set of 21 real Streptococcus sequence alignments

Gene under-fit models over-fit models M2a vs. G2a13

NC NS TL LRT-1:
M1a vs. M2a

M2a
MLEs

LRT-3:
G1a13 vs. G2a13

G2a13

MLEs
2Δl

1 892 19 6.98 N.S. ω+ = 1.0
p+ = 0.026

N.S. ω+ = 1.02
p+ = 0

881.3

2 639 16 6.37 N.S. ω+ = 1.0
p+ = 0.15

P < 0.0001 ω+ = 4.9
p+ = 0.028

504.2

3 228 11 3.74 N.S. ω+ = 1.0
p+ = 0.046

N.S. ω+ = 1.2
p+ = 0

152.1

4 577 9 8.49 N.S. ω+ = 1.0
p+ = 0.05

N.S. ω+ = 1.18
p+ = 0

466.1

5 390 9 5.16 N.S. ω+ = 1.0
p+ = 0.19

P < 0.0001 ω+ = 11.7
p+ = 0.03

109.6

6 348 11 4.5 N.S. ω+ = 1.0
p+ = 0.04

N.S. ω+ = 3.11
p+ = 0

113.7

7 184 10 0.37 P < 0.0001 ω+ = 5.29
p+ = 0.24

P < 0.0001 ω+ = 4.36
p+ = 0.29

71.7

8 169 6 30 N.S. ω+ = 1.0
p+ = 0.001

N.S. ω+ = 8.46
p+ = 0.02

130.9

9 227 10 5.46 N.S. ω+ = 1.0
p+ = 0.25

N.S. ω+ = 20.5
p+ = 0.14

50.3

10†§ 450 10 2.2 N.S. ω+ = 1.0
p+ = 0.06

N.S. ω+ = 1
p+ = 0

14.3

11 444 7 4.6 N.S. ω+ = 1.0
p+ = 0.31

N.S. ω+ = 1.03
p+ = 0

109.7

12 473 9 0.45 N.S. ω+ = 1.0
p+ = 0.21

N.S. ω+ = 10.6
p+ = 0.007

17.3

13 427 8 0.05 0.10 > P > 0.05 ω+ = 15.7
p+ = 0.006

N.S. ω+ > 99
p+ = 0.02

6.2

14 632 7 0.09 0.10 > P > 0.05 ω+ = 15.3
p+ = 0.016

N.S. ω+ = 22.5
p+ = 0.03

25.1

15† 209 7 10.3 N.S. ω+ = 1.0
p+ = 0.05

N.S. ω+ = 1
p+ = 0

164.5

16 232 6 0.43 0.10 > P > 0.05 ω+ = 9.4
p+ = 0.29

N.S. ω+ = 2.3
p+ = 0.37

49.1

17 661 5 3.3 N.S. ω+ = 1.0
p+ = 0.27

P = 0.051 ω+ = 1.0
p+ = 0.33

220.6

18 564 5 7.7 N.S. ω+ = 1.0
p+ = 0.5

N.S. ω+ = 1.3
p+ = 0

171.4

19 261 4 9.5 N.S. ω+ = 1.0
p+ = 0.04

N.S. ω+ = 1.0
p+ = 0

113.6

20 201 4 2.2 N.S. ω+ = 1.0
p+ = 0.03

N.S. ω+ = 17.8
p+ = 0.04

40.4

21† 166 4 2.7 N.S. ω+ = 2.15
p+ = 0.20

N.S. ω+ = 17.8
p+ = 0.017

34.69

NC is the number of codons in the sequence alignment after removal of sites with ambiguities or indels. NS is the number of gene sequences in the alignment. TL
is the total tree length estimated under codon model M0 as the mean number of substitution per codon. N.S. indicates a non-significant LRT. The dagger symbol
(†) indicates a gene for which likelihood optimization under a G-series model did meet convergence criteria. The two-fold s symbol (§) indicates that the MLEs
were obtained by removing tip branches having near-zero lengths and re-fitting the model. The gene names, along with the sequence alignments, are provided
in the DRYAD repository [51]
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those genes were truly evolving under an MNR process,
then such low signal would be difficult to detect via
LRT-1 (see Simulation Studies 2 and 3).
Signs of G-series convergence problems were observed

for three genes (10, 15 and 21). Because LRT-1 and
LRT-3 were consistent for genes 15 and 21 (both
non-significant), we do not think convergence problems
negatively affected the LRTs in those two cases. Conver-
gence problems were more severe for gene 10, but were
ameliorated by removing terminal taxa with near zero
branch lengths and re-fitting the models to those data.
Convergence problems for genes 10, 15 and 21 may be a
symptom of over-parameterization of G2a13 for those
data, which could have led to an irregular likelihood
function. A further complication is that the extent to
which non-standard behaviours of the MLEs could
emerge seems to depend on the details of the true
generating process for each gene [57, 58]. In such
cases the optimization algorithm can readily produce
unreliable parameter estimates (see Mingrone et al.
[57] and Suzuki and Nei [61] for empirical examples).
For this reason we view the MLEs for these genes
with more caution than those obtained from the
other genes.
It is important to note that this is not the first report

of convergence problems and non-standard MLE behav-
iours, or of disagreements among model-based LRTs in
the analysis of real data. Furthermore, a wide variety of
codon models seem to be implicated in such issues. Per-
haps the best understood example is the tax gene of
HTLV. This gene is well known for MLEs that suggest
100% of sites are under positive selection despite having
87% sites being invariant across all 20 lineages that com-
prise the dataset [61]. Subsequent analyses of the tax
gene indicate that the implausibly large estimate of sites
evolving under positive selection results from violations
of statistical regularity conditions [57]. Another example
comes from a large-scale survey of primate nuclear
receptor genes for spatial and temporal changes in
selection pressure [15]. By using a novel method of non-
parametric bootstrap (SBA: [57]), they identified
non-standard MLE in some nuclear receptor genes and
not others [15]. Taking the results of our analysis of 21
real Streptococcus genes with those other real data ana-
lyses highlights the importance of adopting a standard
for best practices that includes a set of reliability and
robustness analyses. Bielawski et al. [62] proposed an
experimental design, and workflow, that includes a suite
of quality control, statistical reliability, and model robust-
ness analyses that can be used to identify problematic
datasets under the branch-site style of codon models. We
propose that such an “experimental design” should be
applied to all computational analyses of real data, regard-
less of the chosen codon-modelling framework.

Discussion
We have extended previous work [18, 20] by showing
that the LRT based on models M1a and M2a can pro-
duce incorrect conclusions about positive selection when
both (i) nonsynonymous rates depend on the amino acid
property and (ii) codon substitutions have occurred via
DT changes. We have also shown that LRTs can be con-
structed which have better performance in such scenar-
ios by incorporating additional parameters into the
model. However, incorporating too many parameters
into a model creates other difficulties, some of which
can result in computational problems and inferior per-
formance. More work on model selection methods is
clearly warranted. Nonetheless, the over-parameterised
models tended to perform better than the under-para-
meterised models in our simulations, which suggests
that there is a role for the G-series models in analyses of
real data. We recommend that G-series models should
be deployed within a larger experimental design that
includes (i) assessing robustness of results to model as-
sumptions (e.g., Bielawski et al. [62]), and (ii) routine use
of the non-parametric bootstrap to assess non-standard
behaviour of MLEs (e.g., Mingrone et al. [57]).
Our investigation of M-series models revealed that the

choice of ω distribution (M2 vs. M8) had a minor impact,
whereas the choice of codon frequency parameterization
(GY vs. MG) can have a major impact on false positives
when DT changes had occurred. While both GY and MG
can yield unacceptably high false positives, rates tended to
be higher under MG (sometimes exceeding 90%). False
positive rates for both the GY and MG style models can
be understood using the origin-fixation model framework
[63], which is a framework for reconciling population
genetic processes with macro-evolutionary dynamics.
Origin-fixation models assume that residence times for
polymorphisms are much shorter than the time between
population mutation events. This yields a macro-evolu-
tionary process that instantaneously “jumps” from one
fixed state to another (i.e., codon i to j) as an embedded
Markov chain [63]. Both GY and MG assume that the em-
bedded Markov chain is driven solely by single nucleotide
mutations. Thus, both are misspecified if either (i) the true
mutation process includes simultaneous double or triple
changes, or (ii) such changes do not occur, but the true
process violates the “weak mutation” assumptions of the
origin-fixation framework. These two scenarios are un-
identifiable within real data by single-change codon
models, and either violation (i) or (ii) could increase false
positives. Now consider that case of two codons that differ
by 2 or 3 nucleotides over a given branch; for a fixed ω
value, GY and MG will yield different total probabilities of
transition from one end of that branch to the other via a
sequence of single nucleotide changes. Thus, when fitting
these models to real data, the model that “sees” such a
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sequence of change as having a lower probability will need
to further increase the rate of nonsynonymous substitu-
tion (via an increase in ω) to explain the evolution of those
data. It seems that by emphasizing the independence of
the mutation process between codon positions, MG
requires even larger values of ω to explain rapid evolution
between codons that differ by 2 or 3 nucleotides. Models
that include parameters for apparent DT changes avoid
this effect (e.g., [42, 43] and G1a and G2a used here)
regardless of whether the process follows phenomenon (i)
or (ii) above.
There is some subtlety in the interpretation of the non-

synonymous rate when modelling MNRs based on the
physiochemical properties of the amino acids. Such
models can be interpreted as asserting that there is some
degree of evolutionary pressure against changes involving
certain amino acid properties. Using hydrophobicity as an
example, a large influence on the substitution rate such
that eβHI ¼ 0:05 means that there is strong selective pres-
sure against changes in hydrophobicity. However, within
the constraints of selective pressure against changes in
hydrophobicity, there may still exist diversifying selection
at some sites, independent of the general tendency to pre-
serve hydrophobicity. This means that there can be nat-
ural selection for changes in amino acid which do not
affect hydrophobicity, and that the selection against
changes to hydrophobicity is reduced at these sites. Thus,
hydrophobicity manifests as a phenomenological outcome
of several processes, with the nonsynonymous rate reflect-
ing the average tendency towards conservation of hydro-
phobicity over the entire dataset. When G-series models
come to be used to investigate the effect of different
aspects of physiochemical constraint in real data (polarity,
volume, polar requirement, etc.), we recommend using
the methods of Jones et al. [43] to assess the amount of
phenomenological load carried by the estimates of param-
eters that imply physiochemical mechanisms of selection.
The models evaluated here are sometimes referred to as

“site models”, as they permit the average intensity of natural
selection to vary only over the sites. There is growing interest
in using the so-called “branch-site” and “clade-site” mixture
models to investigate adaptive protein evolution (e.g., Yang
and Nielsen, [8]; Bielawski and Yang, [64]; Zhang et al. [65];
Murrell et al. [66]). Such codon models permit the intensity
of selection to vary over branches as well as over sites. Venkat
et al. [42] recently demonstrated that false positive rates for
the branch-site tests can also be exceptionally high when
there are double changes between codons. However it is not
yet possible to attribute branch-specific false positives to DT
changes in real data, as Jones et al. [43] showed that the DT
process and the fundamental process of shifting balance on a
fixed fitness landscape are confounded. Both of these
non-adaptive processes produce site pattern distributions that

are consistent with temporal dynamics in ω, with the amount
of phenomenological load on ω depending on a complex rela-
tionship between model and data [43, 60]. While the G-series
models can be extended by adding temporal dynamics in ω
to those models already having DT changes and MNRs, this
will likely intensify problems that arise when statistical regu-
larity conditions have not been met [15, 57, 62]. Hence,
further work on G-series models should focus on developing
and testing new methods for parameter selection. The trans-
lation of the G-series models to real data will be better suited
by first addressing this important issue.
The issues that we have addressed here (LRT power,

LRT accuracy, non-standard MLE behaviour, and con-
vergence problems) reflect different aspects of how the
relationship between the model and the data can affect
inference, and these issues are relevant to all types of
codon models [60]. In this study we have focused on
modelling MNRs at the amino acid level, DT changes at
the codon level, and the GTR process at the DNA level;
however, codon models often make other simplifying as-
sumptions about site independence, reversibility, and
homogeneity of the tree topology among sites, to name
just a few. While these have been investigated to varying
extent (e.g., [67–69]), the traditional ways in which
simulation studies have been designed are unable to
reveal problems associated with statistical irregularity
[56, 57, 60] or reveal the effects of realistic levels of
model misspecification [10, 43, 44, 60, 70, 71]. Future
development of all codon models, as well as formal
assessment of parameter selection methods, will require
simulation under much more true-to-life scenarios (e.g.,
DT changes and various MNR scenarios) and cover
greater, and more realistic, levels of model misspecifica-
tion. Only through such studies are we able to appreci-
ate the kinds of inference issues that we are most likely
to encounter in real data, and thereby update our notion
of best practices accordingly [60].

Conclusions
We confirm that failure to model MNRs or DT changes
can negatively impact the power and false positive rates
of LRTs for positive selection. False positives under
codon models M2a and M8 can be very sensitive to DT
changes. This is exacerbated by the choice of frequency
parameterization (GY vs. MG), with rates sometimes >
90% under MG. The MG parameterization emphasizes
the independence of the mutation process between
codon positions, and this tends to yield larger fitted
values for ω when the evolutionary process includes DT
changes. We describe a novel modelling-framework,
GPP, for codons that allows specification of all possible
instantaneous codon substitutions, including MNRs and
instantaneous DT nucleotide changes. We note that
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existing codon models can be specified as special cases
of the GPP model. LRTs for positive selection imple-
mented under the GPP framework yield substantial
improvements in accuracy and power when the true
evolutionary process includes MNRs and DT mutations.
But, we also find that over-parameterized models can
perform less well, and this can contribute to degraded
performance of LRTs. For this reason all codon models
(GPP and traditional) should be deployed within an
experimental design that includes (i) assessing robustness
to model assumptions, and (ii) investigation of non-stand-
ard behaviour of MLEs. Within such a design, GPP models
should be used alongside traditional codon models to
analyze real data. Further work is needed on methods for
parameter selection, especially with regard to their per-
formance under realistic levels of misspecification.
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