
RESEARCH ARTICLE Open Access

Evolution and transition of expression
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Abstract

Background: The remarkable abilities of the human brain are distinctive features that set us apart from other
animals. However, our understanding of how the brain has changed in the human lineage remains incomplete, but
is essential for understanding cognition, behavior, and brain disorders in humans. Here, we compared the
expression trajectory in brain development between humans and rhesus macaques (Macaca mulatta) to explore
their divergent transcriptome profiles.

Results: Results showed that brain development could be divided into two stages, with a demarcation date in a range
between 25 and 26 postconception weeks (PCW) for humans and 17-23PCWfor rhesus macaques, rather than birth time
that have been widely used as a uniform demarcation time of neurodevelopment across species. Dynamic network
biomarker (DNB) analysis revealed that the two demarcation dates were transition phases during brain development, after
which the brain transcriptome profiles underwent critical transitions characterized by highly fluctuating DNB molecules. We
also found that changes between early and later brain developmental stages (as defined by the demarcation points) were
substantially greater in the human brain than in the macaque brain. To explore the molecular mechanism underlying
prolonged timing during early human brain development, we carried out expression heterochrony tests. Results
demonstrated that compared to macaques, more heterochronic genes exhibited neoteny during early human brain
development, consistent with the delayed demarcation time in the human lineage, and proving that neoteny in human
brain development could be traced to the prenatal period. We further constructed transcriptional networks to explore the
profile of early human brain development and identified the hub gene RBFOX1 as playing an important role in regulating
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early brain development. We also found RBFOX1 evolved rapidly in its non-coding regions, indicating that this gene played
an important role in human brain evolution. Our findings provide evidence that RBFOX1 is a likely key hub gene in early
human brain development and evolution.

Conclusions: By comparing gene expression profiles between humans and macaques, we found divergent expression
trajectories between the two species, which deepens our understanding of the evolution of the human brain.

Keywords: Humans, Macaques, Expression trajectory, Transcriptome, Brain evolution

Background
Our highly developed and distinctive brains, which set
humans apart from other mammals, are the product of
evolution [1, 2], the mechanism of which has fascinated
people for centuries [3]. Based on compelling differences
in cognitive and behavioral capacities, but relatively close
phylogenetic relationship between humans and non-
human primates (NHPs) [4–6], recent comparative ana-
lyses have provided a novel strategy to study human-
specific neurodevelopment [7–9]. Increasingly persuasive
evidence suggests that brain development is not static
but is a continuous process of molecular changes
throughout life, including changes in gene expression,
glucose metabolism, and synaptic density [10–14]. Previ-
ous comparative analyses between humans and NHPs
have only offered a snapshot in time [15, 16]. However,
it is necessary to compare the whole process of brain de-
velopment to provide a more objective and comprehen-
sive understanding of human brain evolution.
Earlier research noted that neurodevelopmental timing

is impacted by different developmental rates and life his-
tory strategies [2]. These differences in neurodevelop-
mental timing among species, also called heterochrony,
have long been considered a crucial impetus for evolu-
tion [17–19]. Humans have an unusually extended child-
hood and slow rate of neurodevelopment (known as
neoteny) relative to other animals, which is considered a
possible mechanism for human brain evolution [18, 20].
While previous studies have primarily focused on het-
erochronic gene expression during postnatal brain devel-
opment [20], the macroscopic layout of the brain is
nearly complete at the time of birth [21]. Thus, extend-
ing comparative analysis to the prenatal stages is neces-
sary for exploring the features of neurodevelopment.
Currently, it is widely accepted that changes in spatio-

temporal gene expression play a critical role in the
emergence of the sophisticated human brain, and several
attempts have been made to estimate divergent gene ex-
pression patterns between humans and NHPs [15, 22,
23]. However, our understanding of how gene expression
patterns have changed in the human lineage remains in-
complete. With increasing high-quality brain transcrip-
tome data [24–26], an unprecedented opportunity to

investigate gene expression trajectory in multiple brain
regions and different developmental stages among pri-
mates has become possible [22, 27]. In this study, we
collected large-scale gene expression data from humans
and macaques to systematically investigate and compare
their divergent gene expression trajectory. We aimed to
identify critical states during brain development as well
as novel molecular mechanisms underlying human brain
evolution.

Results
Study design
Figure 1 highlights the strategy used to investigate evolu-
tion of gene expression trajectory in humans, including
hierarchical clustering and dynamic network analyses to
identify demarcation times of brain development in
humans and macaques, expression heterochrony analysis
to explore the mechanism of neurodevelopmental timing
in humans, and differential expression and gene co-
expression network analyses to identify key genes in hu-
man brain development and evolution.
Human brain transcriptome data were used in this

study, including RNA-sequencing (RNA-seq) and micro-
array data across multiple brain regions downloaded from
the Allen Brain Atlas [24, 25] (Table 1; Additional file 1:
Table S1 ~ Table S2). These data cover 14 brain regions
spanning 27 different developmental ages from 8 postcon-
ception weeks (PCW) to postnatal 40 years old (Table 2).
In total, 30,881 and 17,280 genes had detectable expres-
sion signals in the RNA-seq and microarray data, respect-
ively. We also used microarray data from macaques,
which contained five brain regions (22 brain subregions)
corresponding to brain regions in humans (Table 1; Add-
itional file 1: Table S3 ~ Table S4) and spanning 8 PCW
to postnatal 48months (Table 2). In total, 15,381 genes
exhibited detectable expression signals.

Different developmental trajectories and demarcation
times in humans and macaques
We performed hierarchical clustering analysis based on
gene expression levels to determine whether transform-
ation exists during brain development. In humans, the
RNA-seq and microarray data supported the division of
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Fig. 1 Overview of study. Hierarchical clustering and dynamic network analyses were used to identify demarcation time of brain development in
humans and macaques. Expression heterochrony analysis was used for exploring the mechanism of neurodevelopmental timing between humans
and macaques. Differential expression and gene co-expression network analyses were used to identify key genes in human brain development and
evolution. The clipart depicted in the figure are original
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brain development into two stages, with a demarcation
time of 25–26 PCW (Fig. 2a; Additional file 2: Figure S1).
In macaques, gene expression levels from the microarray
data in most brain regions were also clustered into two
groups, with a demarcation time of 17 PCW~ birth (17
-23PCW)(Fig. 2a; Additional file 2: Figure S2). These re-
sults suggest that brain development in both humans and

macaques could be divided into two major stages, sepa-
rated by species-specific demarcation points that occurred
prior to birth (25–26 PCW in humans and 17–23 PCW in
macaques), rather than birth times, which have been
widely used as a uniform demarcation time of neurodeve-
lopment across species [28, 29].

Transitional state and critical transitions during brain
development based on dynamic network biomarker
(DNB) analysis
Having identified the demarcation points of brain devel-
opment in humans and macaques, we further applied
DNB analysis to verify whether the above demarcation
points were also transitional states of brain development.
Based on nonlinear dynamic theory, biological processes,
such as brain development, are not always smooth, but
can exhibit dramatic transitions from one state to an-
other [30, 31]. When the process occurs near a critical
transition phase, a dominant group of genes/molecules,
i.e., DNBs, can drive transition of the dynamic process
[30, 32, 33]. We thus performed a genome-wide DNB
analysis to identify the transitional states and DNB genes
in both humans and macaques.
The DNB results demonstrated that the transitional

states of brain development in humans and macaques
occurred at around 26 PCW and around 17PCW, re-
spectively (Fig. 2b-c; Additional file 2: Figure S3). After
the transitional state, gene expression patterns changed
markedly. The transitional states identified by DNB ana-
lysis were largely consistent with the demarcation points
above (Fig. 2a), thus supporting the robustness of our re-
sults. We also obtained the corresponding DNBs, which
included 369 DNB genes in humans and 34 DNB genes
in macaques (Additional file 1: Table S5). The greater
number of DNB genes in humans suggests more dra-
matic changes between the early and later stages of brain
development in humans relative to that in macaques.

Transcriptional profile and cell fate change from early to
later stages of brain development
We used differential expression analysis to compare the
degree of change in early and later gene expression be-
tween humans and macaques. We selected five brain re-
gions (i.e., hippocampus (HIP), striatum (STR), anterior
cingulate cortex (ACC), amygdala (AMY), and primary
visual cortex (V1C)) that coexist and contain similar
sample sizes in the two species. Based on microarray
probes, which matched between humans and macaques,
we found a larger number of differentially expressed
genes (DEGs) (Benjamini-Hochberg FDR < 0.05, fold
change [FC] > 1.5) between early and later stages in
humans than in macaques (Fig. 3a; Additional file 1:
Table S6). These results also suggest more dramatic

Table 1 Human and macaque tissues used in this study

Human A1C Primary auditory cortex

AMY Amygdaloid complex

MD Mediodorsal nucleus of thalamus

DFC Dorsolateral prefrontal cortex

HIP Hippocampus

IPC Posteroventral (inferior) parietal cortex

ITC Inferolateral temporal cortex

M1C Primary motor cortex

ACC Anterior (rostral) cingulate cortex

OFC Orbital frontal cortex

STC Posterior (caudal) superior temporal cortex

STR Striatum

V1C Primary visual cortex

VFC Ventrolateral prefrontal cortex

Macaque HIP CA1or (stratum oriens of CA1)

CA1py (stratum pyramidale of CA1)

CA1ra (stratum radiatum of CA1)

CA2py (stratum pyramidale of CA2)

CA3py (stratum pyramidale of CA3)

DGgr (granular layer of dentate gyrus)

DGpf (polyform layer of dentate gyrus)

DGsg (subgranular zone of dentate gyrus)

STR NAC (nucleus accumbens)

ic (internal capsule)

Pu (putamen)

(Gpe) External segment of globus pallidus

Internal segment of globus pallidus

ACC (rCG2) Layer II of rostral cingulate cortex

(rCG3) Layer III of rostral cingulate cortex

(rCG5) Layer V of rostral cingulate cortex

(rCG6) Layer VI of rostral cingulate cortex

V1C (V1–3) Layer III of V1

(V1–4) Layer IVA of V1

(V1–5) Layer V of V1

AMY (Me) Medial nucleus of amygdaloid

(PL) Paralaminar nucleus

The brain regions marked with bold in human represent that coexist
with macaque

Li et al. BMC Evolutionary Biology           (2020) 20:72 Page 4 of 16



changes between early and later stages of brain develop-
ment in humans relative to macaques.
To better understand brain developmental processes

in the human lineage, we conducted functional enrich-
ment analysis of the DEGs between early and later stages
in humans. Results showed that up-regulated genes in
the early stage were mainly involved in cell cycle, DNA
packaging, and meiosis (Fig. 3b), whereas, up-regulated
genes in the later stage were enriched in synaptic signal-
ing, myelination, and axon establishment (Fig. 3c). Re-
markably, the DEG patterns well matched the reported
properties of the neurodevelopmental timeline in
humans [35].
Increasing evidence suggests that a cell fate switch

from neurons to glial cells is operational in prenatal
brains and represents a key process in brain develop-
ment [36–38]. We thus considered whether the demar-
cation points in human correspond to the transient time
of known neuron to glial cell fate switch. We found up-
regulated genes in the early stage were predominantly
enriched in neuronal genes (Fig. 3d), whereas up-
regulated genes in the later stage represented a diversity
of cell-type-associated genes, including astrocytes,

oligodendrocytes, and neurons (Fig. 3d), which likely re-
flects the transformation of cell fate switch from neurons
to glial cells during the demarcation point. This conclu-
sion is confirmed by the previous single-cell transcrip-
tion analysis [39], which reported that neurons
developed from neural progenitor cells in early gesta-
tional weeks (GW8, GW9, GW10, GW12, GW13,
GW16, GW19, GW23), whereas glial cells (oligodendro-
cyte progenitor cells and astrocytes) differentiated from
neural progenitor cells in later weeks (GW26).
Earlier studies have also reported several pathways that

govern the neuron to astrocyte cell switch, including the
gp130/JAK/STAT and MEK/MAPK pathways … [38,
40]. We found that DEGs between early and later stages
were significantly enriched in the MEK/MAPK pathway
(P = 4.6e-04, Fisher’s exact test) (Additional file 1: Table
S7). Although DNBs were not significantly enriched in
the MEK/MAPK pathway (P = 0.15, Fisher’s exact test),
15 DNBs were still involved (Additional file 1: Table S7).
This suggests that the MEK/MAPK pathway likely plays
an important role in the transformation ratio of cell type
from neurons to glial cells during the human demarca-
tion point (25–26 PCW).

Molecular mechanism underlying protracted timing of
early human brain development
The different demarcation points (25–26 PCW in
humans and 17-23PCWin macaques) identified here re-
flect prolonged timing of early brain development in the
human lineage. Thus, we performed heterochronic ana-
lysis to explore the molecular mechanism underlying dif-
ferent timing of early neurodevelopment between
humans and macaques.
We again used five brain regions (i.e., HIP, STR, ACC,

AMY, and V1C) that coexist in humans and macaques
to test heterochronic gene expression. After rigorous
quality control (see Methods), we retained 9758 genes
with microarray probes well matched between humans
and macaques. Among these genes, we selected several
that showed both age-related and species-specific differ-
ences for each brain region (see Methods; Additional
file 1: Table S8). We then sorted these genes into two
categories: (i) human acceleration genes, whose expres-
sion change was significantly faster during human brain
development than that during macaque brain develop-
ment (Fig. 4a); and, (ii) human neoteny genes, whose ex-
pression change was significantly delayed during human
brain development than that during macaque brain de-
velopment (Fig. 4b), as defined in previous study [20].
Compared to macaques, more genes displayed a neo-
tenic pattern in all five human brain regions (Fig. 4c;
Additional file 1: Table 9), consistent with the above de-
layed demarcation point in the human lineage. In

Table 2 Age distribution of humans and macaques

Human Macaque

Early period Later period Early period Later
period

56 PCD (8 PCW) 182 PCD (26
PCW)

50 PCD (8 PCW) 0 m

72 PCD (9 PCW) 4 m 70 PCD (10 PCW) 3 m

84 PCD (12 PCW) 10 m 80 PCD (12 PCW) 12 m

91 PCD (13 PCW) 1 y 90 PCD (13 PCW) 48 m

112 PCD (16
PCW)

2 y 120 PCD (17
PCW)

119 PCD (17
PCW)

3 y

133 PCD (19
PCW)

4 y

147 PCD (21
PCW)

8 y

168 PCD (24
PCW)

13 y

175 PCD (25
PCW)

15 y

18 y

21 y

23 y

30 y

36 y

37 y

40 y

PCW postconception week, PCD postconception days, m month, y year
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addition, the result suggest that neoteny of human brain
development could be traced to prenatal period.
Interestingly, the neotenic genes from the five brain

regions significantly overlapped (Additional file 1:
Table 10), suggesting that neotenic mechanisms among
different brain regions are largely convergent. The func-
tions of these neotenic genes were mainly involved in
neurodevelopment-related pathways (Fig. 4d), suggesting
that more neurodevelopmental genes exhibited neotenic
features, which eventually help humans develop a more
complex brain.

Co-expression analysis identifies gene network during
early brain development in humans
Extended timing of early neurodevelopment in
humans is important for brain evolution [2, 18]. We
applied weighted gene co-expression network analysis
(WGCNA) to further explore the transcriptional pro-
file of early neurodevelopment in humans [41–43]. A
total of 38 modules related to early human neurode-
velopment were identified (see Methods; Fig. 5a; Add-
itional file 1: Table S11). To quantify network
reorganization across early and later brain develop-
ment, we applied modular differential connectivity

(MDC), which is the ratio of the average connectivity
for any pair of modules sharing genes in the early
stage compared to that in the later stage. Among the
38 early modules, five (GCM1–GCM5) showed gain
of connectivity compared to later development, with
co-regulation enhanced between genes in these mod-
ules. In contrast, 21 modules (LCM1–LCM21) showed
loss of connectivity and 12 modules (NCM1–NCM12)
(31.5%) showed no change in connectivity and were
conserved during development (Additional file 2: Fig-
ure S4A-S4B).
For modules with gains or losses of connectivity, we

ranked them according to their degree of DEG enrich-
ment across brain regions (Fig. 5a) and MDC scores
(Additional file 1: Table S11). Module GCM1, which
showed a gain of connectivity in the early stage, was
identified as the most highly ranked module. The genes
in this module were enriched in neurogenesis, neuron
projection morphogenesis, and axon development
(Fig. 5d). Additionally, GCM1 showed highly significant
enrichment for known autism susceptibility markers
(P = 5.49E-07; Fisher’s exact test) [46], and the expres-
sion levels of genes in this module were significantly
higher during early brain development (Additional file 2:
Figure S4C). These results suggest that GCM1 likely

Fig. 2 Different gene expression trajectories during brain development in humans and rhesus macaques. a Hierarchical clustering analysis revealed different
expression demarcation time points in humans and macaques based on primary visual cortex transcriptome data. b Time course for neurogenesis in humans
and macaques. Data were according to previous study [10]. c–d Detection of transition phases during brain development in humans (c) and macaques (d)
using dynamic network biomarkers (DNBs). Plot represents composite index of DNB (see Materials and methods, CI in Eq.(1)), which indicates transition phase at
around 26 PCW in humans and around 17 PCW in macaques
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plays an important role in early development of the hu-
man brain.
Remarkably, most genes in the GCM1 module were

located in human-accelerated conserved non-coding se-
quences (HACNSs) (P = 3.19E-16; Fisher’s exact test)
[44] or in human DNA sequence accelerated regions

(HARs) (P = 7.49E-12; Fisher’s exact test) [45] (Fig. 5c),
suggesting that genes in the GCM1 module also likely
played an important role in human brain evolution.
We next mapped the genes in GCM1 to single-cell ex-

pression data derived from 20,262 prenatal human pre-
frontal cortex cells that ranged in age from 8 to 26

Fig. 3 Transcriptional profiles across early to later stages during brain development. a DEGs among five brain regions (HIP (hippocampus), V1C (primary
visual cortex), ACC (anterior cingulate cortex), STR (striatum), and AMY (amygdala). b Enriched categories for up-regulated genes in early human brain
development. c Enriched categories for up-regulated genes in later human brain development. d Matrix summary of enrichment of oligodendrocyte,
neuron, microglia, endothelial, or astrocyte genes [34] in DEGs up-regulated (red) and down-regulated (blue) in each human tissue
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gestational weeks [39] (Additional file 2: Figure S5),
which represent a broad diversity of cell types including
neural progenitor cells, interneurons, astrocytes, oligo-
dendrocyte progenitor cell, microglia and excitatory neu-
rons. The expression patterns of the GCM1 genes
closely matched the cell type specific of excitatory neu-
rons (see Methods) (Fig. 5e), confirming that genes in
the GCM1 module function through excitatory neurons.
We further reconstructed the network structure of

genes within the GCM1 module based on their connect-
ivity and identified 53 hub genes, 36 of which were early
stage-specific hub genes [47] (see Methods, Fig. 6a).
Among these genes, RBFOX1(RNA Binding Fox-1
Homolog 1) was of particular interest. RBFOX1 is a
highly conserved splicing regulator that displays higher
expression in the brain than in other tissues [48]
(Fig. 6b). RBFOX1 is implicated in autism, epilepsy

syndromes, and Alzheimer’s disease [49–51] and plays
an important role in mammalian brain development
[52]. Interestingly, RBFOX1 is also a DNB gene, and
therefore considered to play an important role in critical
transition during brain development [30].
We next used evolutionary analysis to test if RBFOX1

experienced positive selection in the human lineage. Al-
though the protein coding sequence of RBFOX1 has not
changed in humans compared to other primates (Add-
itional file 2: Table S12; see Methods), six HARs were
found in the non-coding regions for this gene (Fig. 6c).
HARs are non-coding regions conserved across mammals,
and which have acquired many sequence changes in
humans since their divergence from chimpanzees [45].
Only seven human RefSeq genes from the entire human
genome (based on hg18) contain six or more HARs [53],
suggesting that strongly human-specific accelerated

Fig. 4 Analysis of expression heterochrony. a Example gene showing accelerated expression in humans. b Example gene showing neotenic
expression in humans (right). c Number of genes showing acceleration and neoteny in early human brain development for five brain regions. d
Enriched categories for neotenic genes in early human brain development
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Fig. 5 Weighted gene co-expression network analysis (WGCNA). a Topological overlap matrix plots for early brain modules in human. Light color represents
low topological overlap, with progressively darker red representing higher overlap. b Enrichment of DEGs across 13 brain regions among different modules. c
Enrichment of genes located in human-accelerated conserved non-coding sequences (HACNSs) [44] and genes located in human DNA sequence accelerated
regions (HARs) [45] in different modules. d Functional enrichment of genes in GCM1. e Cell specificity of genes in module GCM1

Li et al. BMC Evolutionary Biology           (2020) 20:72 Page 9 of 16



evolution occurred recently in the non-coding region of
the human RBFOX1 gene. Our findings provide evidence
that RBFOX1 is a likely key hub gene in early human brain
development and evolution. In addition, RBFOX1 also
showed cell specificity to excitatory neurons by single cell
transcriptome analysis (Fig. 6d), suggesting that RBFOX1
functions through excitatory neurons.

Discussion
The remarkable abilities of the human brain set us apart
from NHPs. With the advent of large-scale genomic,
transcriptomic, and epigenomic data, many genetic un-
derpinnings of the rapid evolution of the human brain
have been revealed [54–58]. However, our understand-
ing of how the brain has changed in the human lineage
remains incomplete [3]. Based on large-scale transcrip-
tomic and genomic data, the results of the current study
provide new insight into the evolution and transition of
gene expression trajectory in the human brain.
Firstly, we found that brain development could be di-

vided into two stages in both humans and macaques;
more specifically, demarcation times of 25–26 PCW and
17–23 PCW in humans and rhesus macaques, respect-
ively. Further DNB analysis indicated that the demarca-
tion points were nearly the same as the critical
transitional states during brain development in humans
and macaques. Previous studies on brain development
have primarily used birth as the default boundary [28,
29, 59]. However, we suggest that the demarcation
points identified here should be considered in the future
to minimize biases in studies of brain development.
Secondly, we also found that neoteny of human

brain development could be traced to the prenatal
period. Previous studies have primarily focused on
heterochronic gene expression during postnatal brain
development [7]. The macroscopic layout of the brain
is nearly complete at the time of birth [8]. Thus, ex-
tending comparative analysis to the prenatal stages is
necessary to explore the features of neurodevelop-
ment, which is lacking in prior studies. Thus, in this
paper, we performed heterochronic analysis across
prenatal samples between humans and macaques, and
found that more genes displayed a neotenic pattern in
humans than in macaques, consistent with the de-
layed demarcation time in the human lineage, and
proving that neoteny in human brain development
could be traced to the prenatal period.
Thirdly, we used gene co-expression network analysis

to identify transcription profiles in early human brain
development and identified that the RBFOX1 gene likely
plays an important role in early human brain develop-
ment and displays positive selection in its non-coding
region [50–52]. Therefore, we speculated thatRBFOX1 is
a likely key hub gene in early human early brain

development and evolution. As such, we propose that
RBFOX1 should be considered in further neurodevelop-
mental research.
Finally, we highlighted the importance of excitatory

neurons in human brain development and evolution.
Over the past few decades, the comparisons of excitatory
neurons between humans and NHPs have mainly fo-
cused on their differences in morphology and abundance
[60, 61]. Further molecular biology research on excita-
tory neurons is limited. In this paper, we found that the
GCM1 module and RBFOX1 gene were related to early
human brain development and evolution and were
enriched in excitatory neurons. Therefore, studies on ex-
citatory neurons would be promising for exploring hu-
man brain evolution.
We note that the study presented here is far from be-

ing comprehensive: Firstly, Based on currently available
transcriptome data, we identified a demarcation line
time-frame of brain development in humans and ma-
caques. The precise demarcation point could not be con-
cluded from existing data but should be explored in
future studies.
Secondly, due to the relatively small sample sizes used

in the current study, as well as the sparse distribution of
samples across ages, we cannot rule out certain import-
ant changes in transcriptional profiles during neurodeve-
lopment that may have occurred beyond the sampling
range used in this study. For instance, previous studies
have reported that during juvenile development in
humans (1–8 postnatal years), the cerebral cortex con-
sumes nearly twice the amount of glucose as observed
during adulthood and is accompanied by dramatic
changes in synaptic density during that developmental
window [11, 12]. Thus, the transition state we identified
is not absolute, with more saturated samples across dif-
ferent ages required to confirm our conclusions.
Thirdly, comparative analysis between humans and

macaques was based on microarray data only, which rely
on pre-existing knowledge of RNA sequences; as such,
some important genes may be missed.
Finally, due to the lack of prenatal transcriptome data

on brain development in hominoids, it is difficult to
compare hominoids with humans, which would be valu-
able when exploring human brain evolution.
Further analyses, including expression data analysis

across additional development stages, comparative ana-
lysis of RNA-seq data between humans and NHPs, as
well as analysis incorporating more hominoids, are
needed to expand our results.

Conclusions
In this study, we integrated transcriptomic analysis to re-
veal the evolution and transition of expression trajector-
ies during human brain development. By comparing
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gene expression profiles between humans and rhesus
macaques, our results provide new insights into the gene
expression trajectory of human brain development,
which will deepen our understanding on evolution of
the human brain.

Methods
Dataset resources
The normalized gene expression human and rhesus ma-
caque datasets were obtained from the Allen Brain Atlas
(http://www.brain-map.org) (Table 1; Table 2) [24, 25].

We used two datasets for humans, including RNA-seq
and microarray data, which contained 14 brain regions
and 27 developmental stages. The RNA-seq data were
summarized to Gencode 10 gene-level reads per kilo-
base million mapped reads (RPKM), whereas the micro-
array data were based on the Affymetrix GeneChip
Human Exon 1.0 ST Array platform. Several quality
control measures were implemented to reduce errors
due to spatial artifacts on the chips, technical differ-
ences between chips in probe saturation, or other un-
accounted for batch effects. Detailed information can

Fig. 6 Hub gene RBFOX1 in module GCM1. a Network plot of hub genes identified within GCM1 module. Blue nodes indicate all genes. Red nodes
indicate hub genes. Yellow halos indicate early stage-specific hub genes. Cyan node indicates RBFOX1. Edges reflect significant interactions between
genes based on mutual information. b Expression level of RBFOX1 in different tissues. c Location of HAEs at RBFOX1 locus in human genome and
conservation of RBFOX1 among 17 mammals according to UCSC Genome Browser (www.genome.ucsc.edu). d Cell specificity of RBFOX1
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be found in the Supplementary Materials of Kang et al.
(2011) [24]. For rhesus macaques, we used the micro-
array dataset based on GeneChip Rhesus Macaque
Genome Arrays from Affymetrix. From the 52,865
probe sets included in the macaque microarray data,
12,441 high-confidence probe sets were retained after
quality control filtering. Detailed description of the ma-
caque data can be found in Bakken et al. (2016) [25].
The macaque microarray dataset contained five brain
regions (22 brain subregions) and nine developmental
stages (Table 1; Table 2).

Clustering of genes in each tissue
The human microarray and RNA-seq datasets and rhe-
sus macaque microarray dataset were used to cluster
genes for each brain region according to their expression
levels. To reduce the influence of technical noise, only
genes with expression values of more than 0 in 80% of
the available samples were considered expressed. Before
clustering, we log2 transformed and then z-transformed
the expression levels (normalized the mean to 0 and
variance to 1). Using agglomerative hierarchical cluster-
ing with the average and complete methods in the flash-
Clust R package [62], the RNA-seq and microarray data
from most human tissues were clustered into two
groups, separated with a demarcation point of 25 PCW.
The microarray data from the rhesus macaques were
also clustered into two groups, with 17 PCW as the de-
marcation point.

Dynamic network biomarker (DNB) analysis
Based on DNB theoretical analysis [30, 32, 33], we can
prove that when a system is near the critical state/transi-
tion phase, a dominant group of genes/molecules, i.e.,
DNBs, can drive transition of the dynamic process. These
molecules must satisfy the following three criteria [30]:

(1) Deviation (or fluctuation) for each molecule inside
the dominant group (SDd: standard deviation)
drastically increases.

(2) Correlation between molecules inside the dominant
group (PCCd: Pearson correlation coefficients in
absolute values) rapidly increases.

(3) Correlation between molecules inside and outside
the dominant group (PCCo: Pearson correlation
coefficients in absolute values) rapidly decreases.

The dominant group is considered a DNB and plays
an important role in phase transition. A quantification
index (CI) considering all three criteria can then be used
as the numerical signal of the critical state or transition
phase and also for the identification of DNB members/
molecule, with the following equation:

CI≕
SDd•PCCd

PCCo
ð1Þ

where, PCCd is the average Pearson’s correlation coeffi-
cient (PCC) between the genes in the dominant group
(or DNB) of the same time stage in absolute value; PCCo

is the average PCC between the dominant group (or
DNB) and others of the same time stage in absolute
value; and, SDd is the average standard deviation (SD) of
genes in the dominant group (or DNB). The three cri-
teria together construct the composite index (CI). The
CI is expected to peak or increase sharply during the
measured stages when the system approaches the critical
state, thus indicating imminent transition or transition
phase of the biological process [30].
We applied this DNB method to detect the critical

points and DNB members in humans and macaques
based on the transcriptome data of the primary visual
cortex. In each sampling stage, there were 1–4 samples
with gene expression profiles. To increase the reliability
of the DNB results, the slide window method was incor-
porated into the DNB model to process data [30].

Differentially expressed genes (DEGs) between early and
later stages of brain development
To remove the potential effect of different high-
throughput platforms on gene expression values, we only
used microarray data for DEG analysis for both species.
Pairwise differential expression was investigated using
the edgeR R package [63]. To determine the DEGs be-
tween the two developmental times for humans and ma-
caques, the demarcation times were set 25 PCW and 17
PCW, respectively. A nominal significance threshold of
Benjamini-Hochberg FDR < 0.05 and fold change [FC] >
1.5 was used to identify DEGs.
For DEGs in humans, we applied g:Profiler (https://

biit.cs.ut.ee/gprofiler/) [64] for functional annotation
analysis (GO and KEGG). To assess cell-type specificity
in the 14 brain regions of humans, we used genes
expressed at least five-fold higher in one cell type than
all other cell types (neuron, microglia, astrocyte, oligo-
dendrocyte, endothelial) from brain-based RNA expres-
sion data as the cell marker [65].

Heterochrony analyses with dynamic time warping
algorithm (DTW-S)
We combined data from microarray probes of
humans and macaques to study heterochronic gene
expression in five brain regions (i.e., hippocampus
(HIP), striatum (STR), anterior cingulate cortex
(ACC), amygdala (AMY) and primary visual cortex
(V1C)). We used the “sva” R package [66] to remove
batch effects between microarray datasets of humans
and rhesus macaques.
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To choose age-related genes, we first used a log2
transformed age scale to ensure a more linear rela-
tionship between age and phenotype [67]. We tested
the effect of age on the expression levels using poly-
nomial regression models, as described previously
[68]. We next tested each gene for expression diver-
gence between humans and rhesus macaques using
analysis of covariance [69] (F-test P < 0.05). Identifica-
tion of age-related genes and species-specific genes
were based on the adjusted r2 criterion. The identifi-
cation methods have been described previously [68].
Consequently, we selected 892 genes in AMY, 2431
genes in HIP, 1961 genes in STR, 1899 genes in
ACC, and 2416 genes in V1C as the test gene set for
DTW-S, satisfying the following criteria: (i) significant
expression change with age and (ii) significant expres-
sion difference between humans and macaques.
The DTW-S algorithm was then used to analyze

the data for heterochrony [68]. We defined genes
showing significant heterochrony into two categories:
(i) human acceleration genes, whose expression
changes were significantly faster during human brain
development than that during macaque brain develop-
ment; and, (ii) human neoteny genes, whose expres-
sion changes were significantly delayed during human
brain development compared with that during ma-
caque brain development. Using those genes that
showed significant age-related and species-specific dif-
ferences, as defined above, we aligned the macaque
and human expression trajectories and estimated the
time-shift (heterochrony) between humans and ma-
caques, with simulations conducted to estimate the
significance of the shifts. We considered genes as ‘sig-
nificantly heterochronic’ if they showed a shift at P <
0.05. A detailed description of the DTW-S algorithm
can be found in Yuan et al. 2011 [68].

Construction of gene co-expression modules for early
human brain development
We constructed multi-tissue co-expression networks
that simultaneously captured intra- and inter-tissue
gene-gene interactions using the human RNA-seq ex-
pression data [42, 70]. Before identifying co-expressed
gene modules, we used linear regression to correct sex
and brain region covariates in the expression data. To
quantify the differences in the transcript network
organization between the early and late stages, we
employed the modular differential connectivity (MDC)
metric [71]. In brief, MDC represents the connectivity
ratios of all gene pairs in a module from the early stage
to the same gene pairs from the later stage: MDC > 0 in-
dicates a gain of connectivity or enhanced co-regulation
between genes in the early stage, whereas MDC < 0

indicates a loss of connectivity or reduced co-regulation
between genes in the early stage.
To identify key regulator (driver) genes of the GCM1

module, we applied key driver analysis to the module-
based unweighted co-expression networks derived from
ARACNE [47]. ARACNE first identified significant inter-
actions between genes in the module based on their mu-
tual information and then removed indirect interactions
through data processing inequality (DPI). For each
ARACNE-derived unweighted network, we further iden-
tified the key regulators by examining the number of N-
hop neighborhood nodes for each gene.

Identification of cell type and subtype from single cell
data
Single-cell RNA-seq data (accession number
GSE104276) were reported in previous study [39].
Transcript counts for each cell were normalized to
transcripts per million (TPM), with the TPM values
then normalized by log ((TPM/10) + 1) for subse-
quent analysis [39]. The Seurat package [72] v1.2.1
implemented in R was applied to identify major cell
types among the 2394 single cells from the pre-
frontal cortex. Only cells that expressed more than
1000 genes were considered, and only genes with
normalized expression levels greater than 1 and
expressed in at least three single cells were included,
which left 20,262 genes across 2344 samples for
clustering analysis. After initial clustering, PAX6,
NEUROD2, GAD1, PDGFRA, AQP4, and PTPRC
were used as markers to identify the major cell types
in the brain: i.e., neural progenitor cells, excitatory
neurons, interneurons, oligodendrocyte progenitor
cells, astrocytes, and microglia, respectively.

Coding sequence evolutionary analysis of RBFOX1
To analyze the evolution of the coding regions of
RBFOX1, we obtained the human, chimpanzee, rhesus
macaque, marmoset, mouse lemur, mouse, rat, cow, dog,
and opossum coding sequences for this gene from
Ensembl [48]. The coding sequences were aligned using
Prank [73]. Gblocks v0.91b was used to remove poorly
aligned regions in the resulting nucleotide sequence align-
ments [74]. We then used the modified branch-site model
A from the PAML package v4.9 to test positive selection
of RBFOX1 in the human and primate lineages, respect-
ively [75]. The null hypothesis of the branch test was that
all lineages shared the same dN/dS ratio. The alternative
hypothesis was that human or primate lineages had a dif-
ferent dN/dS ratio from other lineages, with w0, w1, and
w2 representing codons under negative, null, and positive
selection, respectively. The Chi-square test was used to
calculate the P value P_adjust< 0.05 was considered as
significant.
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