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Abstract 

Background: Syngnathid fishes (Actinopterygii, Syngnathidae) are flagship species strongly associated with sea‑
weed and seagrass habitats. Seahorses and pipefishes are highly vulnerable to anthropogenic and environmental 
disturbances, but most species are currently Data Deficient according to the IUCN (2019), requiring more biological 
and ecological research. This study provides the first insights into syngnathid populations in the two marine Spanish 
National Parks (PNIA—Atlantic‑ and PNAC—Mediterranean). Fishes were collected periodically, marked, morphologi‑
cally identified, analysed for size, weight, sex and sexual maturity, and sampled for stable isotope and genetic identifi‑
cation. Due the scarcity of previous information, habitat characteristics were also assessed in PNIA.

Results: Syngnathid diversity and abundance were low, with two species identified in PNIA (Hippocampus guttulatus 
and Syngnathus acus) and four in PNAC (S. abaster, S. acus, S. typhle and Nerophis maculatus). Syngnathids from both 
National Parks (NP) differed isotopically, with much lower δ15N in PNAC than in PNIA. The dominant species were S. 
abaster in PNAC and S. acus in PNIA. Syngnathids preferred less exposed sites in macroalgal assemblages in PNIA and 
Cymodocea meadows in PNAC. The occurrence of very large specimens, the absence of small‑medium sizes and the 
isotopic comparison with a nearby population suggest that the population of Syngnathus acus (the dominant syng‑
nathid in PNIA) mainly comprised breeders that migrate seasonally. Mitochondrial cytochrome b sequence variants 
were detected for H. guttulatus, S. acus, and S. abaster, and a novel 16S rDNA haplotype was obtained in N. maculatus. 
Our data suggest the presence of a cryptic divergent mitochondrial lineage of Syngnathus abaster species in PNAC.

Conclusions: This is the first multidisciplinary approach to the study of syngnathids in Spanish marine NPs. Habitat 
preferences and population characteristics in both NPs differed. Further studies are needed to assess the occurrence 
of a species complex for S. abaster, discarding potential misidentifications of genus Syngnathus in PNAC, and evalu‑
ate migratory events in PNIA. We propose several preferential sites in both NPs for future monitoring of syngnathid 
populations and some recommendations for their conservation.
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Background
Syngnathidae is a singular fish family mostly inhabiting 
temperate and tropical sheltered, coastal marine waters 
[26, 47]. Seahorses and pipefishes utilize rocky, muddy, 
sandy, and rubble bottom habitats, generally associated 
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with macrophytes communities [53]. Syngnathids are 
secondary consumers with specialized and opportunis-
tic predatory strategies, ambushing small prey (mainly 
planktonic and nektonic crustaceans), showing a variety 
of diets, and foraging behaviours across genera and loca-
tions [53]. Seaweed and seagrass meadows promote the 
growth of most food sources and enhance the cryptic 
ability of syngnathids to avoid predators.

Syngnathids are valuable flagship species for conserva-
tion programs that will simultaneously benefit other fish 
[83]. Many species are vulnerable and threatened by hab-
itat loss (pollution, sedimentation and eutrophication) 
and disturbances through boating and shipping [97], 
[43]. More than half of syngnathid species (two seahorse 
and eleven pipefish species) inhabiting Spanish coasts 
are currently classified as Data Deficient, and further 
research is needed to understand their biology and ecol-
ogy (e.g., connectivity, migrations, mortality, etc.) [43].

Misidentifications of species have been reported due to 
cryptic morphology and unclear diagnostic traits among 
species, stressed by historical reference labelling errors in 
particular cases (e.g., European genus Syngnathus) [37, 
102]. Genetic data are useful to solve taxonomic issues 
and complement morphological information, as a basic 
step towards the characterization and conservation of 
species and associated habitats [102]. Different mito-
chondrial markers have shown strong molecular support 
for species identification of seahorse and pipefish to clar-
ify population and conservation studies (e.g., [51, 86, 100, 
102].

Studies on syngnathids in the Iberian Peninsula are 
scarce and mainly focussed on specific topics for a 
reduced number of species [10, 16–19, 56, 94]. The pre-
sent study is the first multidisciplinary approach for the 
global evaluation of syngnathid populations in Spanish 
coasts, particularly in marine National Parks (NP). Stud-
ies conducted in NPs would be highly valuable, consid-
ering their protection status and the supposed reduced 
impacts of most potential disturbances. Currently, there 
are two marine National Parks (NPs) in Spain, differing 
in their characteristics and biodiversity: Atlantic Islands 
National Park (PNIA) (Atlantic Ocean, NW Spain) and 
Cabrera Archipelago National Park (PNAC) (Balearic 
Islands, Mediterranean Sea). NPs should be the best 
marine ecosystems to ensure species survival and suc-
cess in biodiversity conservation. However, protection 
requires a deep knowledge and analysis of habitats, val-
ues and threats, particularly for exceptional species and 
populations. In marine protected areas, there is the risk 
of a negative impact for syngnathids through increased 
predator abundance [39].

Marine ecosystems in PNIA host complex habitats and 
numerous ecological niches due to the extraordinary 

rich biota inhabiting soft and rocky floors typical of pro-
tected, semi exposed and exposed environments. Rocky 
shores are covered by seaweed, whereas the Western 
side is dominated by hard substrates covered by crusty, 
coralline and other turf-forming seaweed [69]. That side 
is exposed to Atlantic open water and extreme sea cur-
rents and waves, mainly in winter. The Eastern side is less 
exposed due to its position facing the Ría de Vigo. That 
side is characterized by a high biodiversity and produc-
tivity, and therefore it is an area of special interest for 
fishing. Such high productivity is promoted by impor-
tant seasonal phytoplankton blooms [3, 77], and second-
ary production [9, 92], with high abundance in summer 
and seasonal changes in community structure. Copepods 
are largely predominant in winter, being accompanied in 
summer by other groups of fauna [9].

The fisheries system in PNIA is complex [13, 63, 
and the use of some types of fishing impacts negatively 
on syngnathids (by-catch and substrate degradation). 
Although areas of fishing are protected, they are not sub-
ject to special regulations [63]. Increasing tourism and 
nature activities promote public awareness for the con-
servation of marine ecosystems [69].

Cabrera Archipelago National Park (PNAC) is an 
IUCN category II Marine Protected Area (MPA) located 
10 km southeast of Majorca (Balearic Islands, Mediterra-
nean Sea), declared Spanish National Park in 1991. Algal 
beds, seagrass meadows and rocky bottoms dominate 
the subtidal zone. Three species of seagrass meadows are 
present: Zostera noltei (< 2 m depth), Cymodocea nodosa 
(0–25 m depth) and Posidonia oceanica (0–40 m depth).

Tourists visiting PNAC increases yearly, and recrea-
tional fishing and trawling in PNAC were banned in 1992. 
Small-scale fishing was regulated in 1995 but 80 small-
scale boats from neighbouring towns continue fishing in 
some areas [57]. Fishing gears are regulated albeit over-
exploitation signs on the lobster trammel net fishery are 
evident [4].

The aims of this study were threefold. First, to assess 
distribution and habitat use of syngnathids in PNIA and 
PNAC  (Additional file  1), each with highly distinctive 
environmental characteristics and vegetal assemblages. 
Second, to characterize syngnathid populations, which 
include the assessment of genetic identification and sta-
ble isotopes analyses. Finally, the unavailability of histori-
cal data for syngnathids in the Iberian Peninsula prevents 
the assessment of population trends. Hence, the third aim 
of this study was the selection of specific sites for further 
monitoring of distribution/abundance and temporal-
seasonal patterns on important biological and ecological 
features (e.g., diet composition, animal migration). The 
results achieved would be valuable for the development 
of further conservation actions in both NPs.
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Results
Habitat characterization in Cíes Archipelago (PNIA)
Soft bottom sediments were mostly coarse sandy 
(569  µm), with 90% sand and a prevalence of a single 
mode (Additional file 2). Muddy sands, with > 20% mud 
(< 63 µm), were only located in the deepest (17.6 m to 
21 m) and distal areas of TR5, in the immediate vicin-
ity of the muddy bottoms characteristics of the cen-
tral part of Ría de Vigo. The presence of two or three 
mode samples in TR2, TR4 and TR3 reflected a mixture 
of particle sizes, including bioclastic gravel (bivalves 
and gastropods shells) and maerl elements. Different 
sedimentary environments (wide variability of textural 
characteristics) were present along some transects (e.g., 
TR3). Syngnathids were mostly sighted in sheltered 
sectors, preferring habitats with medium sands, better 
sorted and lacking mud (Additional file 2).

Similarity of seaweed assemblages was analysed con-
sidering data of 55 species with medium–high abun-
dance (Additional file  2, Additional file  3). Diversity 
(H’) and species richness (S) were particularly low in 
TR1, TR2, TR7 and TR10, especially in spring (Addi-
tional file 2). Seaweed cover increased in summer, espe-
cially in TR8 (633.8%) and TR9 (861.0%), but it was 
noticeable low in TR10 (42% in spring; 107% in sum-
mer) (Additional file 2). PERMANOVA results showed 
significant differences in assemblage structures for 
transects (df = 10; Pseudo-F = 1.3974; P = 0.0308) and 
seasons (df = 1; Pseudo-F = 3.711; P = 0.0031). Those 
differences are reflected in the two-dimensional PCOs 
plot (Fig.  1). Spring (left) and summer (right) samples 
followed a gradient along axis 1 (20.4% of total varia-
tion). Abundance increased in summer for most spe-
cies, especially for Treptacantha baccata, Padina 
pavonica, Corallina officinalis or Codium tomentosum 
(strong negative correlation with PCO1; Spearman cor-
relation > 0.65). Differences between transects were 
explained by axis 2 (18.1% of total variation), reflect-
ing wave exposure. Transects TR1, TR8 and TR9 were 
clearly separated from the others, especially from TR10 
and TR3. These results explained spatial differences 
between transects, with TR9, TR8 and TR7 as the most 
northern sites of Cíes Archipelago, and TR1 located 
in the west side of the southern island. The remain-
ing transects (especially TR10) were located in areas 
less exposed to wave impact and current actions. Vec-
tors overlay in PCO plot indicated that species such as 
T. baccata, P. pavonica or C. tomentosum were more 
abundant on less exposed areas, while Mesophyllum 
expansum, C. officinalis, Plocamium cartilagineum and 
Kallymenia reniformis preferred more wave-exposed 
sites (Spearman correlation > 0.65).

Syngnathids in PNIA and PNAC
In PNIA, two species of syngnathids were identified mor-
phologically and genetically: the long-snouted seahorse 
Hippocampus guttulatus Cuvier, 1829, and the greater 
pipefish Syngnathus acus, Linnaeus 1758. A total of 28 
specimens were sighted in PNIA from 4 to 15  m depth 
(mostly at < 8 m), with six transects providing at least one 
fish (Table 1). None of the individuals marked in spring 
were recaptured in summer. All PCO showed a positive 
correlation of syngnathids with seaweed assemblages on 
transects TR3, TR4, TR5 and especially TR10 (Spear-
man correlation > 0.65) in summer (Additional file  2). 
The highest abundance (0.06–0.13 syngnathids 100 m−2) 
were recorded in mixed (sand-rock) or rocky substrates 
on transects TR3 and TR10 (32 and 43% of total speci-
mens, respectively). Syngnathids were missing in the 
more exposed transects TR1, TR7, TR8 and TR9 (north-
ern and southern areas with rocky substrate and coarse 
sand patches). TR1 was facing SW waves (prevalent com-
ponent during storm winter conditions), while TR7, TR8 
and TR9 were facing N waves (prevalent component dur-
ing storm summer conditions). The most common spe-
cies was S. acus (n = 24), which comprised 86% of total 
fish sighted.

Most collected fishes were large adults, with S. acus 
averaging 31.8 ± 10.0  cm SL (range: 14.8–49.7  cm) and 
H. guttulatus, 22.6 ± 2.0 cm (range: 18.7–22.7 cm). Mean 
weights were 21.9 ± 5.2  g (range: 1.3–67.6  g) in S. acus 
and 22.6 ± 2.0 (range: 14.8–25.8 g) in H. guttulatus.

In S. acus, meristic features were: 20 trunk rings 
(range: 19–20), 42 tail rings (41–44), 12 pectoral fin rays 

Fig. 1 PNIA—Principal coordinates ordination of samples for Transect 
x Season pairwise combinations in seaweed assemblages on spring 
(green) and summer (grey). Overlay vectors are species whose cover 
has a Spearman correlation > 0.65 with any axis
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(9–12), 38 dorsal fin rays (37–41), 3 anal fin rays and 
10 caudal fin rays. Only four seahorses were observed 
(TR10; 8.0–8.5  m depth). The species showed positive 
allometry (b = 3.32) (Additional file  2), and lengths and 
weights in spring and summer did not differ significantly 
(Tukey HSD, n = 23, P = 0.519 for length, P = 0.471 for 
weight). Pregnant males and ovigerous females did not 
differ neither in length (Tukey HSD, n = 20, P = 0.464) 
nor weight (Tukey HSD, n = 20, P = 0.983). Abundance 
declined in summer (25%), when mature individuals 
were not observed. Contrarily, 90% of males and 70% of 
females collected in spring were pregnant (pouch car-
rying fertilized eggs/embryos) or ovigerous (full gonads 
with hydrated eggs), respectively. The minimum length 

recorded was 23.8  cm (8.4  g) in pregnant males and 
25.2 cm (10.7 g) in ovigerous females.

With regard to distribution of total syngnathids (S. acus 
and H. guttulatus) in Cíes Archipelago (PNIA), Maxent 
model achieved an AUC value of 0.98, indicating a very 
good degree of discrimination between the locations 
where the species were present and those where they 
were absent. Figure  2 shows the probability of habitat 
suitability for syngnathids. The model highlights higher 
probabilities of occurrence in a few limited areas (red 
color) on the East coast of the islands. Three of those 
areas (TR 3, TR4-5 and TR10) were selected for further 
monitoring of syngnathids in PNIA (see Discussion). 
The Jackknife test (i.e. variable importance) showed that 

Table 1 PNIA—Syngnathids (Syngnathus acus and Hippocampus guttulatus) captured in spring and summer 2016 surveys

TR transect, SL standard length, W wet weight

*Not captured

Species TR Date Depth (m) SL (cm) W (g) Sex Sexual state Substrate

Spring 2016

S. acus 2 4‑may 15 23.8 8.4 Male Pregnant Gravel

5 5‑may 6 14.8 1.3 Female Sandy

6 5‑may 5.5 44.0 64.7 Female Ovigerous Sandy

6 5‑may 6 34.2 27.2 Female Ovigerous Sandy

10 20‑may 4 32.0 23.2 Male Pregnant Rocky

3 7‑jun 5.5 44.9 66.7 Male Pregnant Sandy‑Rocky

3 7‑jun 5.5 28.9 14.6 Female Ovigerous Sandy‑Rocky

3 7‑jun 6 35.0 25.1 Female Ovigerous Sandy‑Rocky

3 7‑jun 5 31.3 28.6 Male Pregnant Sandy‑Rocky

3 7‑jun 5.5 24.5 6.2 Male Pregnant Sandy‑Rocky

3 7‑jun 5.5 25.2 10.6 Female Ovigerous Sandy‑Rocky

3 7‑jun 6 34.3 25.9 Female Ovigerous Sandy‑Rocky

3 7‑jun 6 15.0 – Female Sandy‑Rocky

10 8‑jun 4 49.7 62.5 Female Ovigerous Rocky

10 8‑jun 4 25.5 16.6 Male Pregnant Rocky

10 9‑jun 7 20.5 4.1 Female Sandy

10 9‑jun 7.5 33.0 21.4 Male Pregnant Sandy

10 9‑jun 5 45.6 67.6 Male Pregnant Sandy‑Rocky

H. guttulatus 10 9‑jun 8.5 22.7 25.8 Female Rocky

10 9‑jun 8.5 21.8 25.6 Male Rocky

Summer 2016

S. acus 2* 1‑sep – – – –

3 6‑sep 6 40.0 50.7 Female Sandy

4 6‑sep 6.5 30.8 21.6 Male Rocky

4 6‑sep 4 17.6 3.1 Female Sandy

10 7‑sep 7.5 39.0 40.4 Female Sandy‑Rocky

10 7‑sep 7.5 42.9 58.6 Male Sandy‑Rocky

H. guttulatus 10 7‑sep 8 19.5 21.3 Male Rocky

10 7‑sep 8 18.3 14.8 Female Rocky
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Fig. 2 PNIA—Maxent habitat suitability map for syngnathids (pooled specimens of S. acus and H. guttulatus) in Cíes Archipelago. Environmental 
suitability is depicted using a color gradient from blue (low environmental suitability) to red (high suitability). The bottom panel shows the results of 
the jackknife test of variable importance training data
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bathymetry and wave exposure were the most influential 
variables (Fig. 2).

In PNAC, four pipefish species were morphologically 
identified but seahorses were lacking. Only three speci-
mens (one Syngnathus acus, two Nerophis maculatus 
Rafinesque, 1810) were sighted on 37 visual censuses 
and 15 specimens (10 Syngnathus abaster Risso, 1827, 
two Syngnathus typhle Linnaeus, 1758, two Syngnathus 
acus and, one Nerophis maculatus) were captured in 
seven fishing sets (Table 2). All specimens were captured 
at 11–21  m depth, except for two N. maculatus (< 8  m 
depth). Occurrences in C. nodosa meadows (Es Burri) 
by fishing sampling and visual census were similar (1.3 
and 1.2 syngnathids 100 m−2, respectively), but two-folds 
higher than by visual censuses in P. oceanica meadows 
and macroalgal beds in rocky substrates (0.03 individuals 
per 100 m−2).

Genetic identification in syngnathids
Genetic samples from 33 syngnathid specimens morpho-
logically identified in PNIA (22 S. acus and 4 H. guttula-
tus) and PNAC (6 S. abaster and 1  N. maculatus) were 
assayed. The marker cytochrome b (Cytb) was used to 
support the molecular identification of seahorse and 
pipefish species [100, 101]. The ribosomal mitochon-
drial marker 16S rDNA, which also supported molecu-
lar phylogeny in syngnathids [100], was assayed in the 

single sample of N. maculatus in which Cytb could not 
be amplified.

Length for Cytb sequences was 1149 base pairs (bp) in 
S. acus. In PNIA, nine Cytb haplotypes (12 variable sites) 
were detected (Additional file 2) and identified as S. acus 
(identity > 99.5% and e-value = 0.0), one of them (Cytb_
SA13; GenBank Accession Number: MW080699) iden-
tical to the reference used for this species (AF356040; 
[100]. Haplotypes Cytb_SA01 (MW080694) and Cytb_
SA02 (MW080695) were the most abundant (nine and 
six individuals, respectively), whereas the rest were only 
found in one individual (Cytb_SA07: MW080696,Cytb_
SA10: MW080697; Cytb_SA11: MW080698; Cytb_SA14: 
MW080700; Cytb_SA16: MW080701; Cytb_SA17: 
MW080702), resulting in a haplotype diversity (h) of 
0.7792 in the PNIA population sampled.

The four seahorse specimens studied were identified 
as H. guttulatus. Three Cytb haplotypes (564  bp) were 
detected (Cytb_HG01-03), comprising two variable sites 
(five when the reference sequence was included) (Addi-
tional file  2). Cytb_HG01, Cytb_HG02 and Cytb_HG03 
were identical to H. guttulatus sequences reported 
across European populations [101]: KM061961 (GB10), 
KM061963 (GB7) and KM061980 (GB23), respec-
tively. The most abundant H. guttulatus haplotype was 
Cytb_HG03 (two individuals), providing an h estimate of 
0.8333.

Table 2 PNAC: Syngnathids captured in 2016 surveys and sampling information

VC visual census, MC manual capture, TN Trawl net (gánguil), SL standard length, nm not measured

Species Site Date Depth (m) SL (cm) Benthic community Sampling method

Syngnathus acus Es Port 21 April 13.5–15 27.0 Cymodocea nodosa VC, MC

Es Burri 6 Sept 11–13 11.5 Cymodocea nodosa TN

Es Burri 8 Sept 13–15 4.4 Cymodocea nodosa TN

Syngnathus abaster Es Burri 6 Sept 11–13 7.6 Cymodocea nodosa TN

Es Burri 6 Sept 11–13 7.0 Cymodocea nodosa TN

Es Burri 8 Sept 13–15 9.0 Cymodocea nodosa TN

Es Burri 8 Sept 13–15 4.1 Cymodocea nodosa TN

Es Burri 1 Dec 11–13 10.3 Cymodocea nodosa TN

Es Burri 1 Dec 11–13 8.1 Cymodocea nodosa TN

Es Burri 1 Dec 11–13 9.9 Cymodocea nodosa TN

Es Burri 2 Dec 13–15 8.8 Cymodocea nodosa TN

Es Burri 2 Dec 13–15 9.8 Cymodocea nodosa TN

Es Burri 2 Dec 13–15 7.6 Cymodocea nodosa TN

Syngnatus typhle Es Burri 8 Sept 13–15 6.4 Cymodocea nodosa TN

Es Burri 8 Sept 13–15 6.4 Cymodocea nodosa TN

Nerophis maculatus Es Burri 23 April 6–8 nm Posidonia oceanica VC, MC

Es Burri 8 Sept 13–15 10.0 Cymodocea nodosa TN

Es Burri 9 Sept 19–20 12.5 Cymodocea nodosa VC, MC

Santa María 1 Dec 4.4–6 nm Posidonia oceanica MC (outside VC)
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For six specimens morphologically identified as S. 
abaster, two Cytb haplotypes were detected (Cytb_
SAb01: MW080703 and Cytb_SAb02: MW080704) 
in four and two fish, respectively (h = 0.5333); show-
ing 139 variable sites respect to the S. acus sequence 
(AF356040; Additional file  2). These two Cytb_SAb 
haplotypes showed a higher sequence identity with a S. 
typhle reference haplotype (JX228148; identities > 98%) 
than with other Cytb sequences of S. abaster (JX228141; 
identities ≤ 95%) available at GenBank database. Thus, 
net genetic distances between the groups formed by the 
Cytb_SAb haplotypes and the S. typhle haplotypes avail-
able at the GenBank (0.0140 ± 0.0033) was lower than 
the distance between the groups formed by the PNAC 
Cytb_SAb haplotypes and the S. abaster haplotypes 
from GenBank (0.0478 ± 0.0061). Phylogenetic analysis 
also corroborated these results. Thus the two Cytb_SAb 
haplotypes from PNAC were grouped in a monophy-
letic cluster clearly differentiated from GenBank Cytb 
sequences of S. abaster [58] and other pipefish species 
distributed in Mediterranean areas, more closely related 
to S. typhle and S. taenionatus than to S. acus and S. ros-
tellatus (Fig. 3).

Failed amplification of Cytb was observed in the single 
genetic sample studied of N. maculatus, but a novel 16S 
rDNA haplotype of 521 pb (16S_NM01: MW080705) was 

detected for this pipefish, with 48 variable sites respect 
to a related reference species (N. ophidion; AF354994), in 
absence of available GenBank data for N. maculatus.

Stable isotope signatures in syngnathids
In PNIA, H. guttulatus and S. acus (Table 3) differed sig-
nificantly for δ13C (ANOVA,  F1,21 = 0.492, P = 0.026) but 
not for δ15N  (F1,21 = 5.744; P = 0.491). Isotopic values in S. 
acus ranged from -16.6 to -14.7 ‰ for δ13C (-16.1 ± 0.4) 
and from 9.1 to 11.9 ‰ for δ15N (10.8 ± 0.7), being cor-
related with fish size (Additional file 2). Season-sex com-
parisons showed inter-seasonal differences only for δ13C, 
with spring values (− 16.2 ± 0.3 ‰) lower than in summer 
(−  15.6 ± 0.5 ‰) (ANOVA,  F1,15 = 9.52, P = 0.008), and 
lower values in males (−  16.2 ± 0.2 ‰) than in females 
(−  15.9 ± 0.6 ‰) (ANOVA,  F1,15 = 6.65, P = 0.021). Sex-
maturity comparisons showed similar δ13C values for 
mature (−  16.2 ± 0.3 ‰) and immature (15.9 ± 0.6 ‰) 
fishes (ANOVA,  F1,13 = 2.88, P = 0.104) but lower δ15N 
signals in the later (11.1 ± 0.5 ‰ for mature, 10.4 ± 0.8 ‰ 
for immature) (ANOVA,  F1,13 = 2.79, P = 0.014).

SIA in PNAC was only performed on a reduced num-
ber of S. abaster (n = 5; 7.6–10.3  cm length). Isotopic 
values were not correlated with fish size (Spearman cor-
relation = −  0.3 and 0.1 for  N15 and  C13 respectively), 

Fig. 3 NJ tree (p‑distance) for the Syngnathus genus. “SA” and “SAb” show S. acus and S. abaster haplotypes, respectively. Numbers on branches 
indicate the bootstrap value for their confidence (1000 replicates). GenBank reference sequences for S. abaster (AF356060_S23; JX228141_SCA1), S. 
typhle (AF356042_S4; AF356059_S22; JX228148_KLU1), S. acus (AF356040), S. rostellatus (AF356041_S3), S. taenionatus (AF356061_S24; JX228146_
VEN89) and S. exilis (JF273424_S64) are also included. Following Mwale et al. [58], S. exilis was used as outgroup
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ranging from − 15.2 to − 19.6 ‰ for δ13C (− 16.4 ± 1.8) 
and from 6.5 to 7.3 ‰ for δ15N (6.9 ± 0.3).

Discussion
Diversity, distribution and habitat of syngnathids
PNIA and PNAC differed in habitat characteristics and 
syngnathids occurrence. Sixteen syngnathid species are 
known in Europe [20] but only five were identified in 
our study. Two species were sighted in PNIA: the sea-
horse H. guttulatus (very low abundance) and the pipe-
fish S. acus (Highly dominant). Most specimens sampled 
from PNIA were very large, lacking young or small sized 
fishes. In PNAC, seahorses were absent and four pipe-
fish species (S. abaster, S. acus, S. typhle, N. maculatus) 
were recorded, comprising mostly small specimens. Syn-
gnathids were considered uncommon in PNAC, though 
occurrences of S. acus, S. typhle, H. guttulatus and H. 
hippocampus were known [76]. Our results indicate low 
pipefish occurrences, with higher abundance in Es Burri 
Bay, particularly for S. abaster. This species is also the 
most common in other nearby areas (Mar Menor, SW 
Spain) [21]. H. guttulatus and N. maculatus are classi-
fied as Data Deficient, whereas the others are considered 
Least Concern [42]. In Balearic Islands, S. abaster is Vul-
nerable, S. typhle is Near Threatened, and S. acus and N. 
maculatus are Least Concern [31].

High congruence between genetic and morphological 
data for species identification was observed, except for 
S. abaster in PNAC respect to previous mitochondrial 
sequences for this species. In PNIA, eight novel Cytb 
haplotypes were found for S. acus, but also common 

sequence variants respect to Northern and Southern 
European populations of S. acus (1 haplotype) and H. gut-
tulatus (3 haplotypes), respectively [100, 101]. Available 
genetic sampling in PNAC allowed detecting novel hap-
lotypes for a small number of pipefish morphologically 
identified as N. maculatus (one 16S rDNA haplotype in 
a single specimen) and S. abaster (two Cytb haplotypes 
for six individuals). These two new S. abaster Cytb haplo-
types detected in PNAC clustered in a single monophyl-
etic group, supporting the morphological identification, 
but separately from previous Cytb sequences available for 
voucher samples of the same species from Italian coasts 
[58], and also from other congeneric pipefish distributed 
in the Mediterranean Sea (S. acus, S. rostellatus, S. tae-
nionotus, S. typhle). Morphological discrimination from 
other possible species like S. schmidti and S. phlegon 
was also stablished based on non-overlapping ranges for 
meristic traits (http://speci es-ident ifica tion.org/index 
.php,[37], in the absence of available Cytb data to be 
compared in these species. Some sample misidentifica-
tion during in  situ surveys could be possible, according 
to confuse discriminations previously reported for some 
Mediterranean Syngnathus species, like S. rostellatus 
[37]. However, the combined morphological and genetic 
results in our study are congruent with previous data 
based on different mitochondrial markers, which support 
that S. abaster does not constitute a monophyletic taxon 
[81]. Indeed, highly divergent S. abaster mitochondrial 
lineages were described in the westernmost Mediterra-
nean Sea respect to more eastern Italian coasts, which 
may be acknowledged as distinct related species [81]. The 

Table 3 PNIA—Mean (± sd) δ13C and δ15N values in H. guttulatus and S. acus sampled in spring and summer 2016 in Cíes 
Archipelago

δ13C δ15N

Species Season Mean ± sd Max Min n Mean ± sd Max Min n

H. guttulatus Pooled − 16.6 ± 0.2 − 16.3 − 16.8 4 11.0 ± 0.4 11.6 10.6 4

Spring − 16.5 ± 0.2 − 16.3 − 16.6 2 11.2 ± 0.5 11.6 10.9 2

Summer − 16.7 ± 0.2 − 16.5 − 16.8 2 10.8 ± 0.4 11.1 10.6 2

♂ Spring − 16.3 ± 0.0 − 16.3 − 16.3 1 11.6 ± 0.0 11.6 11.6 1

♂ Summer − 16.8 ± 0.0 − 16.8 − 16.8 1 11.1 ± 0.0 11.1 11.1 1

♀ Spring − 16.6 ± 0.0 − 16.6 − 16.6 1 10.9 ± 0.0 10.9 10.9 1

♀ Summer − 16.5 ± 0.0 − 16.5 − 16.5 1 10.6 ± 0.0 10.6 10.6 1

S. acus Pooled − 16.1 ± 0.4 − 14.7 − 16.6 21 10.8 ± 0.7 11.9 9.1 21

Spring − 16.2 ± 0.3 − 15.8 − 16.6 16 11.0 ± 0.7 11.9 9.8 16

Summer − 15.6 ± 0.5 − 14.7 − 16.1 5 10.3 ± 0.8 11.2 9.1 5

♂ Spring − 16.2 ± 0.3 − 15.9 − 16.6 8 11.1 ± 0.6 11.9 10.0 8

♂ Summer − 16.0 ± 0.1 − 16.0 − 16.1 2 10.1 ± 1.5 11.2 9.1 2

♀ Spring − 16.2 ± 0.3 − 15.8 − 16.6 8 10.9 ± 0.5 11.7 9.8 8

♀ Summer − 15.3 ± 0.5 − 14.7 − 15.7 3 10.3 ± 0.2 10.5 10.2 3

http://species-identification.org/index.php
http://species-identification.org/index.php
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Cytb haplotypes in this study confirmed a strong differen-
tiation between the Italian S. abaster lineage, represented 
by reference samples reported by Mwale et  al. [58] and 
the S. abaster haplotypes from PNAC, in Balearic Islands, 
which has been proposed to be part of the westernmost 
group along with adjacent sectors in Sardinian Sea [81]. 
Genetically divergent populations in species associated 
with long term isolation and restricted potential for dis-
persal has been pointed in different species inhabiting 
marine coastal habitats, including syngnathids, such as 
reported for the north-western Pacific messmate pipefish 
[81, 86].

Differences in diversity, distribution and abundance 
of syngnathids are related to habitat characteristics [62, 
96, 101]. Many species are algae and seagrass residents 
closely associated with specific habitats that best ena-
ble camouflage [26, 45, 54, 82, 102]. In PNIA, seaweed 
communities are structurally complex and patchily dis-
tributed on mixed or rocky substrates [66, 69]. Most 
syngnathids in PNIA were located in semi-exposed or 
sheltered habitats on areas that showed the highest simi-
larity regarding seaweed communities. Those areas were 
clearly identified in the estimated distribution map, and 
include rocky and sandy-gravel substrates, maerl beds as 
well as seaweed communities enhancing protection and 
habitat suitability for syngnathids. Transect TR10 was 
particularly interesting since it was located in the most 
sheltered area and the unique site with seahorse occur-
rences. As for S. acus in PNIA, dominant pipefish species 
form monospecific populations [54, 96] but many Euro-
pean pipefish species may vary their habitat occupancy 
and overlap a great deal [96], as shown in PNAC. Sea-
grass meadows are lacking in PNIA [29, 30] but PNAC 
seabed was partially covered by large extensions of sea-
grass meadows (P. oceanica and C. nodosa), which is a 
typical cover enhancing the occurrence of syngnathids 
in some Mediterranean areas [99]. That is the case of S. 
typhle, a pipefish that preferentially displays an upright 
position in seagrasses with narrow leaves (e.g. Zostera) 
[84, 96]. Its absence in PNIA could rely on the lack of sea-
grass meadows, even though this species may adapt to 
different types of habitats [88]. Appropriate habitats for 
syngnathids may not be determined simply by the pres-
ence or absence of vegetation but also by the prevalence 
of seaweed communities that best enable them to remain 
inconspicuous to predators [45]. All pipefish in PNAC 
were collected in C. nodosa and P. oceanica meadows, 
suggesting that macroalgal beds are less preferred than 
seagrass meadows.

In PNAC, the results showed unexpected low pipe-
fish abundance, which agrees with previous observa-
tions in similar habitats [96]. The highest abundance was 
recorded in C. nodosa meadows in Es Burri Bay (1.2–1.3 

syngnathids 100  m−2). Visual censuses of syngnathids 
in dense meadows are difficult due to fish crypsis. Cap-
tures with the first visual censuses from 2.8 to 21.5  m 
depth resulted substantially improved with gánguil gear 
operating at 11–16.5  m depth. However, global spe-
cies richness and abundance in PNAC could have been 
underestimated. European syngnathids usually inhabit 
brackish areas (< 10  m depth) but C. nodosa meadows 
are present at deeper depths (11–13 m depth) in Es Burri 
Bay. The dominant pipefish S. abaster in PNAC com-
monly inhabits at 0.5–5 m depth [20, 21], which is clearly 
above the depths imposed by gear, site and fishing per-
missions in gánguil sampling.

Changes in macroalgal assemblages in PNIA are occur-
ring since 2012. Abundance of Treptacantha baccata, T. 
usneoides and Saccorhiza polyschides decrease, while turf 
(Halopteris scoparia, Chondria coerulescens or Coral-
lina spp.), and non-native (Codium fragile, Asparagopsis 
armata) species increase  [12]. The progressive habitat 
loss and the increase in less optimal seaweed species can 
also cause dramatic changes in resident fauna and com-
munity composition [89, 90]. Most syngnathids from 
PNIA were captured in shallow waters (< 10  m depth) 
on sandy substrates with low proportions of gravel, some 
mud and preferably nearby rocky outcrops that pro-
vides better refuge and protection (TR3, TR10). Coastal 
sheltered areas protected from SW (TR1) and N waves 
(TR7–TR9) were preferred but areas with high bottom 
mobility (sand waves and megarriples 3D) were avoided 
(TR2 and TR4). Some syngnathid species appear to be 
generalist considering distribution patterns and algal 
community characteristics whereas others prefer certain 
seaweed forms and feed on specific sources [54, 71]. Dis-
tribution patterns can be partially explained by the expo-
sure to waves and open sea [54, 85] which has a great 
impact on seaweed cover. However, S. acus was also able 
to inhabit shallow and rocky areas (TR3) near the shore 
wave-breaking zone submitted to a certain degree of 
water agitation.

Due to the high dominance of S. acus in PNIA, the spe-
cies deserves special consideration. The length–weight 
relationship was similar to that in the western Black Sea 
[105]. The large specimens (31.8 ± 10.0 cm SL) in PNIA 
was noteworthy compared to PNAC and other Medi-
terranean populations but did not differ from others in 
eelgrass meadows from Northern Europe [20, 35, 36, 96, 
105]. However, the absence of small-medium sized speci-
mens in Cíes Archipelago raises the questions of whether 
there is a resident population of adults (with dispersal of 
small individuals towards other areas) and/or whether 
the fishes migrate seasonally to Cíes from nearby areas 
only for breeding. None of the specimens marked in 
spring were recaptured in summer, suggesting that they 
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might not be so site faithful as reported [96]. A com-
parative isotopic study and further genetic analysis with 
informative markers representative of specimens from 
nearby areas would clarify that dilemma.

Breeding season
Syngnathids may change habitat and prey preferences 
as they grow [21, 29, 47, 64]. The absence of small and 
medium-sized immature specimens in Cíes suggests that 
young fishes prefer less exposed nearby sites, and/or that 
small juveniles are dispersed by currents to other areas. 
In S. acus, sexual maturity in the Aegean Sea is reached at 
lengths of 7.7 cm in females and 8.1 cm in males [36]. The 
smallest S. acus captured in PNIA measured 14.8 cm TL.

In our study, mature specimens of S. acus were pre-
sent in early May–June but not in early September. These 
findings agree with the reported breeding season for the 
species (January to August), with peaks of hydrated-
oocyte carrying females and pregnant males in March–
July depending on latitude and temperature [5, 38, 100]. 
In Cíes Archipelago, temperatures raised from 14.1 in 
May to 18.1  °C in June, and dropped to 16.3  °C in Sep-
tember. Hence, the breeding season in syngnathids from 
PNIA seems to be limited by water temperature [56]. In 
PNAC, the small number of pipefish and their small size 
prevents from concluding anything on this topic.

Isotopic signatures in syngnathids
The extreme scarcity of pipefish in PNAC prevents from 
concluding remarks on isotopic patterns and trophic 
characteristics of pipefish. Pipefish from PNAC showed 
lower isotopic signals (particularly for δ15N) than in 
PNIA, which agrees with some isotopic values in Medi-
terranean zooplankton [80] but not with those in other 
Mediterranean areas [99]. Disagreements might be 
driven by differences in resource exploitation and 
resource partitioning (especially organic matter sources 
at the base of the food web) depending on the study site.

The pelagic food web from coastal areas (e.g., Arcade 
cove) in Galicia are typically enriched in δ13C and δ15N 
compared to more oceanic areas (e.g., Cíes Archipelago) 
[8]. Arcade cove is located in San Simón Bay on the inner 
part of Ría de Vigo (30 km from Cíes Archipelago). The 
cove is a shallow mesotidal Zostera meadow with low 
hydrodynamic conditions but receiving freshwater inputs 
[2]. The population of S. acus inhabiting Arcade cove 
markedly differs in size and isotopic signals from that 
in Cíes (Fig.  4). Habitat and trophic web characteristics 
in both areas also differ considerably [24]. The former 
receives anthropogenic wastewater inputs, being charac-
terized by a complex trophic web, and a locally important 
microphytobenthos production available to primary con-
sumers through resuspension. The cove is a community 

with a high diversity of organic matter sources but ter-
restrial particulate organic matter does not seem to con-
tribute significantly to consumers’ most plausible diets 
[24]. Wastewater discharges would increase δ15N values 
in Arcade cove as shown in other similar areas [8]. Sur-
face dissolved nitrogen concentrations (DIN) and iso-
topic discrimination for δ15N in Ría de Vigo are typically 
higher from October to April, decreasing from May to 
September [60]. Hence, higher δ15N signatures in spring–
summer would be expected [78, 79]. The opposite trend 
would occur in δ13C signatures [79]. Both trends were 
reflected in isotopic signals of S. acus in Arcade cove 
(Fig. 5) but not in those from Cíes, with higher oceanic 
influence and more stable conditions. The higher δ15N 
signatures in Arcade cove were reflected in isotopic sig-
natures of the whole web trophic chain [24], including S. 
acus specimens (13.3 ± 0.5 ‰; range: 12.0–14.3 ‰) [71] 
(Fig.  5). Considering a trophic enrichment factor of 4.1 

Fig. 4 Scatter plot of stable isotopes‑length relationships in 
Syngnathus acus captured in spring and summer 2016 in Cíes 
Archipelago (PNIA). Data for Arcade Cove pipefish (M. Planas, 
unpublished observations) and for S. abaster from PNAC (December 
2016) are provided for comparative purposes. Arcade Cove 
specimens were collected on spring and summer 2016
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for δ15N [71] and δ15N values of filter-feeders in Arcade 
cove (8.98 ‰ in Mytilus galloprovincialis) [24] and in 
Cíes (5.13 ‰ in Musculus costulatus) [44] as isotopic 
baselines [73], the resulting trophic levels for S. acus in 
Arcade and Cíes were 3.16 and 3.83, respectively. Such 
trophic level dissimilarities imply differences in resources 
exploitation as the result of disparities in trophic web 
composition and structure.

Hypothesizing migratory events in PNIA
Isotopic profiles in tissues has proven useful to build 
isoscapes and infer geographic origins and spatial con-
nections [41, 104], which was not the scope of our study. 
However, some hypothesis can be provided on potential 
migrations in S. acus on Cíes Archipelago. Isotopic sig-
nals in fin tissues of syngnathids reflect the isotopic pro-
file of the diet ingested 2–3  months earlier (M. Planas, 
unpublished observations). Assuming the existence of 
winter-spring migratory events from areas nearby Cíes, 
fin isotopic signals in pipefish captured in Cíes in summer 
would reflect those of the diet ingested on a nearby area 
in spring. However, that assumption is not supported by 
actual differences in δ15N signatures (2.7 ‰) between 
specimens from Arcade in spring (13.8 ± 0.4 ‰; range: 
13.2–14.5) and those from Cíes in summer (10.1 ± 1.5 
‰) (Fig. 5). The sharp drop in abundances from late sum-
mer [44] and in the absence of more data, we hypothesize 
that spring–summer populations of S. acus in Cíes Archi-
pelago are mainly founded by large resident specimens, 
undergoing migration into adjacent habitats to avoid 
harsh autumn–winter conditions as reported in other 

syngnathids [26, 49, 54, 56, 96]. Subsequently, the species 
would return to Cíes in early spring for breeding when 
males begin developing their brood structures and after 
plant-cover recovery.

Directions for research and conservation
There is increasing public awareness of the challenges of 
marine biodiversity from habitat destruction, over-fish-
ing and development. Efforts are needed to protect and 
value marine biodiversity, especially species and com-
munities that require relatively large areas of undisturbed 
habitat. NPs are areas set aside for the preservation of the 
natural environment to protect natural biodiversity along 
with its underlying ecological structure and supporting 
environmental processes, and to promote education and 
recreation (IUCN).

A lack of information on syngnathid populations has 
prevented conservation actions from being conducted 
in Spanish NPs. Further studies should provide more 
knowledge on those populations in order to undertake 
specific conservation actions PNIA and PNAC differ in 
regulatory and environmental protections, and biota and 
abiotic components, which determine population char-
acteristics of inhabiting syngnathids. Both high quality 
environments are tourist destinations supporting at least 
one jetty, bollards where ships can tie up under permis-
sion, and an internationally recognized wildlife. Due to 
the lack of previous studies, the trend of syngnathid pop-
ulations is unknown and their future is uncertain. The 
main concern is the human and fishing pressure, par-
ticularly in PNIA. Current diversity and abundances of 
syngnathids in marine Spanish NPs are extremely scarce, 
with only five species identified, and there is the need of 
protecting those limited populations. Our recommenda-
tions of potential management and research priorities are 
as follows:

– The present study provided first data on syngnathid 
populations in Spanish NPs. The availability of his-
torical data and a continuous monitoring of syng-
nathid populations and temporal-seasonal variabil-
ity are imperative for trends assessment. Hence, an 
objective of this study was the selection of specific 
sites for further monitoring (Additional file  1). The 
higher proportion of species/abundances and the 
distribution map (Maxent) in PNIA indicate that 
further monitoring should focus on south-eastern-
PNIA (TR3 and TR4TR5) and particularly in Rodas 
Bay (TR10). Rodas Bay is also interesting from a con-
servation point of view since it is also a preferential 
habitat for small Octopus vulgaris [32]. In PNAC, 
considering the benthic communities and the higher 
abundance of pipefish compared to other locations, 

Fig. 5 Schematic representation of the relationships between 
isotopic values (δ13C and δ15N and Syngnathus acus from Cíes 
Archipelago (present study) and Arcade Cove (M. Planas, unpublished 
observations). Samples collected in spring and summer 2016. 
Similarity groups (polygons) from hierarchical clustering (Ward’s 
method) are shown
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Es Burri Bay has the greatest interest value for further 
conservation actions and monitoring. Studies not 
based on long-term monitoring may lead to errone-
ous or incomplete assumptions. The limited captures 
of fishes along the present study and the lack of data 
on pivotal subjects such as bionomic data or con-
nectivity between potential analysis units impeded 
the use of conservation planning tools. However, it 
is expected that further monitoring will provide the 
necessary captures and data to allow more accurate 
distribution maps for syngnathids in both NPs and 
the preparation of a reserve design in order to rep-
rioritize the areas for conservation and management 
actions, zoning multiple-use and minimising conflict 
of use. The future study will provide valuable infor-
mation on the assessment of species’ sensitivity to 
habitat disturbances and climate warming [23], and 
on optimal conditions for captive breeding and fur-
ther population reinforcement for the most endan-
gered species if necessary.

– Some of the main questions arisen from the study 
is whether Cíes Archipelago should be considered a 
breeding sanctuary for S. acus. Understanding fish 
movement patterns and migrations from/to other 
nearby areas is another pivotal topic than needs 
addressing. For that, further isotopic and genetic 
information, and acoustic telemetric studies in speci-
mens tagged with transmitters would provide valu-
able information to undertake further conservation 
actions [95].

– The management of vessel transits to protect sensible 
areas against habitat loss (marine flora communities) 
and to mitigate anthropogenic sound is necessary 
[55]. Long-term soundscape monitoring and more 
restricted vessel anchorage conditions for resource 
management [40] are recommended in Rodas Bay 
(TR10 in PNIA), which supports a high density of 
vessel traffic during the touristic seasons. Seagrass 
meadows appear as essential communities to main-
tain syngnathid populations in PNAC as all fishes 
were captured there. Damage to seagrass meadows 
by anchoring of recreational boats in Es Burri Bay 
might compromise syngnathid populations in PNAC.

Conclusions
This is the first multidisciplinary study of syngnathid 
populations in Spanish coasts, specifically in the two 
marine Spanish NPs. It will contribute to the knowl-
edge of syngnathid populations, leading to more 
informed and efficient management of both NPs. Spe-
cies diversity, abundance, habitat preference, and iso-
topic signatures differed in both NPs, depending on 

habitat characteristics. Syngnathids preferred shel-
tered macroalgal assemblages in PNIA and Cymodo-
cea meadows in PNAC. Our results seem to indicate 
that PNIA is a breeding sanctuary for S. acus, which 
migrate seasonally. Genetic markers agreed with mer-
istic characteristics, except for S. abaster in PNAC, 
suggesting the presence of a divergent mitochondrial 
lineage within a polyphyletic S. abaster species com-
plex, and the need of further genetic and morphologi-
cal research to clarify its taxonomic status respect to 
other Mediterranean populations and the conserva-
tion consequences. Preferential sites for future moni-
toring of syngnathid populations in both NPs, some 
actions to undertake for conservation purposes and 
further research priorities are proposed. Syngnathids, 
particularly seahorses, are flagship species attract-
ing the attention of citizens. Efficient further actions 
will enhance public engagement with marine biodiver-
sity, resulting also in social, economic and wellbeing 
profits.

Methods
Study areas
The study was carried out in (a) Cíes Archipelago (42°13′ 
N, 8°54′ W), in Atlantic Islands National Park (PNIA), 
located on the outer area of the Ría de Vigo (NW Iberian 
Peninsula) (Fig. 6), and (b) Cabrera Archipelago National 
Park (PNAC) (39°08′ N, 2°56′ W), in the western Medi-
terranean (Balearic Islands) (Fig. 7).

The study in PNIA was conducted in Cíes Archi-
pelago, comprising three islands and various islets. 
PNIA was declared Nature Reserve in 1980 and Spanish 
National Park in 2002. The NP is located at the north-
ern limit of the eastern boundary upwelling system off 
NW Africa and SW Europe. Northerly winds induce 
coastal upwelling in this region during most of spring 
and summer [28] and colder nutrient-rich subsurface 
water known as Eastern North Atlantic Central Water 
(ENACW) inside the estuaries [1, 60]. Cíes Archipel-
ago was declared Natural Park, Special Protection Area 
(SPA), Site of Community Importance (SCI), OSPAR 
area, and UNESCO World Heritage candidate [91]. Sea-
water temperature is homogeneous in winter (13–16 °C) 
and stratified in summer (12–18  °C) due to the warm-
ing of upper layers. Surface water temperature typically 
ranges from 13.4 to 18.7  °C in the southern coast and 
from 13.4 to 18.0 °C in the northern coast [75].

In PNAC, oceanographic data indicate stratification of 
summer water column, horizontal distribution of water 
masses and hydrodynamic features linked with Mediter-
ranean seasonality [14]. Waters up to 100–150 m depth 
are highly influenced by Atlantic Ocean water enter-
ing the Mediterranean through the Gibraltar Strait. Sea 
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Fig. 6 PNIA—Study area and transects (red lines; TR1 to TR10) surveyed for syngnathids in Cíes Archipelago (Galicia, NW Iberian Peninsula). 
Transects TR2‑TR5 included rocky outcrops and sandy substrates, but resolution in the map at the presented scale do not show the rocky outcrops. 
We acknowledge the information provided by OAPN on GIS layers
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surface temperature ranges between 14.6 °C in winter and 
27.5  °C in summer [6]. Coastal waters are oligotrophic 
due to low concentrations of dissolved inorganic nutri-
ents and chlorophyll [98] and light attenuation coefficient 

is extremely low. Depth and hydrodynamics are the dom-
inant abiotic factors that affect habitat distribution and 
vary among sites throughout the archipelago [6].

Fig. 7 PNAC—Study area and surveyed sites for syngnathids in Cabrera Archipelago (Balearic Islands, West Mediterranean). Upper: Presences and 
absences of syngnathids. Below: Capture sites in Cabrera Island. We acknowledge the information provided by OAPN on GIS layers
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Swept sites
Based on previous knowledge (seaweed cover, substrate 
characteristics and exposure level to open water), ten 
subtidal transects (TR1 to TR10) were selected along 
the western coast of Cíes Archipelago in PNIA (Fig.  6; 
Additional file 1), and visited in spring and summer 2016 
(two visual censuses per site and season) to obtain an 
overview of habitat characteristics and spatial distribu-
tion of syngnathids. Transects were positioned parallel 
or perpendicular to the coastline (150 to 700  m length; 
3–20  m depth) on rocky bottoms often interrupted by 
sandy patches. Two pairs of divers conducted 40 diurnal 
standard underwater visual census (UVC) (50  min per 
survey; 160 diving hours) along the East coast, cover-
ing a total surface of 8.22 ha (10 transects, 5 m wide). All 
syngnathids sighted were recorded and captured by the 
divers searching adjacent (belt transects) and separated 
by the maximum distance allowed for horizontal visibility 
(commonly 2.5 m). One pair of divers also recorded the 
characteristics (species, seaweed cover) of seaweed com-
munities, and the other pair sampled the sediment.

Average temperatures were calculated using data of the 
Galician Oceanographic Network (MeteoGalicia data-
base; www.meteo galic ia.gal) from a buoy located in the 
southern area of Cíes Islands (42°10.691′ N, 8°53′589 W), 
recording average daily temperatures at 6 m depth. Sur-
vey water temperatures were calculated as the average 
temperature for the period comprising one week before 
and after the sampling day.

Soft bottom substrates were found among rocky out-
crops or in the edge of rocky reefs. To characterize sedi-
ments of the swept area in PNIA, the uppermost 2  cm 
of sediment were underwater manually collected using 
plastic pots along each transect and considering changes 
in bottom characteristics. Through and crest zones were 
also sampled when bedforms were present. A total of 76 
sediment samples was collected in spring (52) and sum-
mer (24), and conserved at 4  °C for further textural and 
compositional analysis.

PNAC includes a main island (Cabrera) and a group 
of four minor islands and several islets. Eleven subtidal 
sites (TR1 to TR11) including the main shallow benthic 
habitats present in PNAC were visited from 21st April 
to 1st December 2016 (17–26  °C) throughout the coast 
of Cabrera and Conillera islands (Fig. 7) for an overview 
of syngnathids distribution. We conducted 37 surveys 
using UVC (50 m length × 5 m wide; 60–80 min per dive; 
at least two visual censuses per site). A total surface of 
0.925 ha was surveyed covering a depth gradient from 2.8 
to 21.5  m. UVC were performed on Posidonia oceanica 
meadows, Cymodocea nodosa meadows, photophilic 
macroalgal beds on rocky substratum and mixed habi-
tats formed by these communities. Two pairs of divers 

participated in each survey, recording and capturing all 
syngnathids sighted. Depth, water temperature, position 
and habitat type (substrate, benthic community) were 
annotated for each fish captured.

Due to the low number of syngnathids encountered 
with UVC in PNAC, a small trawl net called gánguil (tra-
ditional gear for small crustaceans catching) was assayed 
on C. nodosa meadows. The gear has a rolling stainless 
steel cylinder incorporated in the bottom of the mouth 
for protecting P. oceanica and C. nodosa leaves from 
snagging and tearing while operating. The beam trawl 
was 3 m long and it had a 0.8 m mouth aperture with 1.2 
 cm2 mesh size [15]. To avoid damage of fan mussel, Pinna 
nobilis, populations while sampling, PNAC authority 
only allowed the use of gánguil in C. nodosa meadows in 
Es Burri Bay (Fig. 7; 39°8.604′ N 2°57.524′ E). Seven fish-
ing sets were carried out from September to December 
2016, covering a total area of 0.114 ha from 11 to 16.5 m 
depth.

The depth, position and habitat type (also substrate 
and seaweed assemblages in PNIA) were annotated for 
each fish captured. Flora and fauna nomenclature fol-
lowed codes of Guiry and Guiry [34] and WoRMS Edito-
rial Board [103]. Swept areas were calculated according 
to Guerra et  al. [33], considering the effective sampling 
time, the net sampling distance, the distance between 
divers and the number of divers.

Fish collection
In UVC, syngnathids were hand-caught collected or 
manually extracted from the fishing gear, introduced 
in numbered plastic bags and transferred to a support 
boat. In PNIA, once on land, the fish were morphologi-
cally identified, anesthetized with Ethyl 3-aminobenzo-
ate methane sulfonate (MS-222; 0.1 g  L−1; Sigma-Aldrich 
Co., USA) and marked subcutaneously using visible 
implant fluorescent elastomers (VIFE; Northwest Marine 
Technology Inc., USA) on the ventral surface of the trunk 
(pipefish) or laterally (seahorses). All anaesthetized fish 
were weighted (W, g) and sized for standard length (SL, 
cm). In PNAC, the fish were morphologically identified 
on board, anesthetized, sized as reported above but not 
weighted because it was not possible to stabilize the bal-
ance in boat conditions. A fraction of the fish collected by 
fishing in PNAC were sacrificed for sampling (stable iso-
topes and genetic analysis) due to their small size (with 
permission of NP authority).

Dorsal fin samples were taken by fin- clipping [70], 
transferred to screw-capped tubes containing 95% etha-
nol and conserved at 4  °C for further genetic and stable 
isotope analysis (SIA). The presence of previous marks 
(recapture events), sex, sexual status, meristics (fin rays, 
body rings) and body coloration were also annotated 

http://www.meteogalicia.gal


Page 16 of 20Planas et al. BMC Ecol Evo            (2021) 21:4 

whenever possible. The sexual status was recorded con-
sidering pregnancy in males and trunk shape (holding 
of hydrated eggs) in females. Species identification was 
evaluated genetically using DNA extracted from dorsal 
fin samples available from PNIA and PNAC surveys. In 
PNIA, all fishes from visual censuses were released at the 
capture site within 2–3 h after sampling.

For SL measurement, the fishes were placed on a plate 
including a measurement scale and photographed later-
ally (seahorses) or measured directly (pipefish). Seahorse 
images were analysed in the laboratory to determine 
length using image-processing software (NIS Elements 
Nikon and ImageJ2). Seahorses were measured as 
head + trunk + tail length (curved measurement in sea-
horses) [52].

Allometry in fishes was assessed using the following 
equation:

where, TL is total length, a is an empirical coefficient, 
W is body weight and b is the allometric exponent.

Sediment analysis
The analysis of sediments was only carried out in PNIA. 
For compositional analysis, the content of organic car-
bon and inorganic carbon (calcium carbonate content is 
equivalent to bioclastic component for this regional set-
ting) was determined by a LECO CNS-2000 Macro Ele-
mental Analyser at CACTI (University of Vigo). Those 
analyses were performed on the fractions < 2  mm, in 
order to avoid distortional results due to gravel compo-
nents (> 2 mm, maerl, bivalve and gastropod shells).

For textural analysis, the bulk grain size distribution 
was performed by dry sieving. Previously to grain size 
analysis, the organic matter was removed using 30% 
 H2O2 for several days and salts were removed with fur-
ther washings with distilled water. Afterwards, the sam-
ples were dried at 50  °C and dry sieved between 4  mm 
and 63  μm (sieve size intervals of 1/2 ø). The resulting 
grain size distribution was treated with the GRADISTAT 
program [7]. For statistical parameters (mean, selection, 
asymmetry and kurtosis or pointing of the grain size 
curve), the nomenclature of Folk and Ward [25] classifi-
cation was used.

DNA sequence analysis
DNA was extracted from dorsal fin tissue collected from 
the following morphologically identified specimens: (i) 
twenty-two wild greater pipefish (Syngnathus acus) and 
four long-snouted seahorses (Hippocampus guttulatus) 
from PNIA; and (ii) six black-striped pipefish (S. abas-
ter) and one spotted pipefish (Nerophis maculatus) from 
PNAC. Genomic DNA was isolated using NucleoSpin 

TL = aW
b

Tissue XS kit (Macherey–Nagel Inc., Germany) and for 
extremely small tissue samples further amplified using 
GenomiPhi V2 kit (Healthcare, USA).

The mitochondrial marker cytochrome b (Cytb) used 
for phylogenetic analysis in the Family Syngnathidae 
[100] was assayed for the molecular identification of all 
specimens studied from two divergent phylogenetic 
groups (Syngnathinae and Nerophinae subfamilies,[38]. 
Universal primers L14275F [64] and H15926R [100] 
were used to amplify Cytb in the pipefish species, while 
the specific primers SHORSE5.3L [13] and GUT CYT BR 
[101] in seahorses. To overcome the poor Cytb amplifica-
tion success in N. maculatus, the universal primers 16Sa-
L2510 and 16Sb-H3080 [65] were used in this species to 
amplify 16S rDNA, an informative marker also used for 
phylogenetic analyses in Syngnathidae [100]. PCR reac-
tions in 50 μL included 100 ng of template DNA, 1X PCR 
Gold Buffer (Applied Biosystems), 2.5  mM of  MgCl2, 
400 µM of dNTPs, 0.2 µM of each primer and 1 and 1.25 
units of Amplitaq Gold™ DNA polymerase (Applied Bio-
systems) for pipefish and seahorse, respectively. Specific 
PCR programs were used for pipefish (95 °C for 10 min, 
33 cycles of 93  °C for 1 min, 50  °C for 1 min and 72  °C 
for 3 min, plus final extension at 72  °C for 10 min) and 
seahorses (94  °C for 10 min, 35 cycles of 94  °C for 30 s, 
50  °C for 30  s and 72  °C for 1  min, plus final extension 
at 72  °C for 2  min). Sequences were obtained using the 
ABI PRISM BigDye™ Terminator v3.1 Cycle Sequencing 
Kit on an ABI PRISM® 3730xl Genetic Analyzer (Applied 
Biosystems, Foster City, CA). Variable sites were checked 
with SEQSCAPE 2.5 (Applied Biosystems), using Gen-
bank sequences AF356040, AF354994 (from Sweden; 
[100] and AF192664 (from UK [13], as reference for S. 
acus, N. ophidion and H. guttulatus, respectively. Vari-
able positions, haplotypes and genetic distances (esti-
mated with the p-distance method) were obtained using 
MEGA 7.0 [48] while haplotype diversity [59] for the dif-
ferent species was calculated using DnaSP 5.0 [50]. Spe-
cies identification of sampled haplotypes was performed 
using BLASTn tool with default parameters within NCBI 
database. Evolutionary relationships among S. abaster 
haplotypes from PNAC and GenBank sequences of Med-
iterranean-distributed Syngnathus species were inferred 
using the Neighbor-Joining method based on p-distance 
implemented in MEGA with S. exilis (JF273424) as out-
group [58], and clustering support evaluated using boot-
strap test (1000 replicates).

Stable isotopes analysis (SIA)
For δ13C and δ15N analysis in syngnathids, the sam-
ples were rinsed with distilled water, transferred to tin 
capsules, dried in oven at 60  °C for 24  h and weighted 
(± 1  μg). Due to the low lipid content in fin samples 
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conserved in ethanol (< 5% lipids, C/N < 3.56) [74], fur-
ther full defatting was not necessary [72, 93]. Samples 
were analysed at SAI (University of A Coruña) by con-
tinuous flow isotope ratio mass spectrometry using a 
FlashEA1112 elemental analyser (Thermo Finnigan, Italy) 
coupled to a Delta Plus mass spectrometer (FinniganMat, 
Germany) through a Conflo II interface. Isotopic values 
are expressed as permil (‰) in conventional delta relative 
to VPDB (Vienna Pee Dee Belemnite) and Atmospheric 
Air. The precision (standard deviation) for SIA of the 
laboratory standard (acetanilide) was ± 0.15‰ (1-sigma, 
n = 10).

Geographic information
GIS was managed with ArcGIS v.10.5 software to rep-
resent the maps. Layers of bionomic maps for both NPs 
(OAPN, unpublished observations) were incorporated. 
Sampled sites/transects and syngnathid capture locations 
were recorded and added to a geodatabase. Biological 
information of the specimens (species, sex, size, weight 
and sexual stage) was joined to each register. Available 
abiotic information (topographic and bathymetric lay-
ers), as well as bionomic information, were also added to 
geodatabase. Cartographic data were projected  in UTM 
29 N/UTM 31 N reference system (for PNIA and PNAC, 
respectively) using ETRS89 Datum.

Species distribution estimates
Modeling distribution of syngnathids was only assessed 
in PNIA as the number of specimens collected in PNAC 
was insufficient. For that, Maxent (Maximum Entropy 
model) was implemented [67, 68], [24], using MaxEnt 
v.3.4.1 program (https ://biodi versi tyinf ormat ics.amnh.
org/open_sourc e/maxen t/). For modelling, bathymet-
ric, substrate and oceanographic variables were used as 
predictors of species habitat suitability. Bathymetry (BM) 
and seabed slope were used as bathymetric variables. 
BM data were obtained from the PNIA cartographic 
database (PNIACD; unpublished), which was provided 
for the managers of PNIA. Slope was derived from the 
bathymetric layer using the Spatial Analyst tool from 
ArcMap (ArcGis 10.5). Slope describes the proportion 
of change in elevation over distance. Low values of slope 
are associated with flat sea bottoms, while higher val-
ues indicate potential rocky bottoms. Sediment Texture 
(ST) was used as substrate variable and it was introduced 
in the models to define the sediment substrata. ST data 
were obtained from PNIA cartographic database. The 
ST map was constructed according to the Krumbein’s 
Phi Scale [46], using the following ST classes as a func-
tion of the diameter of the particle: very fine sand, fine 
sand, medium sand, coarse sand, very coarse sand, gravel, 
cobble and boulder. Waves Exposure (WE) was used as 

oceanographic variable. WE values were extracted from 
the Model of Waves of Galicia (Meteogalicia database, 
www.meteo galic ia.gal). WE describes the annual mean 
power per meter wave front. Low values of WE are asso-
ciated with sheltered areas, while higher values suggest 
high influence to wave force.

Data analysis
All means are reported with standard deviation. The 
data were checked for normality and homogeneity of 
variances (Shapiro–Wilk and Levene’s tests). Analyses of 
variance (ANOVA) were used to examine the effects of 
season, sex, reproductive status, length, weight and iso-
topic values in syngnathids. Tukey’s HSD test adjusted 
for unequal sample sizes were performed for post hoc 
comparisons [87]. Statistical analyses were performed 
using R packages, with significance set at P = 0.05.

Diversity, species richness and total number of spe-
cies were estimated for seaweed in PNIA. Differences 
between transects and seasons were analysed using PER-
MANOVA for each univariate variable. P-values were 
estimated with an asymptotic permutation distribution 
generated by the Monte Carlo method. PERMANOVA 
was also used for seaweed assemblage comparisons 
across transects and seasons using Bray–Curtis pair-
wise similarities. Patterns in the structure of assemblages 
were visualized with principal coordinates (PCO) plots 
of samples and centroids of each combination of Tran-
sect × Time in the Bray–Curtis space. Data and statisti-
cal analysis were performed with R (Glht and Factoextra 
packages) and PRIMER-e v6 and PERMANOVA + for 
PRIMER (Massey University, New Zealand).
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