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Development and selective grain make 
plasticity ’take the lead’ in adaptive evolution
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Abstract 

Background: Biological evolution exhibits an extraordinary capability to adapt organisms to their environments. The 
explanation for this often takes for granted that random genetic variation produces at least some beneficial pheno‑
typic variation in which natural selection can act. Such genetic evolvability could itself be a product of evolution, but 
it is widely acknowledged that the immediate selective gains of evolvability are small on short timescales. So how do 
biological systems come to exhibit such extraordinary capacity to evolve? One suggestion is that adaptive phenotypic 
plasticity makes genetic evolution find adaptations faster. However, the need to explain the origin of adaptive plastic‑
ity puts genetic evolution back in the driving seat, and genetic evolvability remains unexplained.

Results: To better understand the interaction between plasticity and genetic evolvability, we simulate the evolu‑
tion of phenotypes produced by gene‑regulation network‑based models of development. First, we show that the 
phenotypic variation resulting from genetic and environmental perturbation are highly concordant. This is because 
phenotypic variation, regardless of its cause, occurs within the relatively specific space of possibilities allowed by 
development. Second, we show that selection for genetic evolvability results in the evolution of adaptive plasticity 
and vice versa. This linkage is essentially symmetric but, unlike genetic evolvability, the selective gains of plasticity are 
often substantial on short, including within‑lifetime, timescales. Accordingly, we show that selection for phenotypic 
plasticity can be effective in promoting the evolution of high genetic evolvability.

Conclusions: Without overlooking the fact that adaptive plasticity is itself a product of genetic evolution, we show 
how past selection for plasticity can exercise a disproportionate effect on genetic evolvability and, in turn, influence 
the course of adaptive evolution.

Keywords: Adaptation, Phenotypic plasticity, Genotype‑phenotype‑map, Plasticity‑led evolution, Parental effects, 
Mechanistic developmental models
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Background
Understanding how evolution works is not complete by 
understanding natural selection; we also need to under-
stand the generation of the phenotypic variation that 
natural selection will act on [1, 2]. While the genetic 
variation that makes evolution possible can be con-
sidered non-directional (i.e. “random mutations”), the 

phenotypic variation that results from these genetic 
changes is highly structured, causing some variants to 
appear more frequently than others [3–5]. This direc-
tional phenotypic variation arises because of the complex 
process of development, and is hence commonly known 
as “developmental bias” [6, 7]. If this developmental bias 
is aligned with the adaptive demands imposed by local 
environments (i.e., if the mutationally more accessible 
phenotypes are also the more adaptive ones), adaptive 
evolution would be greatly facilitated. Here, we refer to 
this as a situation with high genetic evolvability, whereas 
a situation where adaptive phenotypes would be total or 
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partially inaccessible through mutation represent low 
genetic evolvability.

The developmental origins of genetic evolvability, and 
the causes and consequence of its evolution, have gener-
ated much interest and controversy, not the least over the 
past decade [6, 7]. One reason for the controversy is that 
it is unclear why developmental systems should exhibit 
facilitated variation. Genetic evolvability could itself be a 
product of past evolution [7–9], but the idea that natu-
ral selection would be able to improve genetic evolvabil-
ity is problematic because the immediate selective gains 
of responding adaptively to random genetic change are 
small on short timescales [9, 10].

Another suggestion is that the high genetic evolv-
ability is acquired through the capability of organisms 
to rapidly adjust to their environment during their life-
time [11]. However, while adaptive phenotypic plasticity 
often appears to ‘take the lead’ in adaptive evolution (e.g., 
[12, 13]), the idea that adaptive plasticity explains genetic 
evolvability overlooks the need to explain the origination 
of the adaptively plastic response that supposedly ‘came 
first’. In this paper, we seek to better understand whether 
phenotypic plasticity can help to explain genetic evolva-
bility without overlooking the fact that adaptive plasticity 
is itself a product of genetic evolution [14].

The starting point of our approach is grounded on 
previous theoretical and empirical observations which 
suggest that the phenotypic consequences of genetic 
variation and environmental variation are not inde-
pendent [12, 14–18]. Such non-independence is indeed 
expected, because the consequences of any perturbation 
of development will be channelled by the same underly-
ing developmental mechanisms [19]. From this, it fol-
lows that, if selection for phenotypic plasticity alters the 
structure of developmental interactions, this will likely 
alter how phenotypes respond to genetic mutations and 
hence affect evolvability. Population genetic models dem-
onstrate that selecting for plasticity can increase genetic 
variation along the dimensions of the phenotype that are 
plastic [20, 21]. This seems to support a role for plasticity 
in shaping genetic evolvability. However, given that the 
interdependence of plasticity and evolvability on devel-
opment is essentially symmetric (i.e. both covary as a 
result of a common developmental dynamics, but none 
is cause or consequence of the other), the reverse may 
be equally possible. That is, if selection on genetic evolv-
ability alters the structure of developmental interactions, 
this should also alter how phenotypes respond to envi-
ronmental variation. It thus remains an open question 
whether genetic evolvability is predominantly shaped by 
plasticity or vice versa [14, 22].

To address this question, we study the relationship 
between plasticity and evolvability by representing these 

phenomena in a common framework where the pheno-
typic effects and adaptive consequences of genetic and 
environmental variation can be compared. The pheno-
type distribution that is generated by genetic variation 
can be represented as a genotype-phenotype (GP) map: 
an idealized representation of development that assigns 
a phenotype to each genotype [3, 6, 22]. If the main axis 
of the phenotypic distribution showed by the GP map is 
aligned with the adaptive demands, then phenotypes that 
are suitable for adaptation arise more readily, and the GP 
map is said to exhibit high genetic evolvability [9].

Analogous to the GP map, plasticity can be understood 
as an Environment-Phenotype (EP) map (aka reaction 
norm) that associates each environment with its cor-
responding phenotype [23–25]. Here, a developmen-
tal system is considered “plastic” if it reacts to different 
environmental inputs producing different phenotypes 
(the more disparate those phenotypes the more “plas-
tic” the system and the “steeper” its reaction norm in 
the trait-space). Non-plastic systems will always produce 
the same phenotype irrespective of the environment (i.e. 
single-point EP-maps). Plasticity is adaptive when the EP 
map enables individuals to produce phenotypes that fit 
the requirements of the environment in which they find 
themselves. For instance, if plasticity is adaptive, organ-
isms receiving biophysical or biochemical cues from an 
environment A would develop a phenotype that is highly 
advantageous in that environment A, and the same for 
environments B, C, etc. As detailed below, those plastic 
responses can change during evolutionary timescales (i.e. 
they can be “evolvable”), so that non-adaptive forms of 
plasticity eventually become adaptive if the proper selec-
tive pressures are applied (but the rate of adaptation may 
vary with the system considered).

However, the GP and EP maps do not exhaust the 
sources of phenotypic variation. Development is also 
sensitive to non-genetic and non-environmental ini-
tial conditions such as biochemical templates, resources 
and nutrients that are provided by the parents [26, 27]. 
The association of such heritable epigenetic elements 
with phenotypic variation is often referred to as paren-
tal effects [28]. Here we emphasize the analogous role 
of such initial conditions in structuring the phenotype 
distribution by referring to it as the PP (for ‘Parental-
Phenotype’) map: a mapping that associates a phenotype 
with the parentally inherited initial conditions required 
to produce it. Notice that, although “maps” are formal 
mathematical objects, we adopt here a more flexible use 
of the term, equating it to the phenotypic distributions 
arising from a specific type of parametric perturbations.

To model the potential interdependence of these three 
maps (GP, EP and PP), we use several different and widely 
used models of development based on gene regulatory 
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networks (GRN). This approach means that we neither 
assume that the three maps are independent nor that 
they are related; rather, these are hypotheses we can test. 
To do this we apply the three different forms of variation 
(i.e. genetic, environmental, parental) to the core GRNs 
of the developmental system we use, and compare the 
resulting phenotypic effects to see if they are similar or 
not.

In principle, it could be the case that any concordance 
between the three maps in this model could be intrinsic 
to the properties of GRNs and arise without selection, 
or observed only in GRNs subjected to particular selec-
tive conditions, or not observed at all. Likewise, it is not 
known whether selection can, for example, change the 
GP map produced by a GRN without altering the EP or 
PP maps, or more generally, whether the effects of select-
ing for one map has consequences for the properties of 
the others. Lastly, even if it is the case that selection for 
one map can determine the evolution of any other map, it 
could be the case that one of the maps is easier to change 

with selection than the others. Therefore, the aims of 
this paper are (1) to assess the potential interdependence 
of the GP, EP and PP maps; (2) to determine how (and 
if ) the evolution of one map affects the evolution of the 
others, and whether this evolution is symmetric; and (3) 
to establish whether or not the three maps are equally 
responsive to selection.

Results
To model how the GP, EP and PP maps interact, it is nec-
essary to represent developmental systems in a way that 
allow for genetic, environmental and parental inputs. We 
expand on three different and widely used GRN-based 
models of development, each one entailing a different 
complexity and biological realism (Fig.  1A–C). To bet-
ter interpret our results, we succinctly introduce here the 
architecture of the models we use (see “Methods” section 
for further details). From the simpler to the more com-
plex, these models are:

Fig. 1 Experimental overview. Conceptual depiction of the three GRN‑based models used in this work: A A pure GRN model where the (two‑trait) 
phenotype is the steady‑state concentration of two arbitrary genes. B GRN + Multilinear model, where each phenotypic trait is calculated as 
the weighted sum of all the elements within the steady‑state GRN. C Lattice model, where the phenotype is conceptualised as the steady‑state 
expression pattern of one of the constituent genes (Gen 5 in this example) along a one‑dimensional row of cells that can communicate between 
them through cell–cell signalling. In all of these models, phenotypic variation is created by perturbing one or several elements in the core GRN: 
Perturbations can be introduced in the strength of gene–gene interaction (i.e. as genetic mutations, D); in some environmental cue that may 
regulate some environmentally‑sensitive gene (E); or in the (maternally inherited) initial concentrations of each GRN element (F). Perturbations on 
each of these three different sources of phenotypic variation (one element of the GRN perturbed at a time) will produce a collection of two‑trait 
phenotypes (i.e., hind‑ and fore‑limb lengths). If these phenotypes are plotted in a two‑trait (T1-T2) morphospace, they can reveal the structure of 
the parameter‑to‑phenotype maps (D–F, right panels). The linear slopes of these maps can be used as a coarse description of these maps, allowing 
for map‑to‑map comparisons of random (Fig. 2) and evolved GRNs (Figs. 3, 4, 5)
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Basic GRN model
This model (based on [29]) represents a simple gene 
regulatory network (GRN; Fig.  1A). It consists of Ng 
transcription factors that have continuous, positive 
concentrations (vector G = (g1,…,gNg); gi ≥ 0 ∀ i), and 
regulate the expression of each other by binding to cis-
regulatory sequences on gene promoters. The regula-
tory interactions of this GRN are encoded in the Ng x 
Ng matrix B, whose elements Bik represent the effect of 
gene k on the transcription of gene i. Positive elements 
(Bik > 0) represent activation and negative elements 
(Bik < 0) represent inhibition. A binary (0 or 1) matrix M 
(Ng x Ng) encodes the GRN topology, so that the inter-
action Bik is only active if Mik = 1. The initial state of the 
vector G (represented by the vector G0) accounts for 
the initial state at the beginning of development, which 
is supposed to be parentally determined. In addition, 
the expression of each gene j can be potentially modu-
lated by an environmental factor Ej, which can either 
upregulate (0 ≤ Ej ≤ 1) or downregulate it (−1 ≤ Ei ≤ 0). 
The environmental effects of all these Ne environmental 
factors (Ne = Ng), are contained within the vector E.

Developmental dynamics are attained by changes in 
gene concentration over a number of developmental 
iterations (tdev), and the phenotype is recorded as the 
steady-state expression levels of two arbitrarily chosen 
genes in tdev (Fig.  1A). Only viable (temporally stable) 
phenotypes are considered: from 1 to Ng, the normal-
ized G (represented here as G*), must remain the same 
within a threshold of 10–2 over an interval of tdev/10 
developmental time units (|G*0.9·tdev-G*tdev|≤ 10–2). The 
gene–gene interactions within the GRN follow a non-
linear, saturating Michaelis–Menten dynamics (a spe-
cial type of Hill function), so that the concentration of 
the gene i changes over developmental time according 
to the following differential equation:

where

and R (hi) is the Ramp function (R(x) = x, ∀ x ≥ 0 and 
0 otherwise) which prevents negative concentrations in 
gene products resulting from inhibiting genetic or envi-
ronmental interactions. KM is the Michaelis–Menten 
coefficient. Without loss of generality, we set KM = 1 
(other choices of KM or specific Hill functions are 
known not to affect the results, see [30]). The environ-
mental term Ej is embedded within the gene-ordered 
summation of Eq. (2) following the associative property 

(1)
∂gi

∂t
=

R(hi)

KM + R(hi)
− µgi + ξ

(2)hi =
∑Ng

j=1
MijBijgj + Ej

of the sum, and because Ne ≤ Ng always. Notice that, 
while environmental factors can effectively inhibit gene 
expression (if Ej < 0), they cannot turn a genetic con-
centration into a negative value (because of the Ramp 
function R). All genes and gene products (but not envi-
ronmental factors) are degraded with a decay term 
μ = 0.1. In order to avoid unstable solutions, a certain 
amount of (Gaussian) noise is introduced in the system 
through the term ξ, randomly drawn from a Normal 
distribution ~ N(0, 10–2).

GRN + multilinear model
This mixed model (based on [21]), can be viewed as a 
multi-linear model of phenotypic determination [20] that 
is added to a basic GRN-model [29] (Fig. 1B). The key dif-
ference with the previous model lies in how each pheno-
typic trait is generated. Rather than being the expression 
level of one element of the GRN, each trait Ti, i = (1, 2) 
receives a contribution from each transcription factor 
according to a linear coefficient:

where the factor Zij represents the contribution of the jth 
gene to the ith trait (−1 < Zij < 1). Note that the Z matrix 
encoding the linear coefficients is separated from the 
matrix B encoding the GRN itself. In this paper, the evo-
lutionary implications of the correlations between maps 
are reported on the basis of this model.

Lattice model
This reaction–diffusion model (based on [30, 31]) rep-
resents a simple developmental model that implements 
multicellular phenotypes in an explicitly spatial context 
(Fig.  1C). The model describes on a one-dimensional 
row of Nc non-motile cells (Nc = 16 in our case), whose 
developmental dynamics is determined by a GRN (as 
described in the basic model) that is identical for all 
cells. Interaction between the different cells is achieved 
through cell–cell signalling involving extracellular dif-
fusion of morphogens (Ng/3 of the GRN elements are 
considered to be diffusible morphogens). Each of these 
morphogens has a specific diffusion rate Di (0 < Di < 1) 
and follows Fick’s second law. Zero-flux boundary con-
ditions are used. Thus, the concentration of gene i over 
developmental time now is calculated as:

In most works that use this model, the phenotype is 
conceptualised as the expression pattern of one of the 
constituent genes along the row of cells (e.g. [30, 31]). 

(3)Ti =
∑Ng

j=1
Zijgj

(4)
∂gij

∂t
=

R
(

hij
)

KM + R
(

hij
) − µgij + ξ + Di∇

2gij
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Here, for the sake of comparability with the other mod-
els used, we set T1 and T2 as the average concentration 
of gene 1 in the first and last two cells of the organism 
(T1 = (g1,1 + g1,2)/2, and T2 = (g1,Nc-1 + g1,Nc)/2).

While these models differ in complexity, all three fea-
ture a GRN at their core, which is defined by three types 
of variables—namely, regulatory connections, initial gene 
expression and exogenous inputs (see “Methods” and 
Fig. 1). Together, these variables define the GRN dynam-
ics which, when implemented and iterated in the mod-
els, result in measurable phenotypes. Furthermore, these 
three types of variables have some correspondence with 
the three types of variation we address (genetic, parental 
and environmental). For example, parental effects gener-
ally apply modification only in early stages, and thus can 
be allied to the initial gene expression values of the GRN. 
This provides an intuitive way to link each of the constit-
uent elements of the GRN to a different source of phe-
notypic variation: (i) changes in gene–gene interaction 
strengths in the GRN can be conceptualised as an effect 
of genetic variation; (ii) changes in the environmentally 
sensitive elements in the GRN (sensor nodes and diffu-
sion rates) as an effect of environmental variation; and 
(iii) changes in the initial concentration of each tran-
scription factor in the GRN as an inherited initial state 
(Fig. 1D–F).

However, it is also true that, for example, an environ-
mental input might change a regulatory sensitivity and 
a genetic mutation might change an initial gene expres-
sion level, rendering the correspondence non-univocal. 
This loose correspondence should be kept in mind in 
interpreting our results, but we will show that the type 
of model variable itself entails a marginal explanatory 
power when compared with other factors (i.e. the time-
scale of the change in these variables, see next sections). 
In addition, even when the correspondence is not strictly 
one-to-one, our approach exhausts the ways in which a 
specific GRN can vary (these variations do not alter the 
GRN topology, which here is assumed to evolve much 
slower than the inputs [4, 8]).

While more complex models (e.g. cell-based models 
including morphogenesis) could implement environ-
mental or parental inputs in the developmental dynam-
ics in more ways than we consider here (e.g. by changing 
the bio-physical properties of cells and tissues), the size 
of their parameter spaces and their associate computa-
tional costs would render our approach unfeasible. Not-
withstanding this limitation of our work, comparing the 
results for these three different models allows us to assess 
how the robustness of our results escalates with model 
complexity (see Additional file 1: Fig. S2).

With the described settings, all the models used in 
this paper produce a single, 2-trait (2-dimensional) 

phenotype for each combination of inputs. Thus, a set of 
phenotypes (i.e. a phenotype distribution) can be gener-
ated by introducing variation in those inputs. These phe-
notype distributions represented in a 2D morphospace 
are considered maps: those resulting from variation in 
the genetic inputs are GP maps, whereas those result-
ing from environmental perturbations or perturbations 
in the initial conditions are considered as EP and PP 
maps, respectively. While for some authors (e.g. [31, 32]) 
any map exhibiting phenotypic variation in response to 
genetic mutations has the property of being evolvable; we 
consider a GP map to exhibit more or less genetic evolv-
ability to the extent that its phenotypic distributions are 
aligned with the adaptive demands (in this sense, evolv-
ability is a joint property of variation + selective envi-
ronment, not a property of the map alone; [9, 10]). If a 
similar alignment is found in the EP map or the PP map, 
they are said to exhibit adaptive plasticity and adaptive 
parental effects, respectively.

Considered together, the three maps encompass the 
whole set of phenotypes that a given developmen-
tal mechanism can generate from the sum of all per-
turbations. This “total” variation, which can be also 
represented in a 2D trait space, is referred to as a general 
phenotype distribution, or GPD (i.e., the GP, EP and PP 
maps are all contained within this GPD, Additional file 1: 
Fig. S1).

GP, EP and PP mappings are correlated in randomly 
generated GRNs
We first explore the inter-dependence between GP, EP, 
and PP maps in a large (n > 106) ensemble of randomly 
generated GRNs (encompassing different GRN connec-
tivities, topologies and number of genes, see “Methods”). 
We then separately introduced random variation (10 
input values 0 < x < 1) in the genetic, environmental and 
parental inputs (i.e., connection weights, expression lev-
els, and initial conditions, respectively) of each of these 
GRNs, and compared the resulting phenotypic distribu-
tions, that is, the resulting GP, EP and PP maps.

We estimated the similarity between these three maps 
by testing whether or not variation in the genetic, envi-
ronmental or parental inputs produce similar covaria-
tion between the two traits (Fig. 1D–F), using the linear 
slopes in the phenotypic morphospace as basic descrip-
tors of the different maps. Since comparisons were per-
formed using the (linear, unordered) map slopes, and 
not the whole phenoypic distributions of each map, 
we used a simple (Pearson) product moment correla-
tion to evaluate whether or not the slope of a map was 
associated with a similar slope in the other maps. Pair-
wise comparisons between the slopes caused by varia-
tion in genetic, environmental, or parental inputs were 
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Fig. 2 Phenotypic distributions arising from genetic, epigenetic or environmental perturbations are not independent. In a large random ensemble 
of GRNs (n = 106), systematic parametric variations were introduced into each of their elements. Each perturbation on an element generates 
a collection of phenotypes in a two‑trait morphospace (a XPM map), characterised by a linear slope SXPM (see Fig. 1D–F). A For each GRN, we 
compare these slopes, two by two, searching for their correlations in the two‑slope spaces (note that these are not two‑trait morphospaces). 
Each dot is a GRN, and the yellow shaded region contains 90% of the GRNs. Correlations are significant (Pearson r > 0.3) for every combination 
of maps considered. B Histograms showing the probability distribution of maps with developmental insensitivity to the first (Sx ≤ 0.01; yellow) 
or second (Sy ≤ 0.01; red) type of inputs; and of correlated (parallel slopes); anti‑correlated (perpendicular slopes) and non‑correlated slopes 
(otherwise). Each of these cases correspond to the sector of a hypothetical circumference engulfing all points of (A), as exemplified in the coloured 
circumference, and the relative frequency represents the probability of each point to be located within each sector. C The complexities of the 
parameter‑to‑phenotype maps (i.e., how non‑linear they are, see “Methods”); rather than between their linear slopes are also positive (Pearson 
r > 0.56). In (C), the colour represents slope similarity: similar slopes (black colour) are associated to simpler (i.e., more linear) maps. n = 30 replicates, 
GRN + multilinear model (see Additional file 1: Fig S2 for correlations under other models and Additional file 1: Fig. S5 for a null model on C)
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all significantly positive (Pearson r ≥ 0.3; Fig. 2A). This 
demonstrates that GP, EP and PP mappings are not 
independent in random GRNs. Note that this positive 
correlation between maps does not imply that the map-
specific slopes themselves are positive; only that their 
slopes, which can be positive or negative, are similar 
(a comparison between maps that does not consider 
the direction of the slope since genetic evolvability is 
concerned with the sensitivity to random mutations, 
not their direction; [9]). GRNs showing zero or nega-
tive correlation between different mappings also exist, 
but they are less frequent (Fig.  2B). Importantly, this 
interdependence across different mappings is robust to 
more detailed measures of map-to-map similarity, such 
as Euclidean distances (ED, Additional file  1: Fig. S3). 
Such ED-based correlations, however, decrease as the 
difference between the map slopes become too large 
(presumably as an effect of map complexity itself, since 
complex maps are more dissimilar than simpler ones, 
see next section, Fig. 2C, Additional file 1: Fig. S3).

To eliminate the possibility that these observed cor-
relations were caused by similarities in the input values, 
rather than in the structure of the GRNs, we gradually 
randomized the input parametric values while record-
ing the correlations between maps (Additional file 1: Fig. 
S4). This procedure revealed that the correlations do not 
depend on particular choices of the input parameters. In 
contrast, correlations were extremely sensitive to para-
metric changes in the GRN topology, suggesting that the 
observed similarity between maps is caused by the struc-
ture of the GRN connections (i.e., ‘developmental mech-
anism’ sensu [30–32]) rather than the structure of the 
input perturbations. While a relationship between spe-
cific GRN topologies and the strength of the map-to-map 
correlations is expected (as it occurs for individual maps 
[30, 31]), further studies would be required to establish 
this relationship in more detail.

Another alternative explanation for our results would 
be that the observed correlations are driven by the (close-
to-zero) linear slopes associated with very complex (i.e. 
a “zigzag”-like) maps. However, Fig. 1A shows that even 
the central region of the correlational space where most 
(> 90%) maps are contained shows a clear diagonal struc-
ture densely populated with non-zero (1 <|Sx|< 2) slopes. 
Furthermore, if this would be the case, one would expect 
Euclidean distances between maps to be generally very 
large (i.e. because most of them would be very complex 
and highly dissimilar maps having both close-to-zero 
slopes). This possibility is rejected by our observations 
(Additional file 1: Fig S3B), which show that the majority 
of map-to-map Euclidean distances occurs at quite low 
values (EDA,B≈2), and is mostly constituted by relatively 
simple, sub-linear maps).

Finally, our simulations reveal that map-to-map cor-
relations are affected in non-trivial ways by certain GRN 
features, such as GRN size, connectivity, the number of 
iterations in the GRN dynamics or the model architec-
ture (Additional file  1: Fig. S2). In general, correlations 
decrease as connectivity and GRN size increase (presum-
ably because large networks offer more opportunities for 
modularity, which in turn may enable a developmental 
de-coupling between different traits).

The complexity of GP, EP and PP maps are correlated 
in randomly generated GRNs
We also investigated whether or not the GP, EP and PP 
maps exhibit similar complexity in random GRNs. We 
defined map complexity as the degree of non-linearity in 
phenotypic response to inputs. This captures the intui-
tion that a linear slope is less complex than a U-shaped 
response, which is itself simpler than a W-shaped 
response. Comparing the map complexities between the 
 106 random GRNs reveals that map complexities are, on 
average, positively correlated (Pearson r ≥ 0.56; Fig.  2C 
and Additional file  1: Fig. S2). In other words, if a map 
(e.g., GP) is simple, the other maps (EP and PP) will be 
simple too, and they will exhibit very similar slopes. In 
contrast, if a map is complex, other maps too are likely to 
be complex, and their slopes will be less similar (Fig. 2C 
and Additional file 1: Fig. S2).

To ensure that these observed correlations between 
map complexities are not a general property of pairs of 
input–output maps, we analysed a large ensemble of 
random mathematical functions (polynomials of known 
degree ≤ 4) using the same tools that we used for calcu-
lating map complexity. This analysis verified that the cor-
relations do not arise between pairs of randomly selected 
functions unless they belong to the same complexity class 
(polynomial degree) (Additional file 1: Fig. S5).

How a network topology creates similarity between 
map slopes and complexities can be better understood 
by looking at the whole set of developmentally attain-
able phenotypes (general phenotypic distribution: GPD), 
which can be revealed by means of massive and unspe-
cific parametric perturbations (see “Methods” and 
Additional file  1: Fig. S1). This procedure shows that 
each generative network creates a distinctive GPD with 
a highly anisotropic and discontinuous structure. This 
structure increases the likelihood that individual maps 
will have similar slopes simply because many phenotypic 
directions of change are either very unlikely or develop-
mentally impossible (Additional file 1: Figs. S1, S2, S4 and 
S5).

Positive map-to-map correlations in both slopes and 
map complexities were found in all three considered 
models of phenotypic determination (Additional file  1: 
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Fig. S2). However, the correlation coefficients are higher 
and more variable for complex models involving more 
than pure-GRN dynamics (Figs.  1B–C and Additional 
file 1: Fig. S2).

Evolving only one of the GP, EP or PP maps changes 
the phenotypic biases across the other maps
After exploring the map-to-map correlations in random 
GRNs, we next wanted to address whether or not adap-
tive changes within one map (i.e., changes in the covari-
ation between traits) are able to induce similar changes 
to the other maps. To do so, we performed three sets of 
selection simulations using the developmental model of 
intermediate complexity (GRN + multilinear). This model 
was chosen because it is the one showing more stable 
map-to-map correlations under a wider range of assump-
tions and GRN properties (see Additional file 1: Fig. S2). 
In each simulation, we allowed only one of the three dif-
ferent maps (henceforth the “selected map”) to evolve in 
response to selection. We refer to the other maps as the 
“non-selected” maps (see “Methods” for details).

Although an individual may experience many envi-
ronmental inputs during its lifetime, it has only one 
genotype and, generally, one parental input (here initial 
condition). This means that, in one generation, natural 
selection can act on a distribution of environmentally 
induced phenotypes, but only on a single phenotype pro-
duced by genetic variation (that is why the evolution of 
GP and PP maps would ordinarily require lineage selec-
tion over many generations). Our main point in this 
paper depends, indeed, on the fact that this difference in 
the selective timescale makes selection for phenotypic 
plasticity likely to be a strong driver of genetic evolv-
ability, but not vice versa (see next sections). But, before 
we get to that, it is necessary to first examine how evolv-
ing one map influences other maps, and to examine this 
properly it is necessary to be able to apply an equally 
effective, fine-grained selection on each of the selected 
maps. While introducing similar rates of change in the 
genetic, environmental and parental inputs is biologically 
unrealistic, it enables us to examine the evolutionary 
interdependence of the maps that arise because of their 
developmental linkage, while removing the differences 
in their capacity to be selected (next experiments will 
address more biologically grounded cases).

To adaptively evolve the “selected map”, an initial het-
erogeneous population of p = 64 individuals is com-
posed by randomly picking each individual (GRN) from 
the initial random ensemble. According to our previous 
experiments, each of these individuals exhibits certain 
“by default” correlation between its maps, yet the aver-
age slope of the maps at population level show no par-
ticular direction (Fig. 3A). At each evolutionary time step 

(i.e. within a generation time and for each individual in 
the population), we introduce variation only in the input 
associated with the selected map (i.e., genetic, environ-
mental or parental inputs). To make comparisons possi-
ble, only one element (e.g. one gene) is varied at a time 
for each type of input.

In response to the variation on one type of input, each 
individual develops a set of phenotypes that is compared 
to an arbitrary (linear) target map to determine the indi-
vidual’s fitness. In turn, the individual’s fitness determines 
the likelihood of that individual to contribute to the next 
generation. Thus, the entire phenotype distribution pro-
duced by the selected map is accessible to natural selec-
tion (i.e., fine-grained selection). In contrast, the inputs 
of the non-selected maps were kept fixed (no variation) 
during simulations, so that these maps remain effectively 
“invisible” to natural selection (Fig. 3A). Notice that this 
selection criterion does not select for particular pheno-
types, but for particular biases (i.e. trait correlations) in 
the maps themselves. This procedure allows us to acceler-
ate the weak selection on variation that is found on natu-
ral populations, where it is performed indirectly through 
individual-level selection of phenotypes [9, 10, 33, 34].

In each generation, a number of random point muta-
tions are introduced in the GRN parameters and in the 
multi-linear coefficients (as in [21], see “Methods”) of 
the new individuals. Such changes in the developmen-
tal architecture may change the way in which organisms 
respond to the focal inputs, thus creating new selectable 
variation in the slope of the selected map, and allowing 
adaptive change in the long-term (< 1000 generations). 
Once each evolutionary simulation reached a steady 
state, we assessed if there were any changes in the non-
selected maps. We did this by: (1) introducing variation 
to each of the non-selected maps (one by one), and (2) 
collapsing the variation for the selected map to a single 
input value x ~ U(0,1). In the “collapsed” maps, we delib-
erately avoid setting x = 0 to ensure that our results are 
due to the lack of variation in the inputs and not to the 
absence the input itself.

That is, if the selectable phenotypic distribution had 
been originated exclusively through variation (0 < x < 1) 
in the parameters of type “A” (e.g. genetic), and keeping 
the all parameters of B (e.g. environmental) and C (e.g. 
parental) types fixed; now all “A”-type parameters are 
kept fixed and parametric variation is introduced, alter-
natively, in the “B”-type and “C”-type parameters to 
quantify the newly arising phenotypic distributions (see 
“Methods”). This experimental setup guarantees that any 
observed changes in non-selected maps can be attributed 
to indirect effects of selection on the selected map.

The results revealed that evolving any one map modi-
fies the other maps as well, introducing in them the same 
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adaptive phenotypic biases as observed in the selected 
map (Pearson r > 0.3, Fig.  3A). This holds true for every 
map combination (Fig.  3B) and across the entire range 
of parameters we tested (Additional file 1: Fig. S2). How-
ever, the phenotype biases in the non-selected maps 
are not as strong (|r|< 0.5 in some cases) as in the map 
under selection (r = 0.99), and exhibit substantial tempo-
ral variation, with non-selected maps lagging behind the 
selected map (Fig.  4). The results in Fig.  3 illustrate the 
outcome of selecting for a linear map with a slope S = 1 in 
the two-trait morphospace, but simulations with S = −1 
or with changing selective pressures yielded similar 
results (Figs. 4, Additional file 1: Fig. S6).

The correlated evolution of non-selected maps also 
implies that the ability of a map to adapt may be influ-
enced by past selective events on the other maps. Indeed, 
the adaptive evolution of any selected map takes longer if 
(any of ) the maps had evolved before to match a different 
target (since evolution has to “undo” the already evolved 

biases before evolving new ones; Additional file  1: Fig. 
S7).

Maps evolve faster under fine‑grained selection 
than under coarse‑grained selection
In the previous experiments, each evolving population 
was allowed to sample a wide range of genetic, parental 
or environmental inputs in each generation, and selection 
therefore acted on a wide range of phenotypic outputs. In 
other words, we assumed a very fine-grained selection. 
This allowed us to see how adaptation in each individual 
map would affect the other maps in the hypothetical case 
where selection is able to effect change in the selected 
map easily. In natural populations, such fine-grained 
selection cannot be assumed, so in this section we exam-
ine the effects of relaxing this simplifying assumption. To 
that end, the previous results under idealized, very fine-
grained selective scenarios are taken as a “null hypoth-
esis”, and compared against more coarse-grained regimes.

Fig. 3 Evolving a single map creates similar phenotypic distributions in the other maps. A population whose individuals initially exhibit a random 
phenotypic distribution in t = 0 (A, small panels) is evolved to fit a target phenotypic distribution (ST = 1) using as an input just one kind of 
phenotypic determinant (i.e., genetic, environmental, or parental variation). Other targets (ST = −1) give similar results (see Additional file 1: Fig. S6). 
In each generation, one individual is exposed to 10 different input values (0 < x < 1) of a single phenotypic determinant (the colour of each dot in 
A–B represents value of this input). This parametric variation produces a set of ten potential phenotypes whose slope is compared to the target 
to evaluate the individual’s fitness (see “Methods”). After 105 generations in a mutation‑selection‑drift scenario (where other sources of phenotypic 
variation are frozen), the population has a narrow phenotypic distribution in the evolved map (A, large panels). In (B) we uncover variation in the 
other maps by introducing parametric variation (0 < x < 1) in the phenotypic determinants that were kept fixed during the evolutionary trial. Results 
reveal that selection on a single map creates significant side‑effect phenotypic distributions in the other maps that are not the target of selection. 
C Correlations in the side‑effect maps are significant across all parameter values at which the parameter of the evolved map is frozen. p = 64 
individuals; n = 30 replicates, GRN + Multilinear model
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Several studies show that adaptive plasticity read-
ily evolves when selection is fine-grained [35–37], 
although it is not essential [33]. Whether or not a simi-
lar effect occurs for GP and PP mappings is unknown. 
To address this, we explored the ability of every map to 
adapt to a target map under different levels of selective 
grain, ranging from very fine-grained selection (where 
individuals can experience several inputs within their 
lifetime) to coarse-grained cases in which there is just 
one input per generation and this input only shifts 
every n generations.

As Fig.  5 shows, all maps are in principle equally 
responsive to strong selection, yet all of them evolve 
more efficiently under fine-grained selection than 

under coarse-grained selection. Furthermore, the abil-
ity to adapt to the target map escalates sharply around 
a grain value of 1 (Figs. 5 and Additional file 1: Fig. S9). 
Under the metrics adopted here (see “Methods”), this is 
the value where single individuals experience on aver-
age more than one input per generation. This implies 
that it is much easier to evolve a map efficiently, and 
thus to affect the other maps, if there is within-lifetime 
variation in the inputs to that map. This disproportion-
ate effect of the most fine-grained screened map on 
adaptive evolution is observed even when all the three 
maps are simultaneously selected (Additional file  1: 
Fig. S8). When maps are not simultaneously selected, 
but the map under selection is different from the map 
that has been under selection in the recent past (e.g., 
due to a change in ecological demands), the current 
evolution of the former will be influenced by the past 
selective pressures on the later (Additional file  1: Fig. 
S7). That would make possible, for instance, that past 
selection for plasticity has an effect on current genetic 
evolvability.

Besides selective grain, the ability of GRNs to evolve 
a target map also depends on the complexity of the tar-
get map (i.e., how non-linear is the phenotypic response 
to input variation). Simple (i.e., linear) maps can easily 
evolve with moderate fine-grained selection (≈2 inputs 
per lifetime) whilst evolving more complex (i.e., quad-
ratic or cubic) map requires an increasing number of 
inputs per lifetime (Additional file 1: Fig. S9).

While universal differences in complexity between 
maps are hard to conceive of (examples of simple and 
complex responses have been reported for GP, EP and 
PP maps), there is a clear, widespread difference in the 
selective grain of the three maps. This arises from the fact 
that, in most organisms, individuals can experience dif-
ferent environmental inputs during their lifetime but are 
limited to a single genotype and a single set of parentally 
inherited initial conditions. As a result, the EP map selec-
tion would be most fine-grained, and hence the one most 
intensely sculpted by natural selection. Because of this 
asymmetry, the EP map can exercise a stronger influence 
on the other maps than vice versa (Fig. 5 and Additional 
file 1: Fig. S8). In other words, while every map can theo-
retically be the leader of adaptive evolution, the logic by 
which natural selection operates in real-world organisms 
makes the EP map a prominent driver of evolutionary 
dynamics. The generality and the evolutionary conse-
quences of this are further discussed in the next section.

Discussion
Understanding how the processes that generate pheno-
typic variation interact with natural selection is necessary 
to explain and predict the course of evolution [3, 5, 7, 

Fig. 4 Side‑effect phenotypic distributions are able to track shifting 
targets. These plots show how initially unstructured populations 
are able to adaptively evolve a specific target distribution (a single 
map with a defined slope of ST = 1, solid lines), which creates as a 
side‑effect correlated phenotype distributions in the other maps 
(dashed lines). Notice that evolutionary time is plotted here in a 
 Log(10) scale, so that adaptation to the target maps occurs actually 
very fast (i.e. in a few generations). The middle point corresponds to 
the steady‑state situation shown in Fig. 3. For these plots, the target 
slope has been shifted to ST = −1 at generation t≈104, showing how 
the maps that evolve as a side‑effect are able to “follow” the one that 
is being selected. This pattern is similar for every map considered. 
p = 64 individuals; fine‑grained selection (identical selective grain for 
each map); n = 30 replicates, GRN + Multilinear model
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38]. While it is easy to understand that any developmen-
tal bias aligned with adaptive demands would facilitate 
adaptation, it is not obvious how these biases originate, 
nor how they might change or be maintained over evo-
lutionary time. Phenotypic adaptation can precede 
genetic adaptation, and it has been suggested that plas-
ticity therefore facilitates genetic evolution (reviewed in 
[23]). However, trying to explain genetic evolvability (i.e., 
adaptive phenotype biases in response to random muta-
tion) by presupposing the existence of adaptive plasticity 
overlooks the fact that adaptive plasticity is itself a prod-
uct of genetic evolution. If explaining adaptive plasticity 
requires past genetic evolution to have already produced 
adaptive phenotypic responses to particular environ-
mental cues, this does not help to explain genetic evolv-
ability itself. The idea that plasticity and evolvability are 
intrinsically linked through development provides a way 
that selection for plasticity can result in the evolution 
of genetic evolvability, as studied here. Our aims have 
been to explore this linkage using mechanistic models of 
developmental dynamics and thus explore the evolution-
ary consequences of the relationship between plasticity 
and evolvability.

Our results show that a concordance between the GP, 
EP and PP maps is intrinsic to developmental dynam-
ics based on GRNs (with or without selection). Because 
of this concordance, selection for any map will affect the 
other maps in an essentially symmetric fashion. However, 
the efficacy of natural selection in sculpting the differ-
ent maps is not symmetric because selection for the EP 
map can be much more fine-grained than selection for 
the genetic evolvability. Accordingly, selection for plas-
ticity can be much more effective in changing the GRN 
and genetic evolvability than direct selection for genetic 
evolvability. Thus, without overlooking the fact that 
adaptive plasticity is itself a product of genetic evolution, 
we show how the genotype-phenotype (GP) map can be 
adaptively shaped by selection for phenotypic plastic-
ity, suggesting that adaptation to environmental varia-
tion helps explain the remarkable genetic evolvability of 
organisms in nature. This finding complements the previ-
ous notion that selecting for plasticity may increase the 
amount of (raw) genetically induced phenotypic variation 
[21]: we show now that such new induced variation is not 
only larger but, in addition, preferentially aligned with 
the direction of the adaptive plastic responses.

Fig. 5 Map evolvability depends on selective grain, and it is maximal for Environment‑Phenotype maps. In Figs. 3 and 4, simulations assumed 
that natural selection could act on the entire map. Since we define selective grain as the average number of parameter‑phenotype points that be 
experienced by a single individual in each generation (and hence “seen” by natural selection, see “Methods”), this corresponds to very fine‑grained 
selection. In this experiment, the assumption about high fine‑grainedness has been relaxed. For each level of selective grain, the ability of 
natural selection to evolve a linear map with an arbitrary slope is recorded as the Euclidean‑distance (ED)‑based fitness after t = 104 generations. 
Points correspond to individual replicates, and dashed lines to averages over the n = 30 replicates. Point colour represents map type. For each 
replicate, the target map is a linear function of arbitrary non‑zero slope. These plots show that the ability to adapt to a target slope increases 
non‑linearly with selective grain, and that maximal efficiency is achieved when selection is fine‑grained (> 1), which corresponds to scenarios in 
which single individuals can experience more than one input per generation. Such high levels of selective grain are typically only attainable for 
Environment‑Phenotype (EP) maps (see main text). In the GP and PP‑maps, in contrast, such high levels of fine‑grainedness (inputs/generation > 1; 
greyish shadowed areas) represent biologically unrealistic scenarios that can only be revealed by means of in silico experiments. However, 
understanding the evolutionary dynamics in these “unbiological” regions is fundamental to establish whether the evolutionary dynamics observed 
in real‑world populations arise from differences in the selection grain between maps or from other confounding factor(s) (see main text for a 
“Discussion”). p = 64 individuals, GRN + Multilinear model
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The results show that the phenotypic effects of genetic 
and environmental sources of variation are typically 
similar across a wide range of assumptions. This finding 
is in agreement with previous research that found simi-
lar correlations on other theoretical grounds or for more 
restricted scenarios, such as selection for developmen-
tal robustness to environmental perturbation [16–19, 
21, 24]. In a general sense, all these results suggest that 
organisms exhibiting adaptive plasticity will be expected 
to have high genetic evolvability, and vice versa. How-
ever, the inclusion of the parental (PP) map in our analy-
sis allows us to further generalise our results, suggesting 
that, by virtue of a shared developmental dynamics, most 
parametric perturbations in a developmental system will 
“map” to a similar set of phenotypes. Moreover, since 
the concordance appears in randomly generated regula-
tion networks, it does not require the concourse of past 
selection to produce this concordance. Rather, stabil-
ity analysis revealed that correlations between GP, EP, 
and PP maps are caused by the structure of the network 
itself and its associated dynamical properties. Although 
this result might be expected for statistical models that 
assume linearity and additivity (e.g., the equality P = GxE 
from quantitative genetics, [39]), it is non-trivial for 
mechanistic models like the ones presented here since 
these involve non-linear interactions between the inputs. 
These interactions create a non-uniform space of phe-
notypic possibilities (a generalised phenotype distribu-
tion; GPD) that includes regions of the morphospace that 
most of the parameter combinations map onto (i.e., phe-
notypic attractors; [18, 32]), and ‘forbidden’ regions that 
cannot be attained by any parameter combination. This 
does not imply that the GPD has an exaggerated robust-
ness preventing the existence of ample phenotypic vari-
ation. Rather, these features of the GPD impose strong 
limitations on the phenotypic variation that is possi-
ble, and the shape of the genotype-, environment-, and 
parental-phenotype maps will be similar since they share 
the same attractors (i.e. they must be contained within 
the same variational structure, Additional file  1: Fig. 
S1). Such complex attractors are an inherent property 
of many dynamical systems, and can be only revealed by 
means of mechanistic models or advanced mathematical 
tools [4, 7, 31, 32].

The reduced degrees of freedom of these shared attrac-
tors explain why a population that has evolved a specific 
(e.g., EP) map will show similar biases in all its maps, 
even when those have not been selected for. However, 
this dependence would not make plasticity exercise a dis-
proportionate effect on genetic evolvability unless there 
was some asymmetry that makes selection for proper-
ties of the EP map more efficient than selection for prop-
erties of the GP or PP maps. We show that this crucial 

asymmetry follows from differences in the temporal 
timescale (‘grain’) of environmental, parental and genetic 
variation that is input to these maps. Specifically, the vari-
ational properties of a map evolve faster when individuals 
experience multiple inputs, and hence can develop multi-
ple selectable phenotypes, during their lifetime [35–37]. 
While individuals can experience multiple environments 
during their lifetime, they do not experience multiple 
genotypes or initial conditions (e.g., the distribution of 
phenotypes produced under genetic variation is a prop-
erty of a family, population or lineage, not an individual). 
As a result, selection for GP and PP maps should typically 
be more coarse-grained and less efficient than for EP 
maps. This general property of natural selection suggests 
that adaptive EP maps will generally evolve more read-
ily than adaptive GP (and PP) maps, even though they 
depend on the same developmental dynamics. Notice 
that the reverse situation (plasticity lagging behind the 
other maps) might be also possible in some special cases 
of long-term environmental stasis (e.g., abyssal or deep-
soil communities) but, in most evolutionary scenarios, 
the evolution of phenotypic plasticity would lead the evo-
lution of genetic evolvability much more easily than vice 
versa.

These results generate predictions that can be tested 
empirically, for example, by means of experimental evo-
lution. One particularly useful approach would be to 
select populations in environments of different variability 
(i.e., selective grain), which should result in populations 
with different EP maps. The prediction is that the finer 
the selective grain, the more the structure of the GP map 
will resemble that of the EP map, which can be tested 
using mutation accumulation experiments or genetic 
engineering. Whether or not such changes in the GP 
map changes the capacity for future adaptation could be 
tested by exposing populations to new selective regimes 
that are more or less structurally similar to those that the 
population was initially adapted to. Other experimental 
and comparative approaches could also test one or sev-
eral of the predictions of the relationship between EP, PP, 
and GP maps (e.g., [12, 19, 40, 41]).

While our results demonstrate that natural selection 
on phenotypic plasticity would cause the GP map to 
evolve, they also show that the ability to evolve a certain 
map is severely limited by the map complexity itself, with 
complex (e.g., cubic) maps requiring highly fine-grained 
selection. This would render very complex EP (and GP) 
maps unreachable by adaptive evolution even in the most 
fine-grained scenarios [34]. However, complex maps are 
known to exist, which suggests that other non-selective 
processes, such as developmental system drift [31, 42], 
may play an important role in developmental evolution 
[3, 38]. This possibility is compatible with our results, 
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which simply state that whenever adaptive developmen-
tal biases do exist, they will be predominantly the result 
of past selection for phenotypic plasticity. Furthermore, 
since each trait needs to maintain its function as other 
parts of the organism develop and grow, selection for 
plasticity can be even more fine-grained that expected 
(our models do not fully capture this developmental 
dependence because they record the individual fitness 
after a fixed developmental time).

These results shed light on whether or not plasticity 
can exercise a predominant role in adaptive evolution, a 
hypothesis with a long and contentious history in evo-
lutionary biology [13, 21–23, 43–45]. While adaptive 
modification of environmentally induced phenotypes 
can make plasticity appear to ‘take the lead’ in evolution 
without any link between plasticity and genetic evolv-
ability [13, 41], the evolutionary change in the GP map 
caused by adaptive plasticity suggests that evolution is 
particularly likely to proceed where plasticity leads. Over 
longer timescales, this process provides a biologically 
plausible mechanism for the internalisation of environ-
mental information, resulting in developmental biases 
whose structure ‘mirrors’ the structure of the selective 
environment [46], and thereby facilitating further adap-
tations through genetic modification of environmentally 
induced phenotypes [8, 13, 21, 33]. Without denying the 
importance of other (adaptive and non-adaptive) pro-
cesses (e.g. [42]), this constitutes a strong argument for a 
role of plasticity in shaping the path of evolution.

Note that our results do not imply that phenotypic 
plasticity is a leader in the sense that it arises without 
genetic evolution. Rather, we suggest that the genetic evo-
lution of plasticity comes first, and this causes (by com-
mon cause of developmental mechanics) the evolution 
of genetic evolvability along the phenotypic directions 
that were initially plastic. This account is fully compatible 
with natural selection on genetic variation as a prime-
mover in evolution and yet suggests a meaningful sense 
in which phenotypic plasticity comes before genetic 
evolvability.

Conclusions
In summary, our work reports a previously ignored pro-
cess that explains how development can turn random 
genetic variation into adaptive phenotypic variation. Such 
a process, which entails an enhanced scope for adaptive 
evolution, emerges naturally from a combination of two 
different and well established phenomena. The first is 
that development makes the phenotypic consequences 
of genetic and environmental changes generally similar. 
Therefore, selecting for particular responses to environ-
mental variation (i.e., phenotypic plasticity) can affect 
the way organisms respond to genetic mutations (i.e., 

their genetic evolvability) and vice versa. The second is 
that natural selection is more efficient in evolving phe-
notypic plasticity than genetic evolvability (making plas-
ticity commonly adaptive). The developmental linkage 
allows these adaptive responses to environmental varia-
tion to be transferred to the genotype–phenotype map, 
thereby facilitating the generation of adaptive phenotypic 
variation through genetic change. These findings suggest 
that organisms can evolve in the long term by exploiting 
changes to the GP map that were originally evolved for 
their capacity to adaptively respond to environmental 
variation in the short term.

Methods
Correlations between maps
A large ensemble (n = 106) of random GRNs was cre-
ated by setting the probability of non-null genetic inter-
actions to p(Bij ≠ 0) ~ U(0,1). In addition, we uniformly 
sampled the GRN space of networks between 3 and 24 
genes, (Ng ~ U(3,24)) so that a variation in GRN size and 
connectivity were represented (by virtue of the cen-
tral limit theorem, average GRN size and connectivity 
are, respectively, Ng ≈ 14.5 and p(Bij ≠ 0)≈0.5). Envi-
ronmental inputs were also assigned randomly, being 
each element of the G vector drawn from an exponen-
tial distribution Ei ~ Exp(λ = 1). This ensures that just 
some environmental inputs are able to interfere effec-
tively with developmental dynamics (otherwise the 
effect of environment on GRN dynamics would be too 
large). The same ensemble was used for the three mod-
els. Model-specific elements were randomly drawn: 
Zij ~ U(−1,1) for the multilinear coefficients of the 
mixed model, and Di ~ U(0,1) for the diffusion rates of 
the lattice model. For each random GRN, parameter-
to-phenotype maps were generated through systematic 
(parametric) perturbations in each of the GRN ele-
ments. The element perturbed was randomly chosen 
for each replicate (n = 30) and given values from 0 to 
1 at 0.1 intervals (in this work, the input values of the 
different maps are of similar magnitude, an idealisa-
tion that allows us to compare the evolutionary proper-
ties of the different maps). During these perturbations, 
GRN topology was always held fixed. Perturbations in 
Bij were conceptualised as genetic changes; in G0 as 
changes in the initial conditions (i.e., parental effects); 
and in Ej or Di as environmental changes (Fig. 1). That 
way, the systematic perturbation of each element gen-
erated 10 different phenotypes that were recorded in a 
two trait morphospace, constituting a map (GP map, PP 
map or EP map, respectively). Note that our “maps” are 
not maps in a formal mathematical sense because they 
do not retain the univocal relationship between the 
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inputs and the outputs. However, they allow us to com-
pare different phenotypic distributions whose inputs 
have different units and magnitudes.

We focus on two-trait phenotypes because they 
embody the minimal multivariate system where associa-
tions between traits can be found (see below for simula-
tions involving more than 2 traits). In the basic, 2-trait 
system, maps were compared, two by two, using two 
measures of map-to-map similarity. The first is a coarse-
grained measure: Pearson’s r correlation between the two 
linear slopes in the phenotypic morphospace (Fig.  2). 
In order to take into account negative and close-to-
zero slopes, the original slope values were transformed 
to Sa = sgn(S)·Log(1 + S), so that negative values corre-
spond to negative slopes, and not to 0 < S < 1 (therefore, 
the radially symmetric distribution of points around the 
origin (0,0) observed in in Fig.  2A suggests that indi-
vidual trait-trait correlations across maps have similar 
likelihood of being positive or negative). Two maps a 
and b were said to be correlated or uncorrelated depend-
ing on their sectorial position in this correlational 
(Sa,Sb) space: corr(a,b) ↔|tan-1(Sa/Sb)-π/4|≤ π/12, 
anticorr(a,b) ↔|tan-1(Sa/Sb) + π/4|≤ π/12, and not cor-
related otherwise (Fig.  2B). The second, fine-grained 
measure is the Euclidean distance (EDa,b) between maps 
a and b (Additional file 1: Fig. S3):

where Tijk is the value of trait k in the jth phenotype of 
map i. As Additional file 1: Fig. S3 shows (panel A), EDa,b 
α|Sa/Sb|. As a proxy for map complexity (Ca) we use the 
sum of the squared residuals of each map with respect to 
its linear regression, which simply measures the quality of 
the fit of the map to the linear function y = Sa·x; where Sa 
is the slope of the map itself. While more mathematically 
precise measures of map complexity can be envisioned 
(e.g. Bayesian Information Criteria, Fourier analysis), our 
measure intuitively captures the notion that the more a 
map departs from a perfect line the more complex it is:

where Tij is the value of the trait j of the ith point (phe-
notype) of the map considered. For this analysis maps 
were re-scaled to (0 < Tij < 1) values in order to avoid size-
effects on the map complexity (otherwise the squared 
residuals of maps with large phenotypic values would 
result in artefactually higher complexity) (Additional 
file 1: Fig. S3B). We assess the effect on map-map similar-
ity (slopes and map complexities) of GRN size (Ng) and 
connectivity p(Bij ≠ 0) (Additional file 1: Fig. S4), but not 

(5)

EDa,b =

√

∑10

j=1

(

Taj1 − Tbj1

)2
+

(

Taj2 − Tbj2

)2

(6)Ca =
∑10

i=1
(Ti2 − Ti1Sa)

2

of GRN topology itself as this is beyond the scope of this 
work (for a discussion on this see [30, 31]).

Finally, we assessed the possible effect of the number 
of traits considered (Nt > 2) on the map-to-map com-
parisons, using three independent methods. In Method-1 
(Composited traits), slopes and (Pearson-r) correlations 
are calculated as in the two-trait (T1–T2) basic model 
but assuming, instead, that the first trait (T1) is a com-
posite trait containing (sub)traits 1 to Nt/2, and that the 
second trait (T2) is a composite trait containing (sub)
traits Nt/2 + 1 to Nt. In Method-2 (Averaged slopes), cor-
relations between maps are calculated using the average 
(linear) slope (Ŝ) of each map. Each average slope Ŝ is in 
turn calculated using the slopes of all possible two-trait 
combinations from the set of Nt traits:

where the left parenthesis indicates the number of trait 
combinations satisfying T1 < T2. Method-3 (Euclidean-
based comparison) follows Eq.  5, but generalize the 
measure to a Nt-dimensional space:

Independently of the method used, all simulations of 
this experiment satisfy Ng > Nt (otherwise high artefactual 
correlations would arise from the same gene controlling 
several traits). The results (summarized in Additional 
file  1: Fig. S10) suggest that increasing the number of 
traits does not compromise the map-to-map correla-
tions described throughout the paper (although specific 
trends may depend on the method used for multi-trait 
comparison).

Numerical integration
Following [30, 31, 38], all the differential Eqs.  (1 and 4) 
were numerically integrated using the Euler method 
(δt = 10–3).

Control experiments
Two control experiments were set up to better under-
stand the causes of the observed correlations between 
slopes S and map complexities C. In the first, with a prob-
ability p = {0.1,0.2,…1}, GRN topology was changed as 
Mij →|Mij−1| and the GRN input values as x → x ~ U(0,1). 
Then, correlations were recorded between the maps aris-
ing from the unperturbed GRN (S and C) and the rand-
omized ones (S* and C*, Additional file 1: Fig. S4). In the 
second control experiment, we used a set of randomly 
generated mathematical functions (polynomials f(x) with 
known degree deg(f ) ≤ 4) as a null, non-generative space 

(7)Ŝ =

(

Nt

2

)−1
∑Nt

i=1

∑Nt

j=1
S
(

Ti,Tj

)

(8)EDa,b =

√

∑10

j=1

∑Nt

k=1
N−1
t

(

Tajk − Tbjk

)2
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in which we could test whether the observed correla-
tions between map complexities are a general property 
of any mathematical function rather than a biologically 
relevant phenomenon (argument and value of f(x) are 
considered to correspond to the traits T1 and T2). A dis-
crete “mapping” was created by assigning ten values to 
x = {0.1,0.2,…1}, and then calculating the corresponding 
y-values (Additional file 1: Fig. S5):

where R is a vector of random numbers R(i) ~ U(0,1) 
and e−i a corrective token that devalues the high-degree 
terms of the function, ensuring that polynomials of dif-
ferent degrees are equally represented. If necessary, y-val-
ues were rescaled to (0 < y < 1, as in Additional file 1: Fig. 
S3), so that the map complexity of the the function was 
measured under the same conditions as for GRNs.

Evolving maps
Several of our experiments involve the adaptive evolu-
tion of a map: a population of p(= 64) non-recombinating 
(haploid) individuals picked from the random ensemble 
evolves in a mutation-selection-drift scenario until a map 
with a target slope ST is encountered, or until a maximum 
number of tmax = 105 generations is reached (non-over-
lapping discrete generations are used in all simulations). 
Arbitrarily, ST is set to ST = 1 (other choices do not alter 
the results, see Additional file 1: Fig. S6). With a rate of 
0.04 (≈1/Ngmax) per element and generation, point muta-
tions are introduced in the matrices encoding the topol-
ogy and interaction strengths of the GRN: Bij → Bij + ξ 
(ξ ~ N(μ,σ); μ = 0, σ = 0.01) and Mij →|Mij−1|. The same 
rate of change is applied to the coefficients of the multi-
linear model used in the evolutionary simulations, which 
mutate as Zij → Zij + ξ (ξ ~ N(μ,σ); μ = 0, σ = 0.01). Such a 
mutation process is applied to every individual within the 
population at every generation. The fitness of each indi-
vidual Wi is calculated on the basis of its ability to create 
a map similar to the target one (not on the basis of a sin-
gle phenotype). Thus, each individual in each generation 
is exposed to 10 different inputs in one of its GRN ele-
ments (the element depends on the map being evolved), 
and its slope Si in a T1–T2 morphospace recorded and 
compared to the target slope ST. This algorithm is for-
mally equivalent to an inter-generational variation in the 
inputs [33–35]. The similarity with the target slope deter-
mines the individual’s fitness and, in turn, the probability 
of each individual to contribute to the next generation:

(9)y(≈ T2) =
∑4

i=0
R(i)x(≈ T1)

ie−i

(10)Wi = e−
∣

∣Si−ST
∣

∣

Some of our experiments involve different levels 
of selective grain on the maps, which has two differ-
ent components: intra-generational (i.e., how many 
different inputs (or points of the whole map) can the 
population experience in a single generation) and inter-
generational (i.e., how often these inputs change, which 
can be conveniently expressed as the number of gen-
erations between changes in the input values). For the 
sake of simplicity we collapse these two components 
in a single composite measure of fine-grainedness as 
inputs/generation (Figs. 5, Additional file 1: Figs. S8 and 
S9). Since slopes alone cannot account for the number 
of points in a map, the fitness is now calculated as:

where EDmapi,mapT is the Euclidean distance, point by 
point, between the individual’s map (mapi) and the target 
map (mapT), as described in Eq. (5).
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