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Abstract

isolation in highly specific plant-pollinator interactions.

Background: Sexually deceptive orchids of the genus Ophrys attract their pollinators, male insects, on a highly specific
basis through the emission of odour blends that mimic the female sex pheromone of the targeted species. In this
study, we have investigated a contact site between Ophrys arachnitiformis and O. lupercalis, two sympatric orchid
species that are usually reproductively isolated via the exploitation of different pollinator "niches’, but occasionally
hybridise despite their apparent combination of ethological and mechanical isolation barriers. In particular, we have
investigated the extent to which these Ophrys hybrids generate "emergent" combinations (i.e. novel and unpredictable
from the parents' phenotypes) of floral traits, and how these phenotypic novelties, particularly the odour blends
emitted by the flower, could facilitate the invasion of a novel pollinator "niche" and induce the rapid formation of
reproductive isolation, a prerequisite for adaptive evolutionary divergence.

Results: Our chemical analyses of floral scents show that the Ophrys F1 hybrids investigated here produce more
compounds, significantly different ratios (% of odour compounds in the total blend), as well as new compounds in
their floral odour compared to their progenitors. When tested for their attractiveness to the pollinator of each parent
orchid species, we found that floral scent extracts of the hybrids triggered less inspecting flights and contacts by the
male bees with the scented dummy than those of the parental orchid species. However, a series of additional
behavioural bioassays revealed that the novel floral scent of the hybrids was significantly more attractive than either of
the two parents to a pollinator species not initially involved in the pollination of any of the parent Ophrys species.

Conclusions: Collectively, our results illustrate that the process of hybridisation can lead to the generation of
evolutionary novelties, and that novel combinations of floral traits can drive pollinator shifts and rapid reproductive

Background

Angiosperms and their insect pollinators have flourished
with extraordinary diversity through parallel and succes-
sive "explosive" radiations over the past 140 million years.
It has been suggested that the intimate relationships
between flowering plants and their pollinators have
fuelled each other's diversification [1,2] and led to some
of today's textbook cases of pollinator-mediated radiation
such as in the Polemoniaceae family [3]. The examination
of plant-pollinator interactions indicates that discrete flo-
ral differences among closely-related plant species can
induce assortative pollinator attraction and contribute to
reproductive isolation [4-7]. The origin of floral novelties
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(changes in the floral design, display, flowering time,
chemistry and/or reward type) can therefore be consid-
ered as an important driving force in the diversification of
flowering plants. Differences in floral phenotype can be
generated by allelic variation at sometimes only one or a
few loci [8-10], yet it has been shown that more "emer-
gent" floral novelties (i.e., not predictable from the par-
ents' phenotypes) can also originate via other processes
such as polyploidy [11-14] or hybridisation between sym-
patric taxa [15]. Hybridisation can affect several pheno-
typic traits and niche dimensions which made this
phenomenon and its creative potential a particularly
important driving force in angiosperm evolution and
diversification [15-23]. The acquisition of novel combina-
tions of floral traits can help recombinant hybrids invade
a vacant pollinator "niche", unexploited by its progeni-
tors, which represents one route to adaptive evolutionary
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divergence, sympatric establishment and in
instances the origin of new species [18,24-30].

The orchid family and its ca. 24,000 species described
to date (World Orchid Checklist, Royal Botanical Gar-
dens Kew, UK) represent a particularly attractive group of
flowering plants for studies addressing the ecological and
evolutionary consequences of hybridisation. Indeed, the
unusually high degree of specificity in pollinator attrac-
tion [31-35] and the apparent frequent formation of
hybrids between orchid species, genera and even sub-
tribes [36-38] offer a fertile loam for studies on the role of
floral traits, including floral scents, in pollinator attrac-
tion. This is particularly true for some of the species-rich
genera of so-called sexually deceptive orchids, like the
European genus Ophrys, where pollinator attraction is
brought about by a form of floral mimicry known as sex-
ual deception. In this plant-pollinator interaction, a range
of male insects (mainly wild bees, wasps and sometimes
even beetles) pollinate the flowers during an attempted
copulation (i.e., pseudocopulation) on the female decoys
on the labellum [39,40]. Although floral colours/contrasts
might be important in the detection of the flowers, the
major floral attractant in this mimicry system is the floral
scent, which mimics the female sex pheromone bouquet
of a narrow range of targeted insect species [41-48]. Since
sex pheromone communication channels are usually spe-
cies-specific [[49], but see [50,51]], most Ophrys species
are de facto reproductively isolated through the species-
specific attraction of only one or a few closely related
insect taxa [35,52,53]. Furthermore, when sympatric
Ophrys taxa share the same pollinator species, cross-pol-
lination is usually prevented by the attachment of the pol-
len masses (i.e., the pollinaria) of the orchid on different
body parts of the insect (e.g. on the head vs. the abdomen
tip) during pseudocopulation [39,40]. However, despite
the apparent strength of pollinator-mediated reproduc-
tive isolation in Ophrys [54], a considerable proportion of
these orchids that clearly belong to different and diagnos-
able species do hybridise in nature [55-59]. Hybridisation
in Ophrys therefore provides unique opportunities for the
formation of novel combinations of floral traits, particu-
larly the composition of the floral scent, that can poten-
tially drive shifts in pollinator niches and hence the rapid
evolution of reproductive isolation between the hybrids
and their sympatric parent species [see also [53]].

In this paper, we investigated the potential of Ophrys
hybridisation to generate novel combinations of floral
traits that could induce a pollinator shift. We used a com-
bination of comparative chemical analyses of floral
scents, genetic analyses of orchid taxa with AFLP molec-
ular markers, in situ hand pollinations as well as behav-
ioural bioassays with pollinators to uncover the origin
and evolutionary consequences of hybridisation. Specifi-
cally, we ask the following questions: (i) How did the

some
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hybrids originate?; (ii) Are there differences in floral scent
composition between the parental orchid species and the
hybrids?; (iii) Can these floral differences induce a "niche
shift" in the hybrids towards the attraction of a "new" pol-
linator species not exploited by any of the parental orchid
species?

Results

Behavioural experiments with fresh inflorescences

Our observations of pollinator behaviour during pseudo-
copulations with fresh, unpollinated flowers of the orchid
taxa illustrate that the pollinators of each parent taxon
systematically initiated copulation attempts on the orchid
labellum in the expected position (i.e., "abdominal” on O.
lupercalis and "cephalic” on O. arachnitiformis). However,
we have observed that the insects' copulatory activity on
the flowers regularly led to changes in their position on
the labellum and occasionally to the subsequent uptake of
pollinaria when in the alternative position (Figure 1). The
supplementary video material [Additional file 1: Video]
shows a male C. cunicularius pseudocopulating on the
labellum of O. lupercalis, the other parent species, and
withdrawing pollinaria on both its head and its abdomen
tip during a single visit on the flowers.

Behavioural experiments with floral odour extracts

Results from our bioassays provide evidence for cross-
attraction among orchid taxa towards patrolling males of
C. cunicularius and A. nigroaenea (Figures 1 and 2). Spe-
cifically, we found that for each pollinator, floral odour
extracts of the most commonly associated Ophrys taxa
(e.g. O. arachnitiformis for males of C. cunicularius) were
more attractive than floral odour extracts of the other
parent species. The results from these bioassays further
show that the floral odour extracts of hybrids triggered
significantly less inspecting flights and contacts than
those of the two parental species (Mann-Whitney U-test,
P < 0.01), except for the bioassays with A. nigroaenea
where no significant difference in attractiveness was
found (Mann-Whitney U-test, P = 0.263) between the
attractiveness of male bees towards floral odour extracts
of the hybrids and of O. arachnitiformis (Figure 2). By
performing bioassays with males of A. vaga, a species not
initially involved in the pollination of the parent Ophrys
species, we found that the floral odour of the hybrids trig-
gered significantly more approaching flights to and con-
tacts with the odour source than the floral odour of any of
the two parents (Figure 2) (Mann-Whitney U-test, P <
0.01).

Floral odour differentiation - hybrids and their progenitors
Our analyses of floral odour extracts of each orchid taxa
in the hybrid zone have detected the presence of 80 indi-
vidual compounds in total, including the biologically
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All photographs by NJ Vereecken.

Figure 1 Orchids and their pollinators in the hybrid zone. A. Pseudocopulating males of Andrena nigroaenea (Kirby) (Hymenoptera, Andrenidae)
in both the "abdominal" and the "cephalic" positions on the flower labella of Ophrys lupercalis Devillers-Terschuren & Devillers; B. Pseudocopulating
male of A. nigroaenea in the "abdominal" position on a flower of O. lupercalis with pollinaria on its head; C. Pseudocopulating male of Colletes cunicu-
larius (L.) (Hymenoptera, Colletidae) in the "cephalic" position on the flower labellum of O. arachnitiformis; D. Pseudocopulating male of C. cunicularius
on the flower labellum of O. lupercalis with pollinaria on its head; E. Pseudocopulating male of A. nigroaenea in "cephalic" position on the flower label-
lum of O. arachnitiformis; F. A detail of a flower of the natural hybrid between O. arachnitiformis and O. lupercalis at the study site in southern France.

active compounds identified for A. nigroaenea, the polli-
nator of O. lupercalis [60,61], and for C. cunicularius, the
pollinator of O. arachnitiformis (= O. exaltata) [44- Addi-
tional file 2: Supplemental Table S1]. A comparison of the
number of floral odour compounds found in each taxon
is provided in Table 1. With a total of 73 odour com-
pounds, the hybrids produce more odour compounds

(qualitatively) in their floral odour than any of their par-
ent species. We also found some compounds to be taxon-
specific, in particular 2 "new" odour compounds pro-
duced exclusively by the hybrids whose GC-MS spectra
indicate that they are straight-chained alkenes (mono-
unsaturated alkenes, position of the double bound
unknown) of 23 and 25 carbon chain length, respectively.
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Figure 2 Behavioural bioassays with the pollinators. Comparative
level of attractiveness of floral odour extracts of each taxa in the hybrid
zone towards patrolling male bees. A. Colletes cunicularius, the pollina-
tor of Ophrys arachnitiformis; B. Andrena nigroaenea, the pollinator of
Ophrys lupercalis; C. Andrena vaga. One-Way ANOVA with LSD post-hoc
test (a = 0.05). Different superscript letters on top of error bars indicate
significant differences; the number of replicates is listed underneath
the columns.
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A canonical discriminant function (CDF) analysis of
odour compounds resolved the hybrids and their progen-
itor species into non-overlapping groups (Figure 3). This
CDF analysis rejects the null hypothesis of homogeneity
of covariance matrices (small Wilks' X values: WA, =
0.000002; W\, = 0.042 and associated P, and P, < 0.001).
The high discriminatory ability of the canonical discrimi-
nant functions 1 and 2 plotted in Figure 3 provide evi-
dence for the importance of the independent variables
(i.e., all floral odour compounds) to the discriminant
analysis. Canonical correlation values close to 1 (Cc; =
0.996; Cc, = 0.979) associated with the two CDF's plotted
further account for the significant contribution of the
first two canonical discriminant functions to the resolv-
ing of all three orchid taxa into non-overlapping groups.
The CDF's 1 and 2 account for 100% (84.0% and 16.0%,
respectively) of the total odour variance among orchid
taxa, which further indicates their great discriminatory
ability in the model (100% of cross-validated grouped
cases were correctly classified). Overall, 97.9% of all
cross-validated samples were assigned correctly to their
taxa by the two CDF's (O. arachnitiformis: 100%; Hybrids:
90.9%; O. lupercalis: 100%). The analysis of the partition-
ing of the floral odour variance yielded a significantly
higher proportion of the variance among taxa (65%) over
within taxa (35%).

The analysis of overall floral odour similarity (relative
proportions of all compounds, in %) among samples was
performed using unweighted pair groups with arithmetic
averages (UPGMA). Our results show that, besides the
fact that all but one sample ("23Hybr3" on Figure 4)
grouped together according to taxa, the floral odour of
the hybrids is chemically asymmetric towards O. luper-
calis. The UPGMA cladogram revealed two discrete clus-
ters, the first one comprising all the samples of O.
arachnitiformis (solid circle at internal node, Figure 4)
and the second consisting of two subclusters containing
O. lupercalis and the hybrids (open circle at internal
node, Figure 4).

Molecular hybrid index scores

The eight primer pair combinations used for AFLP analy-
sis produced a total of 390 polymorphic markers. Using
the 100% difference criterion, we identified 157 markers
as species-specific for Ophrys arachnitiformis and O.
lupercalis. Of these, 95 were present as bands in O. arach-
nitiformis and 62 in O. lupercalis. The hybrid index analy-
sis to allocated individuals to the specific hybrid class
with high confidence (Figure 5). The hybrid index analy-
sis based on species-specific markers revealed exactly the
same pattern of hybrid index analysis calculated with all
polymorphic markers (data not shown). The mean ML
hybrid index (MLI(%)) for hybrid individuals was 0.277
(S.E. £ 0.008) with diagnostic species-specific markers.
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Table 1: Floral odour chemistry in the hybrid zone
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Orchid taxa

Number of floral odour compounds
identified (% of total)

Number of taxon-specific odour
compounds identified

Opbhrys arachnitiformis 64 (80%) 3
Hybrids 73(91.25%) 2
Ophrys lupercalis 66 (82.5%) 1

Summary of floral odour compound production in each orchid taxon of the hybrid zone investigated. A total of 80 odour compounds have
been identified, 48 (i.e. 60%) of which were produced by all three taxa simultaneously.

We found no evidence for patterns of genetic variation
suggestive of gene introgression into parental classes in
the hybrid zone investigated (Figure 5).

Crossing experiments and flow cytometry analyses

None of the hand-pollinations performed between the
hybrids and the parents resulted in capsule formation.
Hand-pollinations between hybrids yielded only one cap-
sule that contained few seeds that were devoid of embryo,
which we therefore considered unviable. We did not
check whether the pollen tubes made it all the way to the
ovules in the back-crosses and the F1xF1 crosses.

The flow cytometry profiles produced consistent
results within taxa and revealed differences in ploidy level
among the Ophrys species investigated. Our analyses of
pollinia and leaf fragments showed that O. bilunulata
(control 1), O. sphegodes (control 2) and O. arachniti-
formis (parent 1) have the same ploidy level, namely that

Canonical Discriminant Function analysis
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o © Hybrid
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Figure 3 Floral scent profiles. Floral scent differentiation among taxa
in the Ophrys hybrid zone investigated. Canonical discriminant func-
tion (CDF) plot of all odour compounds (relative proportions, in %)
found in epicuticular extracts of the Ophyrs flowers. Functions 1 and 2
account for 100% (86.0% and 14.0%, respectively) of the total variability
in floral odour among orchid taxa.

they are all diploid (2n = 36). The samples of O. luper-
calis, however, contained twice as much DNA as those of
the aforementioned species, which suggests that all the O.
lupercalis individuals investigated in the hybrid zone are
tetraploid (4n = 72). Finally, the analyses of DNA contents
of both pollinia and leaf fragments of the hybrids revealed
a ploidy level intermediate to that of the two parents,
which supports the scenario that the hybrids sampled in
the hybrid zone are triploid (3n = 54).

Discussion

The origin of Ophrys hybrids

Our study provided evidence for the occasional break-
down of both ethological and mechanical isolation barri-
ers mediated by the pollinators, which provides
opportunities for the formation of hybrids between O.
arachnitiformis and O. lupercalis when they are found in
sympatry. The cross-attraction of each parent orchid spe-
cies to each pollinator was allowed by the emission of (at
least partly) overlapping patterns of biologically-active
compounds for each pollinator species [Additional file 2:
Supplemental Table S1]. It is generally assumed that sexu-
ally deceptive orchids are strongly isolated via pre-polli-
nation barriers, and more weakly through post-zygotic
(i.e., post-pollination) mechanisms, which contrasts to
the situation observed in food deceptive orchids that have
weak pre-pollination [62] but strong post-zygotic isola-
tion barriers [63]. Yet in this study, we have been able to
show that pre-pollination (ethological and mechanical)
isolation barriers, which are generally thought to repre-
sent strong isolation mechanisms in flowering plants,
especially when they act in concert (e.g. [64]), could be
more permeable than previously thought in the genus
Ophrys (Figure 1 and [Additional file 1: Video]).

Many species of solitary bees that act as pollinators in
Ophrys use specific female sex pheromone that are often
based on a "variation on a theme", ie. identical com-
pounds in different ratios [53,57,65]. This phenomenon
enhances the probability for an Ophrys species to be
cross-attractive to different pollinators, even though the
flowers might receive significantly more visits by their
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Figure 4 Floral scent clustering. Floral odour similarity between samples of Ophrys arachnitiformis (solid, black bar), hybrids (open bar) and O. luper-
calis (solid, grey bar) in the orchid hybrid zone. The UPGMA cladogram was based on pairwise Euclidean distance in floral odour (relative proportions
of all compounds, in %) between samples. Individuals are grouped together according to taxa (except for one sample, labelled "23Hybr3"), and hybrids
cluster together with O. lupercalis (open circle at internal node), whereas samples of O. arachnitiformis cluster separately (solid circle at internal node).
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Figure 5 Genetic architecture of the hybrid zone. Maximum-likeli-
hood estimates of molecular hybrid indices (MLE(h)) and their associ-
ated confidence intervals based on band frequencies for all individuals
(both parental species and their hybrids) sampled across the hybrid
zone. The hybrid index (h) ranges from zero to one, corresponding to
pure individuals of Ophrys lupercalis (the other parent species) and O.
arachnitiformis (the reference species), respectively.

most commonly associated pollinator (see Figure 2).
Hence, reproductive isolation is usually maintained but
does not prevent opportunities for gene flow between
sympatric species, at least theoretically. Besides, the
attractiveness of orchids to alternative pollinators
observed in O. arachnitiformis and O. lupercalis (Figures
1 and 2) might enhance the reproductive output of these
orchids at a local scale, a mechanism that should be
favoured by selection since orchids in general and decep-
tive ones in particular are often pollinator-limited in their
reproductive success [34,42,66,67].

Hybrid floral novelty and pollinator shift

A prerequisite for adaptive evolutionary divergence of
hybrids is the invasion of an alternative "niche" in which
the hybrids are subjected to different selection pressures,
and the parallel evolution of reproductive isolation
between the parents and the hybrids. The results from
our analyses and bioassays support these two require-
ments, first because we have shown that the F1 hybrids
emit "emergent" combinations of floral scent compouds,
i.e. they are not intermediate between their parents or
have the sum of their parents' traits, but instead they have
developed an "emergent" floral scent novelty with com-
pletely new compounds that are not predictable from the
parents' phenotypes. Second, this floral scent novelty
leads to the acquisition of a novel pollinator "niche" by
hybrids (Figure 3, Table 1) that can drive the rapid evolu-
tion of reproductive isolation between the hybrids and
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their parents (Figure 2). These data are consistent with
previous studies reporting that even small changes in flo-
ral scent chemistry in Ophrys have the potential to medi-
ate assortative pollinator attraction [53,65] and hence
promote rapid reproductive isolation between diverging
sympatric orchid taxa if maintained over generations
[68]. Furthermore, our results challenge the view that
hybrids often experience reduced fitness compared to
their parents [57,69-72] by showing that they can also
outcompete their parents under certain ecological condi-
tions (here, different pollinator environments, but see
also [73]). Finally, the last major step towards fully auton-
omous establishment requires the hybrids to be fertile
[22,25]. Here, none of our bidirectional and controlled
hand-pollinations resulted in capsule formation, and
hand-pollinations within the group of hybrids yielded
only one capsule that contained seeds devoid of embryo,
which suggests that the hybrids tested here between O.
arachnitiformis and O. lupercalis are both maternally and
paternally sterile, a likely consequence of their triploidy.

Although the triploid hybrids investigated have been
shown to be sterile, their evolutionary potential should
not be dismissed a priori. Indeed, studies on allotriploids
obtained via diploid and tetraploid parent species indi-
cate that many of the gametes produced by triploids are
not functional, because they possess aneuploid, unbal-
anced chromosome numbers. However, triploids may
occasionally generate small numbers of euploid (x, 2x)
gametes and they can also produce 3x gametes via non-
reduction (reviewed by [74]). This may enable allotrip-
loids to produce fertile allotetraploids by selfing or back-
crossing with diploid parents [75-78] without otherwise
significant changes in the genomic architecture of the
polyploid individuals [79]. Several studies have shown
that massive expression changes often accompany poly-
ploid formation but autopolyploidy might produce less
dramatic expression changes than allopolyploidy. hybridi-
sation is likely to cause more dramatic phenotypic
changes than genome doubling per se because it results in
transcriptional effects following the combination of dif-
ferentiated genomes, with their divergent regulatory
machinery, into a common nucleus (reviewed in [80]). If
filled, these requirements could potentially open up a
new route to the emergence of a hybrid neospecies
through the attraction of a novel pollinator, provided
potential pollinators are present locally. This scenario
could also help explain the occurrence of several endemic
species of Ophrys frequently characterised by a tetraploid
genome [81].

The parental species pair investigated in this study
turned out to have different ploidy levels, yet reports
indicate that O. lupercalis might be diploid in other
regions of the Mediterranean Basin [82]. These contact
sites between O. arachnitiformis and O. lupercalis should
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be investigated by using the present study as a conceptual
touchstone to ultimately determine whether or not the
local hybrids are at least partially fertile. Other sympatric
species of Ophrys that have the same ploidy level are
known to produce hybrids that set seed when they are
experimentally pollinated with pollinia from other sym-
patric hybrids [57,58]. Among these hybrids, several have
been reported to have a significantly different floral
odour bouquet compared to their parents [83]. Our
results should therefore encourage investigations in these
hybrid zones to test the extent to which hybrids can
escape the ecological niche of their parents through the
attraction of pollinators that are not involved in the polli-
nation of their parents [19,21,25,84].

Conclusions

In this study, we have found evidence that hybridisation
in sexually deceptive orchids can produce novel combina-
tions of floral traits, particularly their floral odour (Fig-
ures 3 and 4), that can in turn lead to a pollinator shift
(Figure 2). However, the development of the hybrids
under study into novel "ecological” species is hindered by
their sterility, which is also expected to impede the for-
mation of later-generation progeny via selfing, sib-cross-
ing with neighbouring hybrid individuals, or back-
crossing with any of the sympatric parental species. Yet,
although several assumptions are not met for making
plausible ecological speciation by hybridisation in the
hybrids between O. arachnitiformis and O. lupercalis, our
study provides a unique window into the stepwise process
by which apparent reproductive barriers can be broken
down and how new combinations of floral traits can be
generated, leading to the evolution of novel, highly spe-
cific plant-pollinator interactions.

Methods

Species profiles

The model organisms chosen in this study are Ophrys
arachnitiformis and O. lupercalis, two species that belong
to different sections within the genus Ophrys (sections
Euophrys and Pseudophrys, respectively). These taxa
often bloom and grow in sympatry from mid-March to
mid-April in southern France where they are pollinated
by males of Colletes cunicularius and Andrena nigroae-
nea, respectively. During pseudocopulation, the orchids'
pollinaria are attached on distinct body parts of the polli-
nator (on the face for C. cunicularius and on the abdomi-
nal tip for A. nigroaenea). Hence reproductive isolation
between O. arachnitiformis and O. lupercalis growing in
sympatry is usually achieved through a combination of (i)
ethological isolation (the specific attraction of distinct
pollinator taxa) and (ii) mechanical isolation (the differ-
ential attachment of pollen masses on the body of their
respective pollinator). However, these orchid species
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were found to hybridise at Torreilles (S-France) in a pop-
ulation where only the two aforementioned Ophrys spe-
cies and their hybrids grew intermixed. These hybrids
between these parent species are rare in the wild and
when formed, they are mostly found at low densities in
populations largely dominated by the parent species.

The geographic range of the solitary bee A. vaga
extends from middle and north Europe to Central Asia
[85], and in France down to the Rhone river valley [86]
where both O. arachnitiformis and O. lupercalis are
known to occur [87].

Sample collection and preparation

A total of 53 individuals representative of each orchid
taxa in the hybrid zone (O. arachnitiformis (20); hybrids
(13); O. lupercalis (20)) were labelled individually and
sampled for chemical analyses of their floral odour; the
same individuals were used to sample plant material for
genetic analyses. Individual labella of fresh, unpollinated
Ophrys flowers of both parent species and their hybrids
were extracted in 200 pl of hexane (HPLC grade) for one
minute. All floral extracts were stored at -20°C for subse-
quent gas chromatography (GC) analyses and behav-
ioural bioassays.

Chemical analyses

All samples were analysed by gas chromatography (GC)
on a Hewlett Packard 6890N GC equipped with a HP-5
capillary column (30 m * 0.32 mm * 0.25 pm). The injec-
tor temperature was kept at 300°C. One pL aliquots of the
extracts were injected splitless at 50°C (1 minute), fol-
lowed by a programmed increase of oven temperature to
300°C at a rate of 10°C/min; helium was used as the car-
rier gas. 100 ng of n-octadecane was added as an internal
standard to each sample. Compounds were identified by
comparison of retention times with authentic standard
compounds, and a selection of samples were analysed
with a Finnigan Trace Ultra GC coupled with a Finnigan
POLARIS Q ion trap mass spectrometer under the tem-
perature conditions mentioned above. The absolute
amounts of all 80 identified compounds were calculated
by the internal standard method as described by Mant et
al. [44]. Relative proportions (%) were calculated by sum-
ming up the absolute amounts of all compounds; absolute
amounts of individual compounds were then divided by
the total and multiplied by 100.

Behavioural experiments - fresh inflorescences

During this study, we have performed behavioural obser-
vations of the pollinators using fresh, unpollinated flow-
ers of Ophrys arachnitiformis and O. lupercalis.
Pollinators were observed in situ, caught and identified.
Pollinator behaviour on the flowers was recorded using
macro photography of pseudocopulating bees in order to
determine if both pollinators are able to transfer polli-
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naria between the parent orchid species during pseudo-
copulations.

Behavioural experiments - floral odour extracts

To quantify the relative attractiveness of orchid taxa in
the hybrid zone, we have performed behavioural bioas-
says with patrolling male bees using dummies scented
with solvent extracts of unpollinated flowers of each
orchid taxa in the hybrid zone. The orchid species inves-
tigated are flowering in very early spring, at a time when
only very few solitary bees have emerged from their
underground cell. Picked inflorescences of the hybrids
were tested for their attractiveness towards 5 species of
solitary bees (Andrena bicolor, A. flavipes, A. vaga,
Anthophora plumipes and Eucera elongatula) that could
potentially act as pollinators since they were active at the
same time of the year (in early March) and their distribu-
tion range overlaps with that of the orchids investigated.
Among these solitary bee species, only the males of A.
vaga seemed to be interested in the hybrids and they were
observed visiting the flowers frenetically. These prelimi-
nary observations have led to the choice of this species as
a potential pollinator of the hybrids and the subsequent
series of bioassays performed in the field. All behavioural
bioassays were performed in late March and early April
2006-2007 in natural populations of Colletes cunicularius
and Andrena nigroaenea in Cadillon (southern France) as
well as in an allopatric natural population of A. vaga
(Braine-I'Alleud, Belgium) where male bees were patrol-
ling for emerging females on restricted nesting/emer-
gence sites. The density of bees in each site was stable
over the days of observations. These bee species rank
among the first bees to emerge in early spring and their
flight period largely overlaps with that of the three orchid
taxa investigated. Behavioural responses of male bees
towards scented dummies (black cylindrical plastic
beads, 4 x 5 mm, mounted on an insect pin) were taped
using a digital voice recorder (during 3 minutes for C.
cunicularius and A. vaga, 5 minutes for A. nigroaenea due
to a lower population density and activity) and classified
in two categories: (i) number of approaches (inspecting
flight in front of the dummy at close range (< 10 cm)
without any contact with the odour source), and (ii) num-
ber of contacts with the scented dummy. Odour samples
were tested individually and each scented dummy was
used only once. Half the amount of each natural extract
was applied on each dummy with a Hamilton glass
syringe (100 uL) for each behavioural bioassay, whereas
the second half was saved for chemical analyses. The
dummy was placed in a male patrolling area after the sol-
vent had evaporated. Controls (dummies treated with
solvent only) were tested successively for their attractive-
ness after every 5th test. All bioassays were conducted
between 10 a.m. and 3 p.m. - when patrolling activity of
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male bees was at its peak. Since males of C. cunicularius
are known to patrol fairly localised regions on the nest-
ing/emergence site [87] and since the same phenomenon
is likely to be observed in the other bee species investi-
gated, test spots were changed after each bioassay to test
the responses of different males to natural extracts of
Ophrys flowers and to avoid any habituation of the male
bees to the test spots.

DNA extraction and molecular analyses

For each orchid taxa, a leaf fragment of ca. 8 cm? was
excised and the plant tissue was desiccated using silicagel,
each in individual sealed plastic bags. Genomic DNA was
extracted using a slight modification of CTAB protocol of
Doyle & Doyle [88]. Plant leaf material was macerated in
700 uL of standard CTAB buffer, incubated at 60°C for 30
min, extracted twice with chloroform-isoamyl alcohol,
precipitated with isopropanol and washed with 70% etha-
nol. Precipitated DNA was then resuspended in 50 uL of
distilled water. Amplified Fragment Length Polymor-
phism (AFLP) analysis was performed using a modified
version of Vos et al. [89]. Restriction-digestion was con-
ducted using restriction enzymes EcoRI and Msel on 300
ng genomic DNA. Ligation of EcoRI and Msel adapters to
restriction fragments took place concurrently with
restriction digestion. A pre-amplification PCR of the
restriction fragments was conducted using a template of
2 pl of the restriction-ligation product. Primers for the
preamplification were EcoRI and Msel primers with one
additional selective nucleotide. A second selective ampli-
fication was conducted with 1 pl of preamplification
product, primers were the same as in preamplification,
but with two or three additional selective nucleotides. A
total of six primer pairs were used. Fragment separation
and detection took place on ABI 3130 AVANT DNA
sequencer. Fragment sizes (in bp) were determined with
the software Genemapper 3.7 by using an internal size
standard (GeneScan Rox500, Applied Biosystem).

Molecular data analysis

The AFLP profiles generated using the various primer
combinations were scored in terms of presence or
absence of each marker in each individual plant. Frag-
ments were always scored as dominant markers excluding
monomorphic markers from all further analysis. The
genetic marker data were used to calculate a molecular
hybrid index for each individual. To estimate the hybrid
index we used the software HINDEX, which applies a
maximum-likelihood estimate approach [90]. The hybrid
index (%) ranges between zero and one, corresponding to
pure individuals of the alternative and reference species,
respectively [90]. We calculated the hybrid index both
using all polymorphic markers and the species-specific
marker only. We considered markers as species-specific if
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they occurred in 100% of the individuals in one parental
species, but were absent from the other parental species.

Crossing experiments and flow cytometry analyses

Five hybrid individuals, representing a set of 15 fresh and
unpollinated flowers, were dug out, transplanted in pots
and used for hand pollination experiments. Each flower
was cross-pollinated using one pollen mass from another
hybrid individual. Additionally, 20 hybrid pollinaria were
used for hand pollinations with each parent (10 hand pol-
linations for each hybrid-parent pair). All the hand-polli-
nated individuals transferred in pots were stored in a
temperate greenhouse until the inflorescences wilted and
the formation of fruits (capsules) was complete. We then
counted the number of capsules formed and examined
the seeds contained in the capsules for the presence of
embryos by light microscopy.

To assess the relative ploidy level of Ophrys arachniti-
formis, O. lupercalis and their hybrids in the hybrid zone
investigated, we have performed flow cytometry analyses
using a PA-I flow cytometer with HBO (high pressure
mercury lamp) PARTEC® (Partec Gmbh, Miinster, Ger-
many). Plant material (fresh leaf fragments and pollinia)
of O. bilunulata, a diploid, closely-related species of O.
lupercalis [82,87], and of O. sphegodes were used as con-
trols for the calibration of the flow cytometer.

Statistic analyses

We used multivariate analyses to investigate floral odour
differentiation (relative amounts of all compounds, in %)
among the orchid taxa in the hybrid zone. First, we used a
principal component analysis (PCA) to reduce the num-
ber of variables (odour compounds) in the analysis. All 15
principal components generated by the PCA were then
used in a canonical discriminant function (CDF) analysis.
We used all the floral odour compounds recorded in sol-
vent extracts since the data did not contain significant
outliers and given that this multivariate method is robust
even when the homogeneity of variances assumption is
not met [91]. We used a pairwise individual-by-individual
Euclidean distance matrix (calculated from the relative
amounts of odour compounds in SPSS 13.0) as input file
in GenAlEx 6 [92] to analyse the partitioning of odour
variance among and within orchid taxa. This analysis is
based on an adaptation of the AMOVA framework for
the analysis of odour (see [68] for additional details); ran-
dom permutations (n = 99) were used to test for signifi-
cant differences in odour partitioning among species.
The individual-by-individual Euclidean distance matrix
was also transferred to PAUP* 4.0 [93] to construct an
unrooted UPGMA tree to depict the floral odour similar-
ities among individuals and taxa in the hybrid zone. To
test for differences in male bee responses to natural
extracts of Ophrys flowers during the behavioural bioas-
says, a Kruskall-Wallis test and pairwise Mann-Whitney
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U-tests were used with the level of significance (a) set at
0.05. All these statistical tests were performed with the
SPSS 13.0 software [91].

Additional material

Additional file 1 Video. The video depicts a male of the solitary bee Col-
letes cunicularius pseudocopulating on the flower labellum of Ophrys luper-
calis: pollinia removal on the abdomen tip and on the head of the pollinator
(video courtesy of J-C Milhé).

Additional file 2 Table S1 - Floral odour chemistry in the hybrid zone.
Summary of the qualitative differences in floral odour compound produc-
tion in each orchid taxon of the hybrid zone investigated.
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