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Abstract
Background: Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among 
plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using 
genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the 
evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential 
components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of 
angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of 
the plant clock system in angiosperm lineages.

Results: In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: 
reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that 
PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy 
numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient 
chromosomal duplication events.

Conclusions: Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the 
evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a 
common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock 
system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of 
monocots and eudicots because of the gene expansion that resulted from polyploidy events.

Background
Many organisms such as cyanobacteria, fruit flies, mam-
mals and plants have an endogenous time-keeping mech-
anism, a circadian clock, to gauge daily and seasonal
environmental changes. Circadian clock systems in plants
regulate various photoperiodic and diurnal responses,
such as photomorphogenic processes, floral transition,
leaf movements, stomatal conductance, photosynthetic
capacity, and volatile emissions (reviewed in [1]). Among
these, means to discriminate the length of the photope-
riod are conserved among plant species, and it is com-
monly thought that circadian clock system of plants

shares a basic mechanism that controls photoperiodic
responses.

In the past decade, numerous molecular genetic analy-
ses of the model plant Arabidopsis thaliana have uncov-
ered the basic molecular network of the plant circadian
clock (reviewed in [2,3]). Mathematical analyses have
been used to develop a computational model of the plant
clock system, which contains the main transcriptional
feedback loop (Loop I) and two additional loops (Loops II
and III) associated with the main loop (Figure 1) [4,5].
This multiple feedback loop system of the plant clock sys-
tem is composed of two gene families, Pseudo-Response
Regulators (PRRs) and Late Elongated Hypocotyl/Circa-
dian Clock Associated 1 (LHY/CCA1), and two unknown
factors ("X" and "Y"). The main feedback loop (Loop I)
consists of two LHY/CCA1 genes, the Pseudo-Response
Regulator 1/Timing of CAB2 Expression 1 (PRR1/TOC1)
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gene and the unknown factor "X". In this loop, the feed-
back regulatory network operates as follows: the evening-
acting PRR1/TOC1 gene induces the morning-acting
LHY and CCA1 genes via the unknown factor "X", and is
in turn repressed by LHY/CCA1 [6]. The Loop I associ-
ates with Loop II via the PRR1/TOC1 gene and with Loop
III via LHY/CCA1 genes [4,5]. Loop II is made up of
PRR1/TOC1 and an unknown factor "Y". It has been pro-
posed that the unknown factor "Y" is GIGANTEA and/or
PRR5, although the true component has not yet been
identified [7]. Loop III consists of LHY/CCA1 genes and
two PRR genes, PRR7 and PRR9. Together, the gene fami-
lies PRRs and LHY/CCA1s have key roles and form the
complex regulatory network in the plant clock system.

Clock-associated PRR genes are conserved among
angiosperm evolutionary lineages as are their partner
LHY/CCA1 genes [8,9]. In eudicotyledonous plants, five
copies of PRR genes have been identified in A. thaliana
and Carica papaya and seven copies have been found in
Populus trichocarpa [10-12]. In monocotyledonous
plants, Oryza sativa has five PRR genes [13]. The expres-
sion patterns of PRR genes in A. thaliana and O. sativa
share some common features. The five PRR genes in A.
thaliana show diurnal and sequential-temporal expres-
sion patterns from dawn to dusk as follows;
PRR9TPRR7TPRR5TPRR3TPRR1 [10]. The similar
sequential expression pattern is found in homologous
genes of O. sativa, which are expressed as follows;
OsPRR73 (OsPRR37)TOsPRR95 (OsPRR59)TOsPRR1
[13]. In spite of these similarities in the copy numbers and
the expression patterns of clock-associated PRR genes, it
is still unclear how the PRR genes have evolved in mono-
cots and eudicots and how they have been incorporated
in the regulatory network of the clock system in the evo-
lutionary history of plants.

Rapid accumulation of genomic sequence data offers
new perspectives on the molecular phylogeny of genes in

angiosperms [14]. Completion of genomic sequences for
various plant species reveals that angiosperm genomes
have undergone several ancient chromosomal or whole
genome duplication events [11,15-17]. In monocot lin-
eages, the ρ polyploidy event occurred before the specia-
tion of O. sativa and Sorghum bicolor in commelinids
[18,19]. On the other hand, four polyploidy events appear
to have occurred in eudicot lineages. Among these poly-
ploidy events, the γ triplication event took place near the
base of the eudicot clade though the timing of this event
is still being debated [11,14,16,17]. The draft genomic
sequence analysis of C. papaya has revealed that the
genome of A. thaliana underwent two polyploidy events
(α and β) after the speciation of C. papaya and A. thali-
ana in eurosids II [11]. Furthermore, the β polyploidy
event is thought to have occurred before the α event [14].
In eurosids I, the salicoid polyploidy event occurred
within the Salicaceae lineages, which includes Populus
[17]. The footprints of these chromosomal duplication
events are the conserved order of the genes on the dupli-
cated chromosomes in the present genomic sequences
[20]. Thus, comparison of the order of genes surrounding
duplicated genes provides molecular evolutionary infor-
mation on their phylogenetic relationships [21,22].

In the present study, to clarify the phylogenetic rela-
tionships among angiosperm PRR genes, we (1) identified
PRR genes using available genomic databases of eudicots
(Vitis vinifera, P. trichocarpa, C. papaya, and A. thaliana)
and monocots (O. sativa and S. bicolor) and (2) examined
the evolutionary processes of angiosperm PRR genes by
conventional phylogenetic reconstruction and examina-
tion of syntenic relationships. With these results, we
reconstructed the molecular phylogeny of PRR genes in
angiosperms and found that gene expansion of PRRs
occurred via polyploidy events in monocots and eudicots.
Taken together with the molecular phylogeny of the other
major gene family of the plant clock system (LHY/
CCA1s) [9], our data allow us to explore the evolutionary
history of the multiple feedback loop system in angio-
sperm lineages.

Results
Identification of clock-associated PRR genes in 
angiosperms
There are five copies of the PRR genes in the genomes of
O. sativa, S. bicolor, V. vinifera and C. papaya, six copies
in A. thaliana, and eight copies in P. trichocarpa (see
Additional files 1 and 2). The PRR1/TOC1 gene in C.
papaya was not retrieved from the genomic sequence
database because the nucleotide sequence of the C-termi-
nal region of the gene has not yet been determined. The
angiosperm PRR genes retained a highly conserved PR-
domain at the N-terminus and a CCT-motif at the C-ter-
minus (see Additional file 3). However, two PRR-like

Figure 1 Model of the circadian clock system in Arabidopsis thali-
ana. Green, blue and orange shadings indicate loop I, II and III, respec-
tively. This figure is modified from McClung [7] and Harmer [60].
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genes (PRR9b in A. thaliana, AtPRR9b, and PRR5c in P.
trichocarpa, PtPRR5c) retained the CCT-motif but not
the PR-domain (see Additional file 4). Thus, we examined
the molecular phylogeny of PRR genes but excluded
AtPRR9b and PtPRR5c in the present study.

Phylogenetic analysis of PRR gene family
To deduce the evolutionary relationships among PRR
genes in angiosperms, a phylogenetic tree was recon-
structed using the minimum evolution (ME) method.
Angiosperm PRR genes clearly separated into three
clades (PRR1/TOC1 clade, PRR3 and 7 clade, and PRR5
and 9 clade) (Figure 2). This classification was consistent
with the categorization of genomic structures of PRR
genes that was apparent when exon-intron structures and
insertions/deletions variation were examined (Figure 3,
see Additional file 5). We found that each clade contains
genes from both eudicots and monocots, suggesting that
ancient PRR gene(s) diverged into three clades before the
speciation of monocots and eudicots.

In all plant species examined, one copy of the PRR1/
TOC1 gene was retained in the PRR1/TOC1 clade (Figure
2), whereas at least two copies were found in the PRR3
and 7 clade and the PRR5 and 9 clade. PRR1/TOC1 genes
diverged into two clusters representing monocots and
eudicots.

The PRR3 and 7 clade consisted of two different clus-
ters, each of which exclusively consists of monocot or
eudicot genes (Figure 2). Accordingly, the phylogenetic
tree suggested that the gene duplication events producing
monocotyledonous PRR37 and PRR73 or eudicotyledon-
ous PRR3 and PRR7 occurred independently within
monocot and eudicot lineages, respectively. After the
gene duplication event in eudicots, orthologs of P.
trichocarpa PRR3 appeared to be lost, whereas the P.
trichocarpa PRR7 gene was duplicated into PRR7a and
7b.

In the PRR5 and 9 clade, the monocot PRR59 and
PRR95 genes showed an earlier gene duplication that may
have occurred in a common ancestor of monocots and
eudicots (Figure 2). However, the bootstrap value sup-
porting this branch was not very high, 56%. Eudicotyle-
donous PRR5 and PRR9/9-like (9l) genes formed a cluster
in the phylogenetic tree. In this cluster, A. thaliana PRR9
was distantly related to other PRR5 and PRR9l genes,
which was also observed in the phylogenetic trees recon-
structed by the neighbor-joining, maximum likelihood
and Bayesian methods (see Additional files 6 and 7). This
topology within PRR5 and 9 clade might be the artefact
caused by faster substitution rate of the AtPRR9 gene.
Otherwise, sparse taxonomic sampling obscures the
additional gene duplication and loss events occurred in
eudicots. PRR5a in P. trichocarpa was more closely
related to PRR5b than other PRR5, and similar close rela-
tionship was found between PRR9la and PRR9lb in P.
trichocarpa (Figure 2). These findings indicated that the
gene duplication events that produced PRR5a and 5b and
PRR9la and 9lb occurred within rosids. Collectively,
although the PRR3 and 7 clade and the PRR5 and 9 clade
contained at least two copies of PRR genes in both mono-
cots and eudicots, PRRs in the two clades are assumed to
have independently duplicated in monocot and eudicot
lineages.

Functional divergence among PRR gene clusters
Clock associated-PRR genes were divided into the three
gene clusters (PRR1/TOC1 clade, PRR3 and 7 clade, and
PRR5 and 9 clade) that had been formed prior to the spe-
ciation of monocots and eudicots. Although the amino
acid sequences of the genes were highly conserved in the
PR-domain and CCT-motif, there were several amino
acid changes that were distinctive among the three
clades, which potentially contribute to functional differ-
ences (see Additional file 3). To detect amino acid substi-

Figure 2 Phylogenetic tree of angiosperm PRR genes. Amino acid 
sequences were aligned using TCoffee program [47]. The phylogenetic 
tree was reconstructed by the ME method from the numbers of amino 
acid substitutions estimated by the JTT model. PRR1/TOC1 genes were 
utilized as an outgroup in the phylogenetic trees. The numerals at the 
branch indicate bootstrap values calculated by the ME method with 
1,000 replications. Bootstrap values >50% are shown.
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tutions that are potentially involved in functional
divergence among the clades in PR-domain, CCT-motif
and their flanking regions, we performed statistical analy-
sis to estimate the coefficient of type I and type II func-
tional divergences (θI and θII). In the type I functional
divergence, sites are conserved in one gene cluster but
variable in the sister clusters [23]. On the other hand,
type II sites are fixed in both clusters but the amino acid
residues are different between the clusters [24]. In the
comparison among the PRR gene clusters, all of the coef-
ficients for the type I functional divergence (θI) were sig-
nificantly larger than zero (Table 1). In addition, the
values of the type II functional divergence (θII) between
PRR1/TOC1 clade and PRR3 and 7 clade and between
PRR1/TOC1 clade and PRR5 and 9 clade were signifi-
cantly different from zero while the value between PRR3
and 7 clade and PRR5 and 9 clade was not significantly
greater than zero. Six sites that were above the empirical
cutoff values were identified in the comparison between

PRR1/TOC1 clade and PRR3 and 7 clade, ten sites in
PRR1/TOC1 clade and PRR5 and 9 clade and two sites in
PRR3 and 7 clade and PRR5 and 9 clade (Figures 4 and 5).
Intriguingly, these sites were predominantly detected in
the PR-domain and its flanking region rather than the
CCT-motif (Figure 4). These results imply that the amino
acid substitutions in the PR-domain, through which PRR
proteins interact with other proteins (ZEITLUPE and
PRRs) [25,26], may partially contribute to the functional
divergence among the three gene clusters.

Phylogenetic relationships of PRR gene family inferred 
from chromosome syntenies
To clarify evolutionary events such as gene duplication
and gene deletion among angiosperm PRR genes, we
investigated chromosomal syntenies among the genomes
of monocots or eudicots. Because ancient chromosome
duplication events result in conserved gene order on the
duplicated chromosomes [20], comparisons of gene orga-
nization and detection of chromosomal syntenies can

Figure 3 Comparison of the exon-intron structures of PRR genes around the region of PR-domain and CCT-motif. The amino acid sequences 
encoded by PRR genes were aligned using TCoffee program [47]. Accession numbers and gene IDs of the PRR genes are shown in Additional file 1. 
The numerals on the right side indicate the numbers of amino acid residues of each protein. Sequence similarity is indicated below the alignment 
using the symbols "asterisk," "colon," and "dot" for identical, highly similar, and weakly similar residues, respectively. Black and gray shadings on the 
alignments indicate a site of exon-intron boundary and one-amino acid deletion, respectively.
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provide molecular evolutionary information to under-
stand the phylogenetic relationships of the genes [21,22].

In eudicots, the flanking region of PRR1/TOC1, PRR3,
5, 7 and 9 in A. thaliana showed a syntenic relationship
with PRR1/TOC1, PRR3, 5, 7 and 9l in V. vinifera, P.
trichocarpa, and C. papaya, respectively (Figure 6). In
addition, the syntenies were also found in the flanking
regions between AtPRR3 and VvPRR7, AtPRR7 and
VvPRR3, AtPRR5 and VvPRR9l and AtPRR9 and VvPRR5
(data not shown). The former syntenic relationships
between AtPRR3 and VvPRR3, AtPRR7 and VvPRR7,
AtPRR5 and VvPRR5 and AtPRR9 and VvPRR9l were
more conserved than the latter relationships between
AtPRR3 and VvPRR7, AtPRR7 and VvPRR3, AtPRR5 and
VvPRR9l and AtPRR9 and VvPRR5, respectively. Syntenic
relationships were not found between the neighbouring
regions of P. trichocarpa PRR1/TOC1 and those of other
PRR1/TOC1s, or between the neighbouring region of C.
papaya PRR9l and those of other PRR9/9ls. It is not clear
whether these observations can be ascribed to chromo-
somal rearrangements or fragmentations of genomic
sequences in small contigs.

In the genome of A. thaliana, the flanking regions of
PRR genes showed syntenies with one or three partial
regions of its genome (Figure 6). These syntenic relation-
ships originated from the chromosomal duplications that
arose from the β and α polyploidy events [27,28]. In the P.
trichocarpa genome, two copies of each PRR5, PRR7, and
PRR9l gene were located at the syntenic regions of chro-
mosomes 12 and 15 (Figure 6B), those of chromosomes 8
and 10 (Figure 6D), and those of chromosomes 2 and 14
(Figure 6E), respectively. Tuskan et al., [17] showed that
these syntenic regions were produced via the salicoid
polyploidy event. Although flanking region of A. thaliana
PRR3 shares syntenic relationships with partial regions of
P. trichocarpa chromosomes 1 and 9, these two partial
regions did not retain a PRR gene (Figure 6C).

Next, we investigated the chromosomal syntenic rela-
tionships derived from the γ triplication event using the

genomic information of V. vinifera [16]. There were chro-
mosomal syntenies conserved between the flanking
regions of VvPRR3 and VvPRR7 and between the flanking
regions of VvPRR5 and VvPRR9l, which were originated
from the γ triplication event ([16], see also the compara-
tive genomic tool, CoGe [29]). The synteny of PRR3, 5, 7
and 9l in V. vinifera and homologous genes in other
eudicotyledonous plants (A. thaliana, P. trichocarpa, and
C. papaya), respectively, suggest that the ancestral PRR3/
7 gene in eudicots was duplicated into PRR3 and PRR7,
and PRR5/9 into PRR5 and PRR9/9l in the γ polyploidy
event (Figure 7). After the γ polyploidy event, one copy of
each PRR gene (PRR1/TOC1, PRR3, 5, 7 and 9/9l) has
been conserved in the present genomes of V. vinifera and
C. papaya, which apparently have not undergone addi-
tional polyploidy events. Although A. thaliana PRR genes
were repeatedly duplicated by the β and/or α polyploidy
events, one copy of each gene remains in the present A.
thaliana genome, which is similar to V. vinifera and C.
papaya genomes (Figures 6 and 7). In the genome of P.
trichocarpa, PRR5, 7, and 9l were duplicated in the subse-
quent salicoid polyploidy event, but the PRR3 was lost
prior to the salicoid polyploidy event or duplicated PRR3s
were lost following the polyploidy event.

The flanking region of the PRR gene in O. sativa
(OsPRR1/TOC1, OsPRR73, OsPRR59 and OsPRR95)
showed conserved synteny with that of orthologous genes
in S. bicolor [30]. On the other hand, only a few syntenic
regions were identified between PRR37 of O. sativa and
the orthologous gene of S. bicolor. In the genome of O.
sativa, the neighbouring region of OsPRR37 showed syn-
teny with that of OsPRR73. This syntenic relationship
resulted from the chromosomal duplication that
occurred in the ρ polyploidy event [18]. The ρ polyploidy
event also resulted in conserved chromosomal synteny
between the flanking region of OsPRR59 and a partial
region of chromosome 8, and between the flanking
region of OsPRR95 and a different partial region of chro-
mosome 8. However, these partial regions of chromo-

Table 1: Coefficients of type I and type II functional divergences among the PRR gene clades.

Comparison Type I Type II

θI SE θII SE

PRR1/TOC1 vs PRR3 
and 7

0.366 0.109* 0.196 0.093**

PRR1/TOC1 vs PRR5 
and 9

0.473 0.075* 0.175 0.088**

PRR3 and 7 vs PRR5 
and 9

0.234 0.048* -0.003 0.106

*P < 0.01, **P < 0.05
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Figure 4 Type I and type II functional divergences among the PRR gene clades. Coefficients of type I (i) and type II (ii) functional divergences 
between PRR1/TOC1 clade and PRR3 and 7 clade (A), between PRR1/TOC1 clade and PRR5 and 9 clade (B) and between PRR3 and 7 clade and PRR5 and 
9 clade (C) were calculated by DIVERGE 2.0 [55,56] using the TCoffee alignment (see Additional file 3) and the ME tree (Figure 2). Right and left panels 
indicate the PR-domain and its flanking region, and the CCT-motif and its flanking region, respectively. Positions of amino acid residues correspond 
to AtPRR1/TOC1 in PRR1/TOC1 clade vs PRR3 and 7 clade, AtPRR1/TOC1 in PRR1/TOC1 clade vs PRR5 and 9 clade and to AtPRR3 in PRR3 and 7 clade vs 
PRR5 and 9 clade. Cutoff values of the posterior probability and posterior ratio were established empirically by sequentially removing the highest scor-
ing sites from the alignment until θ = 0. The cutoff values are shown by broken lines. The value of θII between PRR3 and 7 clade and PRR5 and 9 clade 
was not set because the coefficient of the θII was not significantly greater than zero. Thus, there is no broken line shown in the bottom panel (C, ii). 
The regions represented in this figure are surrounded with blue boxes in Additional file 3. Arrows indicate sites above the empirical cutoff values. 
Green and yellow shadings on the panels indicate PR-domain and CCT-motif, respectively.
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some 8 have lost PRR genes ([18], see also the
comparative genomic tool, VISTA Browser [31]). These
results indicated that the gene duplication event resulting
in PRR37 and PRR73 was the monocotyledonous ρ poly-
ploidy event, and that PRR59 and PRR95 were duplicated
via the ρ polyploidy event but one of the duplicated genes
was lost from genomes of O. sativa and S. bicolor (Figure
7).

Discussion
The plant clock system consists of multiple interlocked
feedback loops, which are comprised predominantly of
two gene families, LHY/CCA1s and PRRs [4,5]. These
gene families are conserved among both monocots and
eudicots [8]. To clarify the evolutionary process of the
plant clock system, we recently reported the molecular
phylogeny of LHY/CCA1 genes in angiosperms [9]. Fur-
thermore, in the present study, we reconstructed phylo-
genetic relationships among clock-associated PRR genes
in monocots and eudicots using two approaches: recon-
struction of phylogenetic trees and examination of syn-
tenic relationships. Together, these phylogenetic analyses
of the plant circadian clock related-genes, LHY/CCA1s
and PRRs, are promising tools to unravel the evolutionary
history of the plant clock system among angiosperm lin-
eages.

Evolutionary processes of clock-associated PRR genes in 
angiosperms
PRR genes are conserved in angiosperms and at least five
copies of PRR genes have been retained in their genomes
(see Additional file 1). Angiosperm PRR genes are
grouped into three clades (the PRR1/TOC1 clade, the
PRR3 and 7 clade, and the PRR5 and 9 clade) that have
already existed prior to the divergence of monocots and
eudicots (Figures 2 and 3). After the speciation of mono-
cots and eudicots, copy numbers of PRR genes indepen-
dently increased in each lineage as a result of ancient
chromosomal duplication events (Figure 7). In monocots,
the ancestral PRR37/PRR73 was duplicated into PRR37
and PRR73 in the ρ polyploidy event that occurred before
the speciation of O. sativa and S. bicolor [18,19]. In
eudicots, the gene duplication events between PRR3 and
PRR7 and between PRR5 and PRR9/9l are derived from
the γ polyploidy event that took place before the specia-
tion of Vitales (V. vinifera) and eurosid species (P.
trichocarpa, C. papaya, and A. thaliana) [16]. In addition,
our results show that PRR genes in P. trichocarpa have
expanded more than those in other plant species (see
Additional file 1). This expansion apparently resulted
from the salicoid polyploidy event that occurred in the
Populus lineage but not in other eudicots (V. vinifera, C.
papaya, and A. thaliana) (Figure 7). Consequently, circa-

Figure 5 Functionally divergent sites among the PRR gene clades. Sequence logos indicate amino acid variation of type I (θI) and type II (θII) sites 
that were above the empirical cutoff values in the comparison between PRR1/TOC1 clade and PRR3 and 7 clade (A), between PRR1/TOC1 clade and 
PRR5 and 9 clade (B) and between PRR3 and 7 clade and PRR5 and 9 clade (C). Amino acids are color-coded by physicochemical property. Positions of 
amino acid residues (bottom) correspond to AtPRR1/TOC1 in PRR1/TOC1 clade vs PRR3 and 7 clade, AtPRR1/TOC1 in PRR1/TOC1 clade vs PRR5 and 9 
clade and to AtPRR3 in PRR3 and 7 clade vs PRR5 and 9 clade. The regions represented in this figure are surrounded with blue boxes in Additional file 
3. Sequence logos were generated with WebLogo version 2.8.2 [57,58].
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Figure 6 Chromosomal syntenies of flanking regions of eudicotyledonous PRR genes. Syntenic relationships of flanking regions of PRR1/TOC1 
(A), PRR5 (B), PRR3 (C), PRR7 (D) and PRR9/9l (E) were examined using the comparative genomic tool, CoGe [29]. Syntenic relationships within A. thaliana 
or P. trichocarpa were analyzed by a comparative genomic tool, CoGe, and according to previous studies [17,27,28,59]. Diamonds colored with black 
(A. thaliana), green (C. papaya), blue (P. trichocarpa) and red (V. vinifera) indicate individual genes. White diamonds marked with arrows indicate PRR 
genes. Genes with no syntenic matches on the selected regions are not plotted. Orthologous genes are connected by broken lines. Diamonds with 
characters on the right side of strands indicate angiosperm polyploidy event (α, β and salicoid). The salicoid polyploidy event is shown as the diamond 
with the initial letter of salicoid (S). The lengths of the genomic regions are shown on the left.
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Figure 7 Evolutionary processes of PRR genes in angiosperms reconstructed by phylogenetic analysis and syntenic relationships. Chromo-
somal syntenies among eudicots or monocots were analyzed by the comparative genomic tool, CoGe [29] or VISTA Browser [31], and according to 
previous studies [11,16-18,27,28,30,59]. Diamonds and circles indicate gene duplication and gene loss event, respectively. The timing of a gene dupli-
cation event that is not clear in the previous studies is shown by dotted line. Black diamonds with a question mark indicate that a gene duplication 
event derived from a polyploidy event is not resolved. Timings of plant speciation in commelinids, rosids, eurosids I/II and Brassicales are described 
by broken lines.
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dian clocks may have become more intricate networks
after the speciation of monocots and eudicots if the addi-
tional genes have roles in the circadian networks.

In contrast to the increase in PRR genes via ancient
chromosomal duplication events, the present genome of
A. thaliana retains one copy of each PRR gene (PRR1/
TOC1, PRR3, 5, 7, and 9) after β and α polyploidy events
(Figure 7). Likewise, in Brassica rapa, PRR genes that
were increased in a recent hexaploidization event have
been reduced in its genome following the event, though
the genome retains at least a set of PRR genes [32]. These
results implied that dosages of the clock related-genes
had been altered in the genomes during evolution. Since
some reports showed that a gene dosage change of clock
related genes influenced the clock regulatory network
and downstream signals [33,34], plants may have flexibly
modulated the complex network of the clock system after
polyploidy events and subsequent gene deletion events.
Indeed, allopolyploid Arabidopsis species can fine-tune a
regulatory and stoichiometric balance of the circadian
clock system to properly maintain a downstream homeo-
stasis of the plants [35]. The history of gene duplications
and deletions in the Arabidopsis clock system imply that
the regulatory network of the clock system has main-
tained a degree of organization throughout the dynamic
changes of copy numbers and functions of clock-related
genes.

Phylogenetic footprint of the plant clock system in 
angiosperms
Loops I and III of the Arabidopsis clock system contain
four PRR genes (PRR1/TOC1, PRR3, 7 and 9) and two
LHY/CCA1 genes (LHY and CCA1) (Figure 1) [4,5,36].
Although the circadian clock-related genes in A. thaliana
were duplicated via the β and α polyploidy events, the
present genome of A. thaliana retains only one pair of
LHY and CCA1 genes, which is derived from the β poly-
ploidy event (Figure 8) [9]. As the β polyploidy event is
assumed to have occurred in the Brassicaceae, LHY and
CCA1 genes did not diverge before the speciation of A.
thaliana and C. papaya, which is consistent with the fact
that there is only one copy of the LHY/CCA1 gene in the
genome of C. papaya [11]. Similar to the genome of A.
thaliana, the C. papaya genome retained only one copy
each of the PRR1/TOC1, PRR3, 7, and 9 genes (see Addi-
tional file 1). These results suggest that one copy of LHY/
CCA1, PRR1/TOC1, PRR3, 7, and 9 was involved in the
plant clock system in the common ancestor of A. thaliana
and C. papaya.

The evolutionary history of the plant clock system in
two divergent members of Brassicales (A. thaliana and C.
papaya) raises the question as to when the Arabidopsis-
type clock apparatus arose in the evolutionary history of
plants. Phylogenies of the circadian clock-related genes

showed that a set of the genes, one copy of each LHY/
CCA1, PRR1/TOC1, PRR3, 7 and 9l genes, is conserved
in the genome of V. vinifera (Figures 7 and 8, see Addi-
tional file 1) [9,16]. Conservation of the set of clock-
related genes suggests that the fundamental mechanism
of the Arabidopsis-type clock apparatus was formed
before the speciation of Vitales (V. vinifera) and eurosid
species (P. trichocarpa, C. papaya, and A. thaliana),
although it remains to be determined whether functional
divergences between PRR3 and 7 and between PRR5 and
9/9l, which were duplicated in the γ triplication event,
existed in the common ancestor of Vitales and eurosids
(Figure 8).

Intriguingly, the clock system of P. trichocarpa might
differ from the Arabidopsis clock system, because the P.
trichocarpa PRR3 gene was lost and LHY/CCA1 and
PRR7 and 9 were duplicated via the salicoid polyploidy
event that occurred after the speciation of eurosids I and
II (Figures 7 and 8). PRR3 protein in A. thaliana interacts
with PRR1/TOC1 protein, which is a component of the
main loop (Loop I), to inhibit its protein degradation [36].
The lack of PRR3 in Populus might influence the post-
translational regulation of PRR1/TOC1 protein or might
be compensated by recruiting other PRR genes although
conserved changes that would mark the PRR3 gene clus-
ter were not identified in other Populus PRR proteins
(data not shown). Furthermore, duplication of LHY/
CCA1 and PRR7 and 9, but not PRR1/TOC1, could also
affect the regulation mechanism of the Populus clock sys-
tem, because a dosage balance in the plant clock system
was ruined [33]. We recently revealed that Populus LHYs
show typical diurnal expressions similar to LHY/CCA1
genes in other plant species [9,37-40], which is apparently
contradictory to the speculation. The Populus clock sys-
tem appears to retain a functional regulatory network in
regard to the expression regulation of the LHY genes
throughout the evolutionary changes of the circadian
clock components.

The monocots O. sativa and S. bicolor retain one LHY/
CCA1 gene and five PRR genes in their genomes (see
Additional file 1) [9]. Phylogenetic analysis showed that
the gene duplication events that produced PRR37 and 73,
and PRR59 and 95 in monocots occurred separately and
independently of the events that produced PRR3 and 7,
and PRR5 and 9 in eudicots (Figure 7). This finding raises
a complex question; what are the roles of these paralo-
gous genes in the monocotyledonous clock system? The
expression of PRR5 in A. thaliana is not regulated by light
signals and reaches a peak of the diurnal rhythm around 8
h after dawn [10]. On the other hand, PRR9 in A. thaliana
shows a light response expression, resulting in rhythmic-
ity with peak expression just after dawn [10,41]. PRR59
and 95 in O. sativa have peak expressions around 9 h after
dawn and are not induced by light signals [13], which
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appear to be more similar to the regulation of A. thaliana
PRR5 expression than to that of A. thaliana PRR9 expres-
sion. In addition, peak expressions of O. sativa PRR37 and
73 are followed by expressions of PRP59 and 95, which
may correspond to the sequential expression pattern of A.
thaliana PRR7 and PRR5 [10,13]. These results collec-
tively suggest that paralogous gene pairs PRR59/95 and
PRR37/73 genes in monocots share functional roles with
PRR5 and PRR7, respectively, in A. thaliana (Figure 8).
Together, these data indicate that a common ancestor of
monocots and eudicots may have had a main feedback
loop (LHY/CCA1-PRR1/TOC1) that was not posttransla-
tionally regulated by PRR3. Although the ancestral clock
system appears to have been more simplified than that of
the current Arabidopsis-type clock apparatus, it is
assumed that the ancestral clock system have had the

basic components reconstructing a primitive multiple
feedback loop system.

Conclusions
The present study inferred the molecular phylogeny of
angiosperm PRR genes that have key roles in the plant
clock system. Clock-associated PRR genes diverged into
three clades before the speciation of monocots and
eudicots and, in addition, PRR3/7 and PRR5/9 underwent
independent expansion in monocots and eudicots (Figure
7). Taken together with the molecular phylogeny of LHY/
CCA1 genes [9], our studies suggest that the basic com-
ponents of the Arabidopsis clock were established prior
to the speciation of eudicots and monocots (Figure 8).
Additional functional analyses and accumulation of
genomic information from other plant species will clarify

Figure 8 Proposed schematic diagram of the evolutionary process of the plant circadian clock system. For the plant clock system model, loop 
I and III are described in this diagram. Diamonds with characters indicate angiosperm polyploidy event (α, β, γ, salicoid and ρ). The salicoid polyploidy 
event is shown as the diamond with the initial letter of salicoid (S).
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details of evolutionary and developmental processes of
plant clock systems.

Methods
Retrieval of sequences of clock-associated PRR genes from 
draft genome sequences
PRR genes were retrieved from genomic databases for A.
thaliana (TIGR Arabidopsis thaliana Database [42]) and
O. sativa (Rice Annotation Project Database [43]). To
identify PRR genes in S. bicolor, V. vinifera, P. trichocarpa,
and C. papaya, TBLASTN searches were performed
against the genomic databases using amino acid
sequences encoded by PRR genes of A. thaliana or O.
sativa as queries: JGI Sorghum bicolor v1.0 [44] for S.
bicolor; Grape Genome Browser [45] for V. vinifera; JGI
Populus trichocarpa v1.1 [46] for P. trichocarpa, and
Papaya Genome Project v0.4 in CoGe [29] for C. papaya.
Genes that retained the typical PR-domain at the N-ter-
minal region and the CCT-motif at the C-terminal region
were retrieved from these genomic databases. Genes that
lacked the PR-domain or CCT-motif but showed signifi-
cantly high similarity with typical PRR genes were also
retrieved (those with E-values lower than 10-50 or >90%
similarity). The genes retrieved from the genomic data-
bases were aligned with PRR genes in A. thaliana and O.
sativa using the TCoffee program [47]. Mispredicted
genes, if found, were manually modified as follows. For
predicted genes lacking a conserved portion of the PRR
gene, we searched the database for expressed sequence
tags (ESTs) of the gene (TIGR Plant Transcript Assem-
blies [48]) and re-annotated by assembling the predicted
gene and relevant ESTs. In some cases, the open reading
frame of the gene was repredicted by the Fgenesh+ pro-
gram [49]. When the exon-intron boundary of a gene was
mis-demarcated, we improved the boundary based on
standard donor/acceptor splice sites without resulting in
a frame shift.

Phylogenetic analysis
Amino acid sequences were deduced from nucleotide
sequences of the predicted PRR genes and then aligned
using the TCoffee program [47]. The alignment around
the flanking region of the PR-domain was manually cor-
rected based on the exon-intron structure. The number
of amino acids substituted between each pair of PRR pro-
teins was estimated by the Jones-Taylor-Thornton (JTT)
model [50] with the complete- deletion option. From the
number of estimated amino acid substitutions, a phyloge-
netic tree was reconstructed by the ME method [51].
Bootstrap values were calculated with 1,000 replications
using the ME method [52]. PRR1/TOC1 genes were uti-
lized as an outgroup in the phylogenetic trees. These pro-
cedures were performed using the MEGA4 software
[53,54].

Detection of functional divergence
Type I and type II functional divergences among PRR
gene clades was examined using the DIVERGE 2.0 soft-
ware [24,55,56]. To calculate coefficient of type I and type
II functional divergences (θI and θII), we used the protein
sequence alignment constructed using the TCoffee pro-
gram [47] and the topology and branch length of phyloge-
netic tree reconstructed by the ME method. Cutoff values
of the posterior probability and posterior ratio were set
empirically by sequentially removing the highest scoring
sites from the alignment until θ = 0. Sequence logos were
generated with WebLogo version 2.8.2 [57,58].

Identification of chromosomal synteny
Conservation of chromosomal synteny in V. vinifera, P.
trichocarpa, C. papaya, and A. thaliana was determined
as follows. First, we reconstructed the ancient gene orga-
nization of the flanking regions of A. thaliana PRR genes
before the α and β polyploidy events using the chromo-
somal syntenies reported in previous studies [27,28].
Then, we compared the syntenic relationships between
the ancient gene organization in A. thaliana and the
flanking regions of PRR genes in V. vinifera, P.
trichocarpa, and C. papaya using the comparative
genomic tool, CoGe [11,29,59]. This process also recon-
structed chromosomal syntenies in P. trichocarpa that
were derived from the salicoid polyploidy event [17]. To
clarify syntenic relationships derived from the γ poly-
ploidy event, we used information on chromosomal syn-
tenies within the genome of V. vinifera [16] and the
comparative genomic tool, CoGe [29].

Syntenic relationships between the flanking regions of
PRR genes in O. sativa and those in S. bicolor were recon-
firmed using the chromosomal syntenies reported in pre-
vious studies [30] and a comparative genomic tool VISTA
Browser [31]. To reconstruct chromosomal syntenies of
the flanking regions of PRR genes derived from the
monocotyledonous ρ polyploidy event, syntenic regions
were identified according to methods reported previously
using the O. sativa genomic sequence [18].

Additional material

Additional file 1 PRR genes in angiosperms used in the present study. 
aPlant classification refers to APGII [61]. bGene ID corresponds to the name 
obtained from Rice Annotation Project Database [43]. cGene ID corre-
sponds to the name obtained from JGI Sorghum bicolor v1.0 [44]. dGene IDs 
correspond to the names obtained from TIGR Plant Transcript Assemblies 
[48]. eGene ID corresponds to the name obtained from Grape Genome 
Browser [45]. fGene IDs correspond to the names obtained from JGI Populus 
trichocarpa v1.1 [46]. gGene IDs correspond to the names obtained from 
TIGR Plant Genomics [62]. hGene IDs correspond to the names obtained 
from Comparative Genomics Homepage [29].*Genes, which appeared to 
be misprediced, were manually modified in this study. **Gene is misanno-
tated.***Genes lack the PR-domain.

http://www.biomedcentral.com/content/supplementary/1471-2148-10-126-S1.XLS
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highlighted by the boxshade program http://www.ch.embnet.org/soft-
ware/BOX_form.html. Identical and similar amino acid residues are high-
lighted with black and gray shading, respectively. Blue boxes indicate the 
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Additional file 4 Alignment of the amino acid sequences encoded by 
(A)AtPRR9s and (B)PtPRR5s. Sequence similarity is indicated below the 
alignment using the symbols "asterisk," "colon," and "dot" for identical, 
highly similar, and weakly similar residues, respectively. Black shadings indi-
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the Maximum likelihood (ML) and Bayesian methods. Full-length 
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netic trees were reconstructed by the ML and Bayesian methods with 
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