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Abstract

Background: Introductions of non-native tiger salamanders into the range of California tiger salamanders have
provided a rare opportunity to study the early stages of secondary contact and hybridization. We produced first- and
second-generation hybrid salamanders in the lab and measured viability among these early-generation hybrid crosses
to determine the strength of the initial barrier to gene exchange. We also created contemporary-generation hybrids in
the lab and evaluated the extent to which selection has affected fitness over approximately 20 generations of
admixture. Additionally, we examined the inheritance of quantitative phenotypic variation to better understand how
evolution has progressed since secondary contact.

Results: We found significant variation in the fitness of hybrids, with non-native backcrosses experiencing the highest
survival and F2 hybrids the lowest. Contemporary-generation hybrids had similar survival to that of F2 families,
contrary to our expectation that 20 generations of selection in the wild would eliminate unfit genotypes and increase
survival. Hybrid survival clearly exhibited effects of epistasis, whereas size and growth showed mostly additive genetic
variance, and time to metamorphosis showed substantial dominance.

Conclusions: Based on first- and second- generation cross types, our results suggest that the initial barrier to gene flow
between these two species was relatively weak, and subsequent evolution has been generally slow. The persistence of
low-viability recombinant hybrid genotypes in some contemporary populations illustrates that while hybridization can
provide a potent source of genetic variation upon which natural selection can act, the sorting of fit from unfit gene
combinations might be inefficient in highly admixed populations. Spatio-temporal fluctuation in selection or complex
genetics has perhaps stalled adaptive evolution in this system despite selection for admixed genotypes within
generations.

Background

Whether natural or anthropogenic in origin, zones of sec-
ondary contact provide a powerful test of the compatibil-
ity of previously allopatric species, and lend insight into
the mechanisms responsible for reproductive isolation
and speciation. When reproductive isolation is incom-
plete and secondary contact results in the formation of a
hybrid zone, the resulting dynamics also give us a glimpse
into the genetics underlying phenotypic divergence and
the evolution of reproductive isolating mechanisms. On
those rare occasions when we observe the early genera-
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tions of contact, we can also examine ecological and
genetic changes as they unfold, providing a view of short-
term dynamics that is not available in most well-estab-
lished, natural hybrid zones.

Hybridization between two species has many potential
evolutionary consequences [e.g., [1]]. At one extreme,
hybridization may end in the fusion of two lineages in
which speciation has failed to occur fully [2,3]. In this
case, the homogenizing process of gene flow may erase
the genetic signature of earlier lineage diversification and
subsequent reticulate evolution. Alternatively, two lin-
eages in secondary contact may create a stable hybrid
zone in which parental taxa maintain separate evolution-
ary trajectories outside of the hybrid zone but continue to
produce dysfunctional hybrids in the contact zone [4,5].
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Finally, hybridization can lead to increased genetic varia-
tion and evolutionary novelty in the form of recombinant
genotypes [6-8]. In this situation, even when average fit-
ness is quite low, hybrid populations may produce a few
highly successful recombinant genotypes across all or a
subset of ecological backgrounds, which can breed true
and increase in frequency. When hybridization occurs as
the result of introductions of an exotic species, the evolu-
tionary outcomes are somewhat modified because ongo-
ing gene flow from the introduction source is limited or
absent [9,10]. Homogenization of genotypes can still
occur with the introgression of introduced alleles and loss
of native variants, but the effects on parental populations
are asymmetrical since gene flow from "pure" individuals
is unidirectional (assuming that there are not frequent
subsequent introductions of non-native individuals).

In either natural or human-mediated hybrid zones,
exceptionally fit individuals have the potential to estab-
lish new evolutionary lineages, either displacing one or
both parental lineages or diverging into a new ecological
zone [7,11-13]. The realization of this potential depends
on the strength of selection, the number of genes
involved in fitness variation, and the mode of action of
those genes (additive, dominance, or epistasis). For exam-
ple, a strong initial barrier to gene flow in the first genera-
tion (F1) of secondary contact will slow the establishment
and spread of fit recombinant genotypes that may arise in
subsequent generations, whereas F1 heterosis may speed
up this process. Further, if the beneficial fitness effects of
an allele in one genetic background do not outweigh dele-
terious effects or correlated selection in another genetic
background, polymorphism may be eliminated before fit
recombinant genotypes can reach a high enough fre-
quency to be maintained by selection. Thus, the fitness
consequences of the initial stages of hybridization, which
are virtually always unknown in natural hybrid zones, can
have profound effects on the longer-term consequences
of hybridization.

The mode of gene action underlying particular pheno-
types also plays an important role in the potential of
hybrid populations to maintain genetic diversity and
respond to selection [14]. Phenotypes with largely addi-
tive inheritance express main effects across different
genetic backgrounds whereas traits experiencing strong
epistatic effects vary depending on the interaction of
other genetic factors [15-17], and traits affected largely by
dominance typically exhibit striking phenotypic differ-
ences within cross types [18,19]. Therefore, traits with
high dominance or epistatic variance might not respond
to selection, even when they have large fitness effects,
and the probability and rate of adaptive evolution in
hybrid populations might be constrained by the genetic
basis of transgressive traits.
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For decades, secondary contact between species medi-
ated by incidental human transport or deliberate intro-
duction has been recognized as potentially detrimental to
native species [20-23]. When introductions result in
hybridization with native species, new dimensions are
added to conservation issues. While hybridization and
subsequent introgression has been characterized as a
threat simply because replacement of native by intro-
duced alleles is philosophically undesirable [12,24], or
might compromise the legal status of protected native
species [25], more objectively detrimental impacts are
also possible. Hybridization can create novel invasive
phenotypes with negative ecological impacts [26-28], or
hybrid dysfunction might make admixed populations
more vulnerable to extinction [12,29,30]. For these rea-
sons, studies of the evolutionary and ecological changes
set in motion by hybridization have both applied and the-
oretical significance.

One of the key issues facing empirical analyses of
hybrid zones is that the initial evolutionary dynamics of
secondary contact are often obscured by many genera-
tions of admixture. Our understanding of hybrid zones is
dominated by examples of secondary contact that have
not resulted in extinction of one or both parental species
or reinforcement of reproductive isolation, since these
are the situations most often identified in the wild. Analy-
ses of these zones have provided tremendous insights
into the genes and characters that remain differentiated
in the face of hybridization, but they are potentially a
biased subset of the genes and characters that differed
prior to secondary contact [31].

Our research on a recently established, human-medi-
ated hybrid zone offers the rare opportunity to observe
the initial dynamics of secondary contact between gene
pools formerly separated ~5 mya [32]. In the 1940s, bait
dealers introduced thousands of the barred tiger sala-
mander (BTS; Ambystoma tigrinum mavortium) from the
Great Plains of the US into the range of the native Califor-
nia tiger salamander (CTS; A. californiense)[33]. Riley et
al. [33] report (based on discussions with some of the
individuals responsible for the introductions) that Cali-
fornia's emerging bass (Micropterus spp.) fishing industry
and known life history variation between the salamander
species motivated the introductions. Bass fishermen use
larval tiger salamanders (waterdogs) for bait, and they
favor large larvae to catch large bass. CTS metamorphose
at small sizes and have a relatively short larval period dur-
ing which time they can be harvested from wild ponds. In
contrast, BTS have a highly plastic larval period and can
remain aquatic and attain very large sizes if ponds are
permanent, providing a source of bait that is both larger
and potentially available year-round. These intentional
introductions have resulted in a large number of hybrid
populations within the Salinas Valley of California. While
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there have been many generations of admixture in the
heart of the Salinas Valley hybrid swarm, there has not
been enough time for any nonnative allele to become
fixed throughout the range of the native species [34]. Fur-
thermore, the success of hybrid genotypes appears heav-
ily influenced by local environmental conditions, with
anthropogenic changes in breeding habitat supporting
increasingly non-native admixed populations [35,36].

We have two main objectives in this study. First, we
provide a direct comparison of viability among first- and
second-generation hybrids to determine the strength of
the initial barrier to gene exchange. Given that we have
observed both hybrid dysfunction and vigor in contem-
porary hybrid populations [37,38], it is not clear what the
fitness of F1 hybrids may have been when they first
appeared 50-60 years ago. Second, we examine the extent
to which natural selection has affected mean fitness in a
contemporary hybrid population. If hybridization is
always an important source of variation for adaptation
[39-42], we expect to see the mean fitness of admixed
populations increase following the initial mixture, partic-
ularly if the early hybrid generations show hybrid dys-
function.

To investigate whether there was a significant barrier to
gene flow during the initial stages of hybridization, we
performed breeding crosses and individually reared in
the laboratory all possible combinations of first- and sec-
ond-generation hybrids that could have resulted from the
initial contact of CTS and BTS. Simultaneously, we exam-
ined contemporary-generation individuals that were col-
lected from the wild as larvae, bred in the laboratory, and
reared to maturity. This experimental approach allows us
to describe the genetics of phenotypic variation, under-
stand the intrinsic effects of recombination resulting
from hybridization, and evaluate the result of approxi-
mately 20 generations of genomic admixture in the wild.

Results

We reared 14 first- and second-generation line-cross
families and 5 contemporary-generation (~20th genera-
tion) families of salamanders from embryos to metamor-
phosis under standard laboratory conditions. The early-
generation families were comprised of pure native CTS
(N = 2 replicate families), pure introduced BTS (N = 2),
F1 (N = 2), backcrosses to CTS (bcCTS; N = 3), back-
crosses to BTS (bcBTS; N = 3), and F2 (N = 2) line
crosses. We measured survival to metamorphosis and fit-
ness-related traits (mass, snout-vent length [SVL], time-
to-metamorphosis [Tmet], and growth) at metamorpho-
sis. Means and variances for each line cross are presented
in Table 1.

Quantitative Genetics
Observed trait means for each parental cross were
remarkably different both for survival (Figure 1, Table 1)
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and secondary fitness-related traits (Figure 2, Table 1)
and provided ample among-species divergence within
which to compare the phenotypes of hybrid cross types
using weighted least squares regression to parameterize
quantitative genetic models of gene action. Additional
files 1, 2, 3 and 4 depict the fit of observed trait means (+
SE) for each line-cross to the multiple regression (solid
line) equation for each phenotype, and Additional file 5
shows representatives from each line-cross category. We
found very good fits to the additive model for morpho-
logical traits such as mass (Table 2, Additional file 1) and
SVL (Table 2, Additional file 2). We calculated growth as
the mass at metamorphosis divided by the number of
days each individual required to reach metamorphosis,
and the additive model also best describes the genetic
basis of growth differences (Table 2, Additional file 3).
Tmet appears to have a strong dominance component to
the variation observed (Table 2, Additional file 4). Both
linear and binomial regression results agreed regarding
epistatic effects on survival (Table 3), a pattern largely
driven by low survival of F2 larvae (Figure 1, Table 1).

Initial barrier to gene flow

Our F1 generation represents a reenactment of the initial
postzygotic barriers to reproduction between the native
and introduced salamanders when BTS were first intro-
duced. Multiple comparison t-tests (Table 4) demonstrate
that F1 phenotypes are intermediate to and significantly
different from the parental crosses for all morphological
traits measured (mass, SVL, and growth), which is con-
sistent with the inference of an additive genetic basis for
divergence of these traits. For Tmet, which shows a sig-
nificant dominance effect, F1 crosses are not significantly
different from native CTS but reach metamorphosis sig-
nificantly faster than introduced BTS (Table 4).

Most important in terms of overall fitness, F1 crosses
had intermediate survival, showing no evidence of hybrid
dysfunction (Table 5), although they do show relatively
high embryonic (i.e., pre-hatching) mortality [34]. Thus,
the current results indicate that larval mortality (i.e.,
post-hatching through completion of metamorphosis)
probably did not contribute any additional barrier to gene
flow during the onset of secondary contact between CTS
and BTS (Figure 1). Larval mortality was greater in the F2
families than in the F1, introduced BTS, and beBTS, but
was not significantly different from native CTS and
bcCTS (Table 5, Figure 1). Of the six classes of possible
first and second-generation crosses, bcBTS had the great-
est larval survival (Figure 1).

Contemporary hybrid fitness

Our contemporary hybrid crosses represent the result of
selection in the wild after ~20 generations of interbreed-
ing and consequent natural selection. Multiple compari-
sons reveal that these contemporary hybrids have not
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Table 1: Character means ( 7 ) and variances (s2) for each line cross.

Mass SVL Tmet Growth Survival

Cross Nfam Nind ; s2 ; Z s2 ; s2 E s2
TS 2 33 2222 0.020945 4.161 0.002270 21.402 0.172576 1306 0.001135 0.694 0.057741
BTS 2 40 3.041 0.113293 4.427 0.009838 22397 1.229224 1.483 0.004610 0.918 0.000006
bcCTS 3 61 2374 0.014341 4200 0.003334 21.401 0396139 1336 0.000225 0.753 0.027811
bcBTS 3 77 2953 0.012654 4392 0.003761 21905 0.371182 1467 0.000295 0.953 0.004133
F1 2 89 2.615 0.001193 4.279 0.000174 20.876 0.019523 1.399 0.000032 0.849 0.033349
F2 2 37 2474 0.043597 4.233 0.004615 21.513 0.122002 1358 0.001693 0.617 0.000007
Contemporary 5 77 2,627 0.035355 4.291 0.003233 22135 0.680014 1.382 0.000876  0.550 0.035057
Hybrids

Mass and snout-vent length (SVL) values have been log transformed (In [x+ 1]). Time to metamorphosis (Tmet) has been square root transformed.
Growth data were obtained by dividing 'mass' by 'Tmet'. Survival data represent the proportion of individuals reaching metamorphosis.

significantly diverged from F2 crosses with respect to
morphological traits (mass, SVL, and growth), but are
significantly different from each backcross (Table 4, Fig-
ure 2). Again, this pattern is consistent with our interpre-
tation that morphological traits have largely additive
differences. However, contemporary hybrids are signifi-
cantly slower to metamorphosis (larger Tmet value) than
either F2 crosses or backcrosses to CTS, and appear more
similar to backcrosses to BTS in this trait (Table 4). Tmet
is an important life history characteristic that can have
major effects on fitness in landscapes with variable pond
hydroperiods, and selection at our contemporary popula-
tion appears to be favoring an increase in Tmet relative to
F2 crosses. However, Tmet and size-related means for
contemporary hybrids did not differ substantially from
the predicted values based on the first two generations of
admixture (Figure 2). Interestingly, mean growth for con-
temporary hybrids was lower than expected (Figure 2D)
indicating that extended time-to-metamorphosis is not
resulting in increased size-at-metamorphosis. Similarly,
contemporary hybrids experienced the lowest mean sur-
vival (similar to that of F2 families; Table 5), and signifi-
cantly lower than the expected weighted averages
predicted based on early admixture (Figure 1). That is,
mean survival of contemporary hybrid larvae is lower
than mean survival in the first two generations of inter-
breeding, assuming equal admixture proportions.

Discussion

Quantitative genetics

Phenotypic differences between each parental species
and their hybrids are both statistically and biologically
significant, and appear to be affected by a combination of
additive, dominance and epistatic gene action. Specifi-
cally, we observed strong additive effects for each trait
measured, and a simple additive model was sufficient to

explain divergence in important body size attributes (e.g.,
snout-vent length, mass, growth). However, differences
among cross types in Tmet required the inclusion of
dominance effects to adequately explain the variation we
observed. Variation in survival among the cross types was
best explained when epistatic interactions were included
in the analyses. Hybrid breakdown was evident in the F2
larvae, but the effect was weak and not likely to present a
major barrier to admixture. More interesting is the per-
sistence of low viability in the contemporary hybrid fami-
lies. This observation runs counter to our expectation
that natural selection would effectively remove low-fit-
ness gene combinations from hybrid populations and
implies the existence of important genetic or ecological
constraints on the ability of natural selection to distill
true-breeding, high-fitness recombinant genotypes from
hypervariable admixed populations.

Many previous studies have documented phenotypic
differences arising from multiple genes acting additively
on phenotypic traits [43-45], and our analyses add
another example to this body of work. Our study also
contributes to the growing body of literature that
describes the importance of non-additive gene action for
evolutionary processes such as adaptation and speciation
[19,43,46]. Our results suggest that higher-order gene
interactions may also be important in determining the
outcome of hybridization between species in secondary
contact, because some of the most important determi-
nants of salamander fitness (i.e., survival and Tmet) dem-
onstrated significant non-additive inheritance.

Initial barrier to gene flow

To understand the strength of the initial barrier to gene
flow we compared F1 hybrid fitness to pure parental
crosses. Previous work in this system has documented
larval hybrid vigor both in field studies of admixed con-
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Table 2: Evaluation of the Chi-square test statistic (x2) for fit of observed data to expectations under alternative

quantitative genetic models.

Trait Model X2 p%2 PA
Mass Ho 28.384 0.0080 NA
Mo+ bs* 5.979 0.9171 0.0000
Yo+ bs+ by, 5917 0.8788 0.8038
Mo+ bg+ by + bgg 5.533 0.8528 0.5357
U+ b+ by + bes + by 4791 0.8522 0.3888
U+ bg+ by + b+ by + beyy 4157 0.8427 0.4262
SVL Ho 8.714 0.7942 NA
Mo+ bs* 2.163 0.9991 0.0105
Mo+ bs+ by 2.129 0.9980 0.8530
Ho+ bg+ by + bgg 2.042 0.9960 0.7688
U+ b+ by + bes + by 1.795 0.9943 0.6193
U+ bg+ by + b + by + beyy 1527 0.9923 0.6042
Tmet Ho 45.252 0.0000 NA
Mo+ bs 36.341 0.0003 0.0028
Ho+ bs+by* 17.657 0.0899 0.0000
Mo+ bg+ by + bgg 17.163 0.0708 0.4821
U + b+ by + beg + by 16.781 0.0523 0.5368
U+ bg+ by + b+ by + beyy 16.782 0.0325 1.0000
Growth Ho 6.568 0.9230 NA
Mo+ bs* 1.316 0.9999 0.0219
Mo+ bs+ by 1.317 0.9998 1.0000
Ho+ bg+ by + bgg 1.137 0.9997 0.6720
U+ bg+ by + bes + by 0.968 0.9995 0.6811
U+ bg+ by + b + by + beyy 0.757 0.9994 0.6457

The first model (including only ) is a null model of no variation among cross types. Significant chi-square values ( PX 2 <0.05) indicate lack
of fit relative to a saturated model. Significant (P, < 0.05) likelihood-ratio tests (Eq. 2) indicate improvement in fit of higher-order models over
simpler models. Asterisks denote the best-fit model for each phenotype.

temporary populations [38] and experimental meso-
cosms [27], but has also demonstrated high embryonic
mortality [34]. We assessed the fitness of F1 individuals in
several ways. With respect to the most important mea-
sure of fitness (survival), the F1 trait mean was intermedi-
ate to the parental lines with native CTS salamanders
experiencing the greatest risk of mortality and introduced
BTS experiencing the lowest. These data may appear at
odds with the finding of Fitzpatrick and Shaffer [38] that
viability selection in the wild favors the most genetically
intermediate individuals, regardless of whether the pre-
selection population is highly native or nonnative. How-

ever, Fitzpatrick and Shaffer [38] examined contemporary
hybrids after ~20 generations of admixture and selection.
In these wild populations, completely heterozygous F1
individuals almost certainly no longer exist. Thus, what
Fitzpatrick and Shaffer [38] demonstrated is that selec-
tion on a given larval cohort seems to favor admixed indi-
viduals at the expense of highly native and highly
nonnative contemporary hybrids. Similarly in our lab
crosses, we see increased larval survival for our back-
crosses relative to their respective parental lines (i.e.,
bcCTS compared to CTS, and beBTS compared to BTS),
which supports the inference that hybrid vigor during the
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Table 3: Model comparison for linear mixed-effect logistic regression on alternative quantitative genetic models for

survival of cross types.

Model df AIC BIC A X2 df , P,
X xX

Lo+ bs 2 362.89 370.89 179.44

o+ be + by, 3 364.69 376.70 179.34 0.1978 1 0.6565

Uo+ bs+ by + b 4 349.63 365.64 -170.81 17.0631 1 0.0000

o+ bg+ by + bes + 5 345.30 365.32 -167.65 6.3258 1 0.0119

by

o+ bg + by + bes + 6 345.49 369.51 -166.74 1.8142 1 0.1780

B+ by

Models are evaluated using Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and Log Likelihood (A) goodness-of-fit
estimates. The best model is denoted by an asterisk. Chi-square and p-values compare the respective model to the simpler model in the row

above.

first few generations facilitated the establishment of this
hybrid swarm.

The low survival of native CTS salamanders was sur-
prising, as we expected that the parental crosses (which
are essentially controls) would both experience high sur-
vival. There are two interpretations that might explain
the observed mortality of CTS: (1) Our observed mortal-
ity is within the range typically experienced in natural
CTS populations; or (2) Our husbandry practices are
inappropriate for CTS. Survival estimates have not been
reported in the literature for wild CTS larvae in non-
admixed populations, and even if they had been, compe-

o |
chTST BTS
;F1
) PO Y .._.._.._.._.._.._.._.._.._.._.._.._.._.._.._._.._
S [
TbcCTS
_ o | oCTS
g F2
; Contemporary
n < | Hybrids
o
N
o
o |
o
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Figure 1 Comparison of line - cross means to weighted expected
mean survival in the Oth (solid line), 1st (dashed line), and 2nd
(dotted line) generations of admixture (+ 95% Cl). The 'Source In-
dex' (6S) = 2P - 1, where P is the average frequency of introduced BTS
alleles in each cross type (Lynch 1991).

tition and predation would make the survival estimates
difficult to compare to our lab data. With respect to the
latter option, our husbandry techniques have been in use
for decades for the breeding and rearing of related
ambystomatid salamanders [47]. While it is certainly con-
ceivable that CTS requirements differ in some way from
the other tiger salamander species that have been reared
using standard protocols, we currently have no means of
evaluating that possibility. In either case, our results sup-
port a general pattern of CTS experiencing lower survival
than hybrids in artificial pond mesocosm experiments
[27], field enclosures in wild ponds [48], and admixed
wild populations [38] that convince us that the laboratory
data, while surprising in the magnitude of mortality expe-
rienced by CTS, conforms with our expectations regard-
ing performance relative to hybrid types.

Other fitness-related traits (i.e., mass, SVL, growth, and
Tmet) demonstrate an interesting pattern with respect to
the F1 lines. Morphologically, F1 individuals were inter-
mediate between the parental lines at metamorphosis, yet
they metamorphosed earlier than either parental line.
When evaluating the effects of our secondary fitness cor-
relates it is important to consider the environmental con-
text of a metamorphosing salamander in California. For
example, a faster growth rate with early obligate meta-
morphosis might be extremely advantageous in short-
hydroperiod aquatic habitats, particularly in California's
Mediterranean climate where there is practically no pos-
sibility of summer rainfall to rescue a drying pond. How-
ever, in more permanent aquatic habitats, such as the
man-made livestock ponds that are now common in Cali-
fornia, delaying metamorphosis would allow the attain-
ment of larger sizes and may be an advantageous strategy
[49,50]. Furthermore, avoiding the semi-arid, and often
highly agricultural terrestrial habitat that has typified the
hybrid swarm region since the initial BTS introduction 60
years ago may further increase fitness of paedomorphic
(i.e., permanently aquatic) salamanders. Life-history fac-
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tors have been hypothesized to promote the invasion suc-
cess of BTS (and BTS-like hybrids) in perennial ponds,
where they seem to have a distinct advantage in the field
[35]. In the laboratory and the field [27], F1 individuals
appear unable to take full advantage of long-hydroperiod
aquatic resources by extending the larval growth period,
suggesting that fitness gains associated with artificial,
perennial breeding sites were not important in the initial
success of F1 hybrids. Obligate early metamorphosis
might put F1 salamanders at a selective disadvantage in
human-modified perennial ponds, but would confer a
selective advantage in natural seasonal vernal pools with
short hydroperiods.

Survival in second-generation crosses varied dramati-
cally, with bcBTS growing larger and experiencing greater
survival than bcCTS or F2 larvae (Figure 1, Table 1). The
difference in survival between backcross types (bcCTS vs.
bcBTS) is a potentially important distinction when con-
sidering the dynamics of hybrid establishment. If the ini-
tial non-native introductions were relatively small in
magnitude, most F1 hybrids would mate with native CTS
and produce bcCTS offspring during the second genera-
tion of admixture. Overall, bcCTS animals are quite simi-
lar to native CTS with respect to our measurements of

fitness (Table 1) and introgression would likely proceed
relatively slowly. However, if BTS were repeatedly intro-
duced in large numbers over multiple years (as we have
been told was the case by people familiar with the initial
introductions in the 1950s), then pure non-native sala-
manders would have been present in sufficient frequency
to result in the production of high-fitness bcBTS families
during the second-generation of admixture. The produc-
tion of bcBTS hybrids likely facilitated the rapid estab-
lishment of highly introgressed populations, particularly
in the large perennial ponds where the introductions
often occurred. However, bcBTS-like families of individ-
uals are unlikely to be produced under scenarios of low-
level natural dispersal from the hybrid zone into native
CTS populations, resulting in the relatively slow advance
of the hybrid swarm that we have observed in nature [36].

Contemporary hybrid fitness

Given the fitness variation we observed in our first and
second generation crosses, the opportunity exists for nat-
ural selection to eliminate unfit gene combinations from
hybrid populations in the wild, resulting in an increase in
mean fitness of contemporary hybrid populations. How-
ever, we found that survival for our contemporary hybrid
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Table 4: Table of P-values for multiple comparisons with t-tests (below diagonal), and pair-wise mean differences (column

header minus row name; above diagonal).

A. Mass CTS BTS F1 F2 bcCTS bcBTS PondH
CTS - 12.8 4.4 3.0 1.7 104 54
BTS <0.0001* - -84 -9.8 -11.1 -24 -74

F1 <0.0001* <0.0001* - -1.4 -2.7 6.0 1.0
F2 0.0002* <0.0001* 0.0264 - -1.3 7.4 24
bcCTS 0.0236 <0.0001* <0.0001* 0.0562 - 8.7 37
bcBTS <0.0001* 0.3273 <0.0001* <0.0001* <0.0001* - -5.0
PondH <0.0001* <0.0001* 0.6876 0.0131 <0.0001* <0.0001* -
B.SVL CcTS BTS F1 F2 bcCTS bcBTS PondH
CTS - 19.9 8.0 5.1 2.7 16.8 9.2
BTS <0.0001* - -11.9 -14.7 -17.2 -3.0 -10.7
F1 <0.0001* <0.0001* - -2.8 -5.3 8.9 1.2
F2 0.0033 <0.0001* 0.0400 - 24 11.7 4.1
bcCTS 0.0927 <0.0001* <0.0001* 0.1007 - 14.1 6.5
bcBTS <0.0001* 0.2361 <0.0001* <0.0001* <0.0001* - -7.6
PondH <0.0001* <0.0001* 0.3750 0.0071 <0.0001* <0.0001* -

C.Tmet CTS BTS F1 F2 bcCTS bcBTS PondH
CTS - 11 -6 1 0 6 8
BTS 0.0002* - -17 -10 -1 -6 -3

F1 0.0314 <0.0001* - 7 6 11 14
F2 0.3585 0.0031 0.0008* - -1 4 7
bcCTS 0.5792 0.0002* 0.0008* 0.6311 - 6 8
bcBTS 0.0068 0.0883 <0.0001* 0.0842 0.0095 - 3
PondH 0.0001* 0.7380 <0.0001* 0.0023* <0.0001* 0.0974 -
D. Growth CTS BTS F1 F2 bcCTS bcBTS PondH
CTS - 0.09 0.04 0.02 0.01 0.08 0.04
BTS <0.0001* - -0.05 -0.07 -0.08 -0.01 -0.06
F1 <0.0001* <0.0001* - -0.02 -0.03 0.04 -0.01
F2 0.0001* <0.0001* 0.0003* - -0.01 0.06 0.01
bcCTS 0.0290 <0.0001* <0.0001* 0.0291 - 0.07 0.02
bcBTS <0.0001* 0.3504 <0.0001* <0.0001* <0.0001* - -0.04
PondH <0.0001* <0.0001* 0.0310 0.0587 <0.0001* <0.0001* -

Asterisks denote significance (a = 0.05) following Bonferroni correction.

families was significantly lower than introduced BTS,
both backcrosses and the F1 crosses. Contemporary
hybrid survival was not statistically different from F2
crosses indicating that selection has been unable to
remove unfit genotypes from the population over the last
20 generations.

Field measurements indicate that the source of our con-
temporary hybrid parents (Pond H) has an intermediate

mean hybrid index score (HIS; defined as the proportion
of nonnative alleles comprising the average genome) of
0.56-0.62 [34,36], corresponding to a source index (6s) of
0.12-0.24. This is similar to the average values for F2
crosses (HIS = 0.5; 65 = 0), despite 20 generations of
recombination and natural selection. There are several
possible mechanisms for the persistence of low fitness
genotypes in contemporary hybrids despite the apparent
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Table 5: Fisher's exact tests for multiple comparisons with sequential Bonferroni correction (below diagonal) and mean
weighted percent survival differences between cross types (column header - row names; above diagonal).

TS BTS F1 F2 beCTS bcBTS PondH
TS - 0330 0282 -0.051 0.155 0425 -0.073
BTS 0.0006* - -0.049 -0.382 -0.176 0.095 -0.404
F1 0.0057 0.2990 - -0333 -0.127 0.143 -0355
F2 0.6801 0.0001* 0.0005* - 0.206 0477 -0.022
beCTS 02262 00178 0.1234 0.0520 - 0270 -0.228
bcBTS <0.0001* 04413 0.0077 <0.0001* <0.0001* - -0.499
PondH 0.1278 <0.0001* <0.0001* 03990 0.0006* <0.0001* -

Asterisks denote significance based on sequential Bonferroni correction critical values.

fitness benefits experienced by mostly nonnative individ-
uals. First, immigrants from nearby populations with dif-
ferent frequencies of native and non-native alleles could
balance the effects of selection [4,6], essentially recreating
early-generation admixture phenotypes with reduced
survival. Second, fluctuating selection (perhaps based on
variation in pond hydroperiod) combined with overlap-
ping generations [51], which is common in CTS popula-
tions [52], could create a mixture of sympatric breeding
adults that experienced alternative selection regimes as
larvae, generating a stable fitness minimum [53,54].
Third, if fitness variation depends largely on dominance
and epistatic effects, low-fitness genotypes might be
regenerated and high-fitness genotypes broken up by seg-
regation and recombination every generation [17]. A pre-
ponderance of non-additive variance can make selection
very inefficient at changing allele frequencies [55]. This
hypothesis predicts that, for purely genetic reasons,
hybridization is unlikely to result in a true-breeding
recombinant lineage becoming fixed by positive selec-
tion. The potential constraint created by high levels of
non-additive variance might apply mostly to highly
admixed populations where the inflated level of multilo-
cus genetic variation makes advantageous genotypes
especially prone to disruption by recombination. Lower
levels of gene exchange might be more efficient at intro-
ducing adaptive genotypes into populations.

Of these three explanations for maintenance of low-via-
bility genotypes, the first (continual immigration into a
"hybrid sink") is least likely. Although CTS populations
readily exchange individuals [56,57], previous genetic
surveys of other populations near the Pond H contempo-
rary hybrid population [33,35,36,38] suggest that there
are few if any pure CTS populations remaining that could
balance the effect of viability selection for increasing
introduced allele frequency. On the other hand, these
genetic surveys demonstrate that highly nonnative indi-
viduals exist in close proximity to our contemporary
hybrid site. Given the dramatic increase in survival expe-

rienced by the BTS backcrosses, a population receiving
frequent highly non-native immigrants should rapidly
move towards an equilibrium in which most individuals
have highly non-native genomes. Thus, either variation in
selection regimes or genetic constraints on the response
to selection are the most likely explanations for the reten-
tion of variation at molecular markers and the persistence
(or recurrence) of hybrid genotypes with low viability.
Future comparisons of additional crosses, combined with
common-garden-type rearing conditions would help to
distinguish between these two hypotheses.

A fourth possibility is that survival in the lab bears little
relationship to fitness in the wild. However, our results
for contemporary hybrids are consistent with our studies
from the wild in that the strong selection on larvae
described by Fitzpatrick and Shaffer [38] is possible only
if substantial genetic variation in fitness is expressed in
contemporary wild populations. Thus, our observations
in the wild and the low average viability of contemporary
hybrids documented here both strongly conflict with the
prediction that ~20 generations of selection in the wild
should have eliminated low-fitness genotypes and dis-
tilled a genetically stable, high-fitness hybrid lineage.

Localized environment-dependent admixture dynam-
ics have previously been reported in this hybrid swarm
[35], with perennial ponds supporting more introduced
(i.e., higher HIS or 6) populations. We have also reared a
small number (N = 50) of other contemporary hybrids
from a perennial site (Johnson Canyon Landfill; JCL) with
a HIS of 0.81 near the Pond H contemporary hybrid site.
These JCL contemporary hybrid larvae experienced ini-
tial mortality (4%) that was similar to pure BTS (8%) and
BTS backcross lines (2%) in dramatic contrast to our
mortality estimate for lab-reared contemporary hybrid
larvae from Pond H (45%). Unfortunately, we cannot
include larvae from the JCL site in our analyses because
they were not reared to the completion of metamorpho-
sis. Variation in hydroperiod has previously been identi-
fied as a major selective force in the evolution of
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salamanders with complex life history pathways
[49,50,58,59]. Our data suggest that in this hybrid swarm,
environmental variation (e.g., pond hydroperiod) is likely
important in balancing selection for highly non-native
individuals, and thereby maintaining higher frequencies
of native genotypes.

Examples of hybrid speciation and discussion of the
potentially creative role of hybridization in evolution
[60,61] have been popular in the recent literature. But the
generation of highly adaptive recombinant genotypes is
likely rare and their success is dependent on a complex
combination of extrinsic factors, including the availability
of niches unoccupied by either parental species. There-
fore the relative importance of hybridization in speciation
remains unknown. Our results provide an exciting
glimpse at the early dynamics and initial responses to
selection of a recently established hybrid system and
demonstrate that complex ecology (spatio-temporal fluc-
tuation in selection) or complex genetics (non-additive
variance in hybrid fitness) can inhibit or stall adaptive
evolution, even when natural selection within genera-
tions appears to favor admixed genotypes [38]. Such con-
straints on adaptation might be most important in highly
variable admixed populations where low-fitness geno-
types can be re-created in large numbers each generation.
However, it is important to point out that the inferred
impotence of selection in this system is not absolute. For
example, Fitzpatrick et al. [34,62] show that a few pre-
sumably advantageous introduced alleles have become
fixed both within the hybrid swarm and in populations
far from the Salinas Valley introduction sites. Thus adap-
tive evolution through gene exchange is happening in this
system [63], but so far has done little to improve mean fit-
ness in highly admixed populations.

Conclusions

Our first- and second- generation hybrid crosses demon-
strate that salamander survival was influenced by epi-
static genetic interactions, and suggest that non-additive
inheritance is an important component of the outcome of
hybridization between species in secondary contact. Fur-
ther, fitness variation among early-generation cross types
also indicates that while natural dispersal of a few individ-
uals from the hybrid zone into native populations will not
likely result in the rapid displacement of native geno-
types, the human-mediated introduction of highly non-
native salamanders will dramatically reduce the relative
fitness of native salamanders. Lastly, our comparison of
early-generation hybrids with contemporary-generation
hybrids demonstrates that selection has not been success-
ful in eliminating unfit genotypes from some wild popu-
lations, and variation in salamander fitness may be
maintained by complex ecological and genetic interac-
tions.
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Methods

Artificial crosses/Lab rearing

For all line crosses parental stock were selected from our
captive-reared breeding colony and consisted of (1) CTS
from Great Valley Grasslands State Park (Merced County,
CA) and Jepson Prairie Reserve (Solano County, CA),
both of which are representatives of the widespread
"Central Valley" phylogroup [64]; (2) BTS from the aban-
doned Five-Star Fish Farm (Lake County, CA) that are
known to be derived from the same introductions as the
Salinas Valley hybrids and are allopatric from CTS; (3)
captive-bred F1 hybrids; and (4) lab-raised wild-collected
contemporary hybrids from Pond H (Monterey County,
CA). Individuals were selected for breeding crosses based
on the presence of secondary sexual characteristics (e.g.,
swollen cloaca and laterally flattened tail for males and
distended abdomen for females).

Matings were performed in outdoor aquatic meso-
cosms (1.8 m-diameter plastic cattle tanks) with 0.6 m?
cotton twine grids to provide substrate for oviposition.
Four males of the appropriate genotypic class (e.g., CTS,
BTS, or F1) were allowed to acclimate to each mesocosm
prior to the presentation of a single female. Mesocosms
were subsequently checked daily for the presence of eggs.
Upon detection of eggs, the female was transported to a
15 L plastic container in the lab to complete oviposition.
Females typically laid eggs for 2-3 days following initial
oviposition in the breeding chamber. All eggs were
counted and separated into 5.8 L plastic containers with
20% modified Holtfreter's solution [65] until hatching.
Egg clutches were monitored daily, and dead/non-devel-
oping eggs and hatchlings were removed. We attempted
to produce two replicate families per cross-type.

Hatchlings remained in the 5.8 L containers until all
surviving eggs had hatched. We haphazardly selected 150
hatchlings from each clutch for the experiment. If a sec-
ond family was produced we randomly removed 75 of the
initially selected individuals and replaced them with the
individuals from the second clutch. Hatchlings selected
for inclusion were placed in individual 89 ml plastic cups
and fed newly hatched Great Salt Lake brine shrimp
(Artemia salina) ad libitum. After a few weeks, surviving
larvae were moved to 473 ml plastic cups and transi-
tioned from brine shrimp to California blackworms
(Lumbriculus variegatus). After a few more weeks, sur-
viving larvae were moved to 5.8 L containers for the dura-
tion of the larval period. Due to space limitations and
overall high survival, all cross-types were randomly
culled to 50 individuals (25 per family if two families were
present) per cross type before transitioning to 5.8 L con-
tainers. Some large larvae were ultimately moved to 15 L
plastic containers until metamorphosis or up to 1 year
post-hatching, whichever came first. Each hatchling
received a full water change every three days or more fre-
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Table 6: Parameter coefficients (i.e., M matrix; [Lynch and Walsh 1998]) for each of the models.

Line uo a s a2 82 ad
P1 CcTS 1 -1 -1 1 1 1
P2 BTS 1 1 -1 1 1 -1
F1 (P1xP2) & (P2xP1) 1 0 1 0 1 0
F2 (P1xP2) x (P1xP2) 1 0 0 0 0 0
B1 [P1x (P1xP2)]&[(P1xP2)x P1]=bcCTS 1 -0.5 0 0.25 0 0
B2 [P2 x (P1 x P2)] &[(P1 x P2) x P2] = bcBTS 1 0.5 0 0.25 0 0

The purely additive model (a) holds that F1 and F2 trait values should fall at the midpoint of the values for P1 and P2, with values for B1 and B2

crosses falling at the midpoint of the F1 and P1 or P2, respectively.

quently as necessary. All individuals were checked daily
and dead larvae were removed and preserved in 95% eth-
anol.

Metamorphosing individuals with reduced gills and
caudal fins were placed in 5.8 L containers with moist-
ened sponges to complete metamorphosis. Individuals
were monitored daily during metamorphosis for closure
of the gill slits and loss of the tail fin, at which time each
individual was weighed to the nearest 0.1 gram and
assigned a total time from hatching to metamorphosis
(Tmet). At the same time we measured total length (TL)
and snout-vent length (SVL) to the nearest 1.0 mm. Ani-
mals were either euthanized or accessioned into our cap-
tive breeding colony, following tissue extraction for
future DNA analyses.

Statistical Analyses

The most important fitness measure is survival. However,
among survivors we measured additional predictors of
lifetime fitness, including mass and SVL at metamorpho-
sis, Tmet, and growth. Metamorphic mass and SVL are
frequently used as predictors of lifetime fitness because
they have been shown to affect time to maturity and
fecundity [66,67]. Tmet plays an important role in the
survival of amphibians with complex life-history patterns
because pond drying can be a major source of mortality
in seasonal aquatic habitats [68]. Growth combines
aspects of size and Tmet and is a key element in amphib-
ian life-history transitions [69,70].

To determine the mode of gene action affecting the
expression of phenotypic variation in fitness-related
traits, we used line cross analyses, specifically joint scal-
ing tests, as described in Chapter 9 of Lynch and Walsh
[71]. Joint-scaling tests use weighted least squares regres-
sion to compare observed and expected means and stan-
dard errors of each parental species (P1 and P2), with
each hybrid cross (backcrosses [B1 & B2], F1, and F2) to
parameterize alternative quantitative genetic models of
additive, dominance, and epistatic gene action (Table 6).

The joint scaling test fits the following multiple regres-
sion model to the observed phenotypic family means,

zj = pg +bgls +by0y, +bSSQs§ +bHH9H,_2 )
+bg 00 + error,

where the ith mean (z;) has coefficient 6, denoting the
source index, and coefficient 8, denoting the heterozy-
gosity index [72,73]. The source index contrasts the
expected number of P, alleles in a line with the reference
population (i.e., F2), and the heterozygosity index con-
trasts the expected number of P,P, heterozygotes with
the F2 reference population. The regression coefficients
represent composite additive (bg), dominance (by;), and
epistatic (bgg, by bgy) effects, and the intercept, p,, is the
mean phenotype of the F2 reference generation. Higher-
order interactions or non-genetic components of varia-
tion are partitioned into the error term. We sequentially
fitted each model, starting with the additive effect only
and added dominance and epistatic effects up to the full
(saturated) model. When epistasis terms are omitted
from the simple models, epistatic variance contributes to
the error term. We tested the fit of nested regression
models using a goodness-of-fit test statistic [71,74]:

k AN
2 (Zi_zi)z
var(zj)

p )

i=1

where the degrees of freedom equal the number of fam-
ilies (k = 14) minus the number of parameters estimated
by the model (up to six for the full model in Eq. 1). Var(z))
is the estimated sampling variance (squared standard
error) of the ith family mean. We tested genetic models
sequentially starting with the simplest additive model.
Rejection of the additive model indicates that dominance
or epistatic effects are making a significant contribution
to phenotypic divergence of the lines. Failure to reject the
additive model indicates that differences between loci
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with additive effects are sufficient to explain the observed
divergence. We also tested for differences between each
15t (F1) and 274 (F2, backcrosses) generation line cross and
contemporary (~20th generation) hybrid families using
multiple pairwise t-tests with Bonferroni corrections.
Mass and SVL were log-transformed (In [x + 1]), and
Tmet and growth were square-root-transformed

(Vx +/x+1) to accommodate the statistical assump-
tion of normality.

Individual survival is a binary outcome, so the linear
regression approach is not entirely appropriate. There-
fore, we also used a generalized linear model with bino-
mial error to fit an analogous model [75]:

Pr{survival}
Pr{death}

+bpp0 2 +bsy040y + e,

(3)

As described above for the linear regressions, we per-
formed the joint scaling test of the typical quantitative
genetic series starting with the additive effect only and
added dominance and epistasis terms up to the full sec-
ond order polynomial in Eq. 3. For each survival model
fit, we used restricted maximum likelihood to account for
family membership as a random effect. We also tested for
differences in survival among line crosses with pairwise
Fisher's exact tests with a sequential Bonferroni adjust-
ment.

To investigate whether contemporary, 20th generation
hybrids have greater mean fitness than 1stand 2nd genera-
tion hybrids with the same admixture proportions, we
compared our results from contemporary hybrid families
to weighted averages corresponding to the expected fre-
quencies of each line cross in the initial generations of
contact. Our most recent estimate of the admixture pro-
portion in the contemporary Pond H population based
on 64 independent genetic markers is 62.1% introduced
[34]. Therefore, we used a hypothetical "Generation 0"
composed of 62.1% pure introduced BTS and 37.9% pure
native CTS. We then calculated the expected frequencies
of CTS, F1, and BTS in the first generation of hybridiza-
tion and the expected frequencies of CTS, backcrosses to
CTS (bcCTYS), F1, F2, backcrosses to (bcBTS), and BTS in
the second generation of hybridization assuming random
mating and no selection. These frequencies were then
used to calculate weighted averages of mass, SVL, Tmet,
growth, and survival as the expected values in those three
initial generations. All calculations were performed using
R [76].
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Additional material

Additional file 1 Line-cross Mass plot. Observed mean Mass and stan-
dard errors for each line cross type plotted against expected values under
alternative quantitative genetic models

Additional file 2 Line-cross Snout-Vent Length plot. Observed mean
SVL and standard errors for each line cross type plotted against expected
values under alternative quantitative genetic models

Additional file 3 Line-cross Growth plot. Observed mean Growth and
standard errors for each line cross type plotted against expected values
under alternative quantitative genetic models

Additional file 4 Line-cross Time-to-Metamorphosis plot. Observed
mean Tmet and standard errors for each line cross type plotted against
expected values under alternative quantitative genetic models

Additional file 5 Line-cross photographs. Images of a typical metamor-
phosed individual from each source index category

Authors' contributions

JRJ participated in the design of the study, collected and analyzed the data,
and drafted the manuscript. BMF participated in the conception and design of
the study, data analysis, and manuscript preparation. HBS participated in the
conception and design of the study and manuscript preparation. All authors
read and approved the final manuscript.

Acknowledgements

We thank D. Dittrich-Reed for assisting with the breeding crosses, egg and lar-
val maintenance, and processing of metamorphs; "team salamander" and par-
ticularly C. Lopez for husbandry assistance; L. Gray and S. Micheletti for help in
data collection; M. Ryan and two anonymous reviewers for helpful discussion
and comments on manuscript drafts. Our methods were carried out under UC
Davis animal care and use protocols #11910 and #13269. This work was funded
in part by the National Science Foundation (DEB 0516475) and the UC Davis
Agricultural Experiment Station.

Author Details

Department of Evolution and Ecology & Center for Population Biology,
University of California, Davis, CA 95616, USA and 2Department of Ecology and
Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA

Received: 21 September 2009 Accepted: 18 May 2010
Published: 18 May 2010

References

1. Rieseberg LH: Hybrid origins of plant species. Annu Rev Ecol Syst 1997,
28(1):359-389.

2. Mallet J: Hybridization as an invasion of the genome. Trends Ecol Evol
2005, 20(5):229-237.

3. Baack EJ, Rieseberg LH: A genomic view of introgression and hybrid
speciation. Curr Opin Genet Dev 2007, 17(6):513-518.

4. Barton NH, Hewitt GM: Analysis of Hybrid Zones. Annu Rev Ecol Syst 1985,
16(1):113-148.

5. Barton NH, Hewitt GM: Adaptation, speciation and hybrid zones. Nature
1989, 341(6242):497-503.

6.  Barton NH: The role of hybridization in evolution. Mol Ecol 2001,
10(3):551-568.

7. Arnold ML, Cornman RS, Martin NH: Hybridization, hybrid fitness and
the evolution of adaptations. Plant Biosyst 2008, 142(1):166-171.

8. Dowling TE, Secor CL: The role of hybridization and introgression in the
diversification of animals. Annu Rev Ecol Syst 1997, 28(1):593-619.

9. Servedio MR, Kirkpatrick M: The effects of gene flow on reinforcement.
Evolution 1997, 51(6):1764-1772.

10. Currat M, Ruedi M, Petit RJ, Excoffier L: The hidden side of invasions:
massive introgression by local genes. Evolution 2008, 62(8):1908-1920.

11.  Schluter D: Ecology and the origin of species. Trends Ecol Evol 2001,
16(7):372-380.

12. Rhymer JM, Simberloff D: Extinction by hybridization and introgression.
Annu Rev Ecol Syst 1996, 27(1):83-109.


http://www.biomedcentral.com/content/supplementary/1471-2148-10-147-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-147-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-147-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-147-S4.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-147-S5.PDF
http://www.biomedcentral.com/1471-2148/10/147
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16701374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2677747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11298968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18452573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403870

Johnson et al. BMC Evolutionary Biology 2010, 10:147
http://www.biomedcentral.com/1471-2148/10/147

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

Huxel GR: Rapid displacement of native species by invasive species:
effects of hybridization. Biol Conserv 1999, 89(2):143-152.

Hallander J, Waldmann P: The effect of non-additive genetic
interactions on selection in multi-locus genetic models. Heredity 2007,
98(6):349-359.

Fenster CB, Galloway LF, Chao L: Epistasis and its consequences for the
evolution of natural populations. Trends Ecol Evol 1997, 12(7):282-286.
Mackay TFC: The genetic architecture of quantitative traits. Annu Rev
Genet 2001, 35(1):303-339.

Barton NH, Keightley PD: Understanding quantitative genetic variation.
Nat Rev Genet 2002, 3(1):11-21.

Fenster CB, Galloway LF: Population differentiation in an annual legume:
genetic architecture. Evolution 2000, 54(4):1157-1172.

Edmands S: Heterosis and outbreeding depression in interpopulation
crosses spanning a wide range of divergence. Evolution 1999,
53(6):1757-1768.

Case TJ: Global patterns in the establishment and distribution of exotic
birds. Biol Conserv 1996, 78(1-2):69-96.

Case TJ, Bolger DT: The role of introduced species in shaping the
distribution and abundance of island reptiles. Evol Ecol 1991,
5(3):272-290.

Carlton JT: Man's role in changing the face of the ocean: biological
invasions and implications for conservation of near-shore
environments. Conserv Biol 1989, 3(3):265-273.

McGlynn TP: The worldwide transfer of ants: geographical distribution
and ecological invasions. JBiogeogr 1999, 26(3):535-548.

Allendorf FW, Leary RF, Spruell P, Wenburg JK: The problems with
hybrids: setting conservation guidelines. Trends Ecol Evol 2001,
16(11):613-622.

Daniels MJ, Corbett L: Redefining introgressed protected mammals:
when is a wildcat a wild cat and a dingo a wild dog? Wild/ Res 2003,
30(3):213-218.

Ellstrand NC, Schierenbeck KA: Hybridization as a stimulus for the
evolution of invasiveness in plants? Proc Natl Acad Sci USA 2000,
97(13):7043-7050.

Ryan ME, Johnson JR, Fitzpatrick BM: Invasive hybrid tiger salamander
genotypes impact native amphibians. Proc Natl Acad Sci USA 2009,
106(27):11166-11171.

Neira C, Levin LA, Grosholz ED: Benthic macrofaunal communities of
three sites in San Francisco Bay invaded by hybrid Spartina, with

comparison to uninvaded habitats. Mar Ecol Prog Ser 2005, 292:111-126.

Reisenbichler RR, Rubin SP: Genetic changes from artificial propagation
of Pacific salmon affect the productivity and viability of supplemented
populations. /CESJMar Sci 1999, 56(4):459.

Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S, Leary RF,
Allendorf FW: Hybridization rapidly reduces fitness of a native trout in
the wild. Biology Letters 2009, 5(3):328-331.

Lexer C, Randell RA, Rieseberg LH: Experimental hybridization as a tool
for studying selection in the wild. Ecology 2003, 84(7):1688-1699.
Shaffer HB, McKnight ML: The polytypic species revisited: genetic
differentiation and molecular phylogenetics of the tiger salamander
Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 1996,
50(1):417-433.

Riley SPD, Shaffer HB, Voss SR, Fitzpatrick BM: Hybridization between a
rare, native tiger salamander (Ambystoma californiense) and its
introduced congener. Ecol Appl 2003, 13(5):1263-1275.

Fitzpatrick BM, Johnson JR, Kump DK, Shaffer HB, Smith JJ, Voss SR: Rapid
Fixation of Non-Native Alleles Revealed by Genome-Wide SNP Analysis
of Hybrid Tiger Salamanders. BMC Evol Biol 2009, 9:176.

Fitzpatrick BM, Shaffer HB: Environment-dependent amixture dynamics
in a tiger salamander hybrid zone. Evolution 2004, 58(6):1282-1293.
Fitzpatrick BM, Shaffer HB: Introduction history and habitat variation
explain the landscape genetics of hybrid tiger salamanders. Ecol App!
2007, 17(2):598-608.

Fitzpatrick BM: Dobzhansky-Muller model of hybrid dysfunction
supported by poor burst-speed performance in hybrid tiger
salamanders. JEvol Biol 2008, 21(1):342-351.

Fitzpatrick BM, Shaffer HB: Hybrid vigor between native and introduced
salamanders raises new challenges for conservation. Proc Nat/ Acad Sci
USA 2007, 104(40):15793-15798.

Anderson E, Stebbins GL: Hybridization as an evolutionary stimulus.
Evolution 1954, 8(4):378-388.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.
64.

65.

66.

Page 13 of 14

Arnold ML, Bulger MR, Burke JM, Hempel AL, Williams JH: Natural
hybridization: How low can you go and still be important? Ecology
1999, 80(2):371-381.

Lewontin RC, Birch LC: Hybridization as a source of variation for
adaptation to new environments. Evolution 1966, 20(3):315-336.

Mallet J: Hybridization, ecological races and the nature of species:
empirical evidence for the ease of speciation. Philosophical Transactions
of the Royal Society of London, Series B: Biological Sciences 2008,
363(1506):2971-2986.

Hatfield T: Genetic divergence in adaptive characters between
sympatric species of stickleback. The American Naturalist 1997,
149(6):1009-1029.

Macnair MR, Cumbes QJ: The genetic architecture of interspecific
variation in Mimulus. Genetics 1989, 122(1):211-222.

Albertson RC, Streelman JT, Kocher TD: Genetic basis of adaptive shape
differences in the cichlid head. Journal of Heredity 2003, 94(4):291.

Roff DA, Emerson K: Epistasis and dominance: evidence for differential
effects in life-history versus morphological traits. Evolution 2006,
60(10):1981-1990.

Armstrong JB, Duhon ST, Malacinski GM: Raising the axolotl in captivity.
In Developmental biology of the axolot! Edited by: Armstrong JB, Malacinski
GM. New York: Oxford University Press; 1989:220-227.

Ryan ME, Johnson JR, Fitzpatrick BM, Lowenstine LJ, Picco AM, Shaffer HB:
Agricultural landscape favors introduced hybrid salamanders over
threatened California salamanders. Conserv Biol in review .

Wilbur HM, Collins JP: Ecological Aspects of Amphibian Metamorphosis
Nonnormal distributions of competitive ability reflect selection for
facultative metamorphosis. Science 1973, 182(4119):1305-1314.
Whiteman HH: Evolution of facultative paedomorphosis in
salamanders. Q Rev Biol 1994, 69(2):205-221.

Ellner S, Sasaki A: Patterns of genetic polymorphism maintained by
fluctuating selection with overlapping generations. Theor Popul Biol
1996, 50(1):31-65.

Trenham PC, Bradley Shaffer H, Koenig WD, Stromberg MR: Life history
and demographic variation in the California tiger salamander
(Ambystoma californiense). Copeia 2000, 2000(2):365-377.

Abrams PA, Matsuda H, Harada Y: Evolutionarily unstable fitness maxima
and stable fitness minima of continuous traits. £vol fcol 1993,
7(5):465-487.

Wilson DS, Turelli M: Stable Underdominance and the Evolutionary
Invasion of Empty Niches. Am Nat 1986, 127(6):835-850.

Crnokrak P, Roff DA: Dominance variance: associations with selection
and fitness. Heredity 1995, 75(5):530-530.

Wang 1J, Savage WK, Shaffer HB: Landscape genetics and least-cost path
analysis reveal unexpected dispersal routes in the California tiger
salamander (Ambystoma californiense). Mol Ecol 2009, 18(7):1365-1374.
Trenham PC, Koenig WD, Shaffer HB: Spatially autocorrelated
demography and interpond dispersal in the salamander Ambystoma
californiense. Ecology 2001, 82(12):3519-3530.

Rowe CL, Dunson WA: Impacts of hydroperiod on growth and survival
of larval amphibians in temporary ponds of central Pennsylvania, USA.
Oecologia 1995, 102(4):397-403.

Semlitsch RD: Paedomorphosis in Ambystoma talpoideum: effects of
density, food, and pond drying. Ecology 1987, 68(4):994-1002.

Arnold ML: Evolution through genetic exchange. Oxford University
Press, USA; 2006.

Mallet J: Hybrid speciation. Nature 2007, 446(7133):279-283.

Fitzpatrick BM, Johnson JR, Smith JJ, Kump DK, Voss SR, Shaffer HB: Rapid
spread of invasive genes into a threatened native species. Proc Nat!
Acad Sci USA 2010, 107(8):3606-3610.

Arnold M, Martin N: Adaptation by introgression. JBiol 2009, 8(9):82.
Shaffer HB, Pauly GB, Oliver JC, Trenham PC: The molecular
phylogenetics of endangerment: cryptic variation and historical
phylogeography of the California tiger salamander, Ambystoma
californiense. Mol Ecol 2004, 13(10):3033-3049.

Asashima M, Malacinski GM, Smith SC: Surgical manipulation of
embryos. In Developmental Biology of the Axolot! Edited by: Armstrong J,
Malacinski G. New York: Oxford University Press; 1989.

Semlitsch RD, Scott DE, Pechmann JHK: Time and Size at Metamorphosis
Related to Adult Fitness in Ambystoma Talpoideum. Ecology 1988,
69(1):184-192.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17327874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11700286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11005285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19564601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19324629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19630983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15266977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17489263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18021199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17884982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18811261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17246497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12920100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17133855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17733097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8776837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19368644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17361174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20133596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19833002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15367118

Johnson et al. BMC Evolutionary Biology 2010, 10:147
http://www.biomedcentral.com/1471-2148/10/147

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Semlitsch RD: Density-dependent growth and fecundity in the
paedomorphic salamander Ambystoma talpoideum. Ecology 1987,
68(4):1003-1008.

Wilbur HM: Regulation of structure in complex systems: experimental
temporary pond communities. Ecology 1987, 68(5):1437-1452.
Werner EE: Amphibian metamorphosis: growth rate, predation risk, and
the optimal size at transformation. Am Nat 1986, 128(3):319-341.
Semlitsch RD, Wilbur HM: Effects of pond drying time on
metamorphosis and survival in the salamander Ambystoma
talpoideum. Copeia 1988, 1988(4):978-983.

Lynch M, Walsh B: Genetics and analysis of quantitative traits. Sinauer
Sunderland, Ma; 1988.

Fitzpatrick BM: Hybrid dysfunction: population genetic and
quantitative genetic perspectives. The American Naturalist 2008,
171(4):491-498.

Lynch M: The genetic interpretation of inbreeding depression and
outbreeding depression. Evolution 1991, 45(3):622-629.

Mather K, Jinks JL: Biometrical genetics: The Study of Continuous
Variation. 3rd edition. New York: Chapman & Hall; 1982.

Janzen FJ, Stern HS: Logistic regression for empirical studies of
multivariate selection. Evolution 1998, 52(6):1564-1571.

R Development Core Team: R: A language and environment for
statistical computing. R Foundation for Statistical Computing; 2008.

doi: 10.1186/1471-2148-10-147

Cite this article as: Johnson et al,, Retention of low-fitness genotypes over
six decades of admixture between native and introduced tiger salamanders
BMC Evolutionary Biology 2010, 10:147

Page 14 of 14

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVed Central



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20374137

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Quantitative Genetics
	Initial barrier to gene flow
	Contemporary hybrid fitness

	Discussion
	Quantitative genetics
	Initial barrier to gene flow
	Contemporary hybrid fitness

	Conclusions
	Methods
	Artificial crosses/Lab rearing
	Statistical Analyses

	Additional material
	Authors' contributions
	Acknowledgements
	Author Details
	References

