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Abstract
Background: Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. 
The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this 
study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust 
phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria) to the Chloroplastida.

Results: GSII sequences were isolated from four species of green algae (Trebouxiophyceae), and additional green algal 
(Chlorophyceae and Prasinophytae) and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, 
Lycopodiophyta and Tracheophyta) sequences were obtained from public databases. In Bayesian and maximum 
likelihood analyses, eubacterial (GSIIB) and eukaryotic (GSIIE) GSII sequences formed distinct clades. Both GSIIB and GSIIE 

were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-
supported sister clade with the γ-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by 
horizontal gene transfer (HGT). Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an 
extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the 
primary endosymbiotic lineages (the Archaeplastida). However, GSIIB genes have not been identified in glaucophytes 
or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. 
Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and 
Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, 
indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit 
sequences, suggesting a cytosolic function. GSIIB sequences were absent in vascular plants where the duplication of 
GSIIE replaced the function of GSIIB.

Conclusions: Phylogenetic evidence suggests GSIIB in Chloroplastida evolved by HGT, possibly after the divergence of 
the primary endosymbiotic lineages. Thus while multiple GS isoenzymes are common among members of the 
Chloroplastida, the isoenzymes may have evolved via different evolutionary processes. The acquisition of essential 
enzymes by HGT may provide rapid changes in biochemical capacity and therefore be favored by natural selection.

Background
Glutamine synthetase (GS: E.C. 6.3.1.2) catalyzes the
ATP-dependent formation of Gln from Glu and NH4 

+

and is considered one of the oldest functioning enzymes
[1,2]. The GS gene superfamily includes three distinct

classes, GSI, GSII and GSIII, each differing in molecular
size and number of subunits in the holoenzyme [3,4]. The
distribution of the three classes is variable within the
three domains of life and instances of multiple GS isoen-
zymes from different families functioning in the same
organism are not uncommon in both eubacteria and
eukaryotes [3,5-8]. These observations suggest the gene
families arose early and prior to the divergence of the
prokaryotes and eukaryotes [9-11].
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The evolutionary history of the GS superfamily is com-
plicated and gene transfer events are one among many
forces that have shaped the history of these genes.
Among prokaryotes, there is phylogenetic evidence of
horizontal gene transfer (HGT) of GSI genes between
members of the Archaea and Eubacteria [9]. Evidence for
secondary endosymbiotic gene transfer of GSII from the
red algal endosymbiont to the nucleus of the heterokont
host has also been presented [11]. Members of the GSII
gene family are found in both eubacterial and eukaryotic
lineages. The identification of GSII genes in the plant
symbiont Bradyrhizobium japonicum lead Carlson and
Chelm [12] to hypothesize that the gene evolved via HGT
from vascular plants to bacteria. However, this hypothe-
sis was not supported by subsequent phylogenetic analy-
ses [11,13], which established distinct eukaryotic (GSIIE)
and eubacterial (GSIIB) clades.

The supergroup Archaeplastida [14], consisting of
Glaucophyta, Rhodophyceae and Chloroplastida, harbors
members of GSII gene family that are well characterized
in vascular plants but not in other lineages within the
supergroup. In general, vascular plants express multiple
GS isoenzymes that are localized to either cytosol or
chloroplast. The isoenzymes are nuclear encoded, and in
most angiosperms a single nuclear gene encodes the
chloroplast isoenzyme, while a small nuclear gene family
encodes multiple cytosolic isoenzymes that are expressed
in tissue-specific and developmentally-regulated patterns
[15-18]. Previous phylogenetic analyses of chloroplast
and cytosolic isoenzymes support the hypothesis that the
isoenzymes in angiosperms evolved via a gene duplica-
tion event that preceded the divergence of monocots and
dicots [19,20].

Biochemical studies of green algae provided the first
evidence that, as observed in vascular plants, multiple
GSII isoenzymes are expressed and localized to the cyto-
sol and chloroplasts within these organisms [21,22]. Phy-
logenetic analyses incorporating the two GSII isoforms
characterized in Chlamydomonas reinhardtii [23] uncov-
ered an unusual disparity between the two enzymes [20].
The cytosolic GSII sequence clustered with the vascular
plants while the plastid sequence branched more basally
and appeared to associate with the eubacterial sequences.

Here we examined the evolutionary relationship of the
GSII gene family and use increased taxonomic sampling
in Chloroplastida to determine if the basally branching,
eubacterial-like GSIIB was broadly distributed. GSII
sequences were obtained from four members of the
Trebouxiophyceae (Chlorophyta) by PCR amplification
using degenerate and gene specific primers. Additional
GSII sequences for members of the green algae (Chloro-
phyta and Prasinophytae) and streptophytes
(Mesostigma, Charales, Desmidiales, Bryophyta, March-

antiophyta, Lycopodiophyta and Tracheophyta) were
obtained from publicly available databases, including
genome and EST projects. We also increased taxonomic
sampling within Eubacteria (to date, GSII genes have not
been reported from Archaea). GSIIE and GSIIB sequences
were identified in members of the green algae and early-
diverging streptophytes. Phylogenetic analyses provide
support for the hypothesis that GSIIB was gained in the
Chloroplastida from the Eubacteria via a HGT event after
the divergence of primary photosynthetic groups.

Results and Discussion
Amplification of GSII genes
Complete GSII mRNA sequences were obtained from
Pseudochlorella sp. CCAP211/1A, Chlorella luteoviridis,
Auxenochlorella protothecoides, and Prototheca zopfii. A
GSII sequence was also obtained for Pseudochlorella sp.
CCAP211/1A that included 912 bp of the ORF and all of
the 3'UTR. GenBank accession numbers and characteris-
tics of the transcripts obtained in this study are summa-
rized in Table 1.

Eukaryotic GSII phylogeny
Phylogenetic analyses of GSII amino acid sequences
resulted in a well-resolved tree. Assuming the root of the
tree lies outside the major eukaryotic clade, there was a
clear separation of the eukaryotic (GSIIE) and eubacterial
(GSIIB) enzymes (Figure 1). Within the eukaryote clade,
the opisthokonts (fungi+animals) and photosynthetic
eukaryotes formed separate groups (Figures 1 and 2). The
GSIIE proteins from streptophytes, chlorophytes, rhodo-
phytes, and chromalveolates formed distinct clades, each
with strong to moderate support. The position of the het-
erokont sequences within this clade is consistent with
previous analyses that provide evidence that GSIIE in het-
erokonts arose via endosymbiotic gene transfer [11].
Sequences from Chlorophyta (green algae, including rep-
resentatives of the Chlorophyceae and Trebouxiophy-
ceae) diverged from a basal node within the
photosynthetic clade and the Chloroplastida (eukaryotes
with chlorophylls a and b) were not monophyletic. How-
ever, the deeper nodes within the photosynthetic eukary-
otic clade were not well supported and thus the
branching pattern within the clade is unresolved (Figure
2). The streptophyte GSIIE sequences formed two major
groupings; one group contained protein sequences tar-
geted to the chloroplast of angiosperms and the other
contained protein sequences of non-vascular and vascu-
lar plants that are targeted to the cytosol. Multiple GSIIE
genes were also observed in the gymnosperms (Pinus
spp.) but to date, these appear to function in the cytosol
and evidence of plastid targeted isoenzymes is lacking
[24].
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Evidence for the HGT of GSIIB

The GSIIB clade comprised sequences from eubacteria
and some members of the Chloroplastida (green algae,
liverworts, and mosses; Figures 1 and 3). The Chloroplas-
tida sequences formed a single clade nested within the
eubacterial sequences and branching within the clade was
similar to predicted organismal phylogenies [25].

GSIIB sequences are not broadly represented among
eubacteria but were identified in members of the Bacteri-
odetes/Flavobacteria/Cytophaga, Planctomycetes, Verru-
comicrobia, Actinobacteria, and the α- and γ-
Proteobacteria (Figure 3; Additional files 1 and 2). The
Chloroplastida GSIIB was sister to γ-Proteobacteria with
strong (Bayesian posterior probability = 1.0) to moderate
support (likelihood bootstrap support = 70%). The γ-Pro-
teobacteria + Chloroplastida GSIIB clade was sister to the
Actinobacteria, but this association was not strongly sup-
ported. The α-Proteobacteria GSIIB sequences were not
closely related to the γ-Proteobacteria + Chloroplastida
GSIIB clade, which makes the possibility of GSIIB gain via
mitochondrial endosymbiosis unlikely. The α-Proteobac-
teria GSIIB were nested within the Verrucomicrobia and
thus, we cannot exclude the possibility of an HGT event
within the α-Proteobacteria lineage that obscures the
mitochondrial origin of the GSIIB gene in the Chloroplas-
tida. However, the lack of detection of GSIIB in genomes
of other eukaryotic lineages reduces the likelihood of a
mitochondrial origin. In addition, EST and genome anal-
yses of other photosynthetic eukaryotes (Glaucophyta,
Rhodophyceae and Chromalveolates) and extant
cyanobacteria [26,27], have not uncovered GSIIB
sequences, reducing the possibility that GSIIB was

acquired via plastid endosymbiosis. Thus, we propose
that GSIIB in the Chloroplastida arose via a HGT from γ-
Proteobacteria early in plant evolution.

GSIIB sequences are not broadly distributed among
eubacterial lineages and to date, within γ-Proteobacteria,
only the genera represented in our analyses have anno-
tated GSIIB sequences deposited in GenBank. Assuming
the GS superfamily evolved prior to the divergence of the
three domains of life [9-11], the distribution of GSIIB
sequences suggests the gene has been lost in several lin-
eages of Eubacteria and the Archaea. The analysis of
GSIIB may become more robust as additional eubacterial
GSIIB become available through genome sequencing proj-
ects. However, gene loss may make the identification of
the true donor of GSIIB to the Chloroplastida difficult.

An alternative explanation for the limited distribution
of GSIIB among the eubacteria is that the gene was trans-
ferred to the eubacteria from an eukaryotic donor. The
possibility of an HGT from Chloroplastida to the γ-Pro-
teobacteria is not supported by our phylogenetic analyses
as it implies that the eubacterial sequences would nest
within the GSIIE clade; which has not been observed in
our phylogenetic analyses. Eukaryote to eubacterial HGT
might be supported if GSIIB were found in diverse lin-
eages of eukaryotes. Further investigation of GSII diver-
sity in the eukaryotic lineages not represented in our
study (e.g., Rhizaria, Excavata and Amoebozoa) will con-
tribute to our understanding of the distribution and evo-
lution of GSIIB. Given the data at hand, however, the
hypothesis that GSIIB arose in the Chloroplastida via
HGT remains the most parsimonious.

Table 1: Summary of the GSII sequences characterized in the present study

Taxa Sequences Obtained % GC content

Accession Number Length (bp) ORF (bp) Amino Acids ORF 5' UTR 3' UTR

GSIIE Sequences

Pseudochlorella sp. CCAP211/1A (2) GQ465769 1486 1137 378 63.32 53.19 55.12

Chlorella luteoviridis UTEX 28 GQ465770 1675 1146 381 56.20 46.27 46.17

Auxenochlorella protothecoides GQ465771 1621 1161 386 67.96 58.18 67.28

Prototheca zopfii ATCC16527 GQ465772 1632 1158 385 69.26 71.54 72.42

GSIIB Sequences

Pseudochlorella sp. CCAP211/1A (1) GQ491030 1266 912 303 56.47 n.d. 47.93

Four complete sequences of GSIIE and a portion of one GSIIB were obtained from cDNA for the species listed above. NCBI (GenBank) accession 
numbers are given. Characteristics of the sequences in terms of nucleotide length (Length), size of open reading frame (ORF), and the length of 
the predicted amino acid sequences (Amino Acids) are presented. The % GC content of open reading frame (ORF) and the 5'and 3' untranslated 
regions (UTR) of each transcript are presented.
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Figure 1 Evolutionary relationships among GSII enzymes from prokaryotes and eukaryotes. The phylogenetic analyses were based on 333 
amino acid characters from 196 taxa. The 50% majority-rule consensus tree from the Bayesian analyses [48,49] is shown as inferred from 20,002 trees 
as described in the Methods. Nodes with BBP support > 0.95 are represented by thick lines. RAxML [50,51] bootstrap values are indicated for nodes 
recovered in both analyses. RAxML values are not indicated for terminal bifurcations. Eubacterial GSIIB were used as the outgroup and considered 
monophyletic. The area of the triangles representing collapsed clades is not proportional to the number of taxa within the clade.
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Figure 2 Evolutionary relationship of GSIIE genes from eukaryotes, terminal taxa expanded. Phylogenetic analyses are as described in figure 1. 
Nodes with BBP support > 0.95 are represented by thick lines. RAxML bootstrap values are indicated for major nodes. RAxML values are not indicated 
for terminal bifurcations. Sequences characterized in the present study are shown in bold.
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Estimating the timing of the HGT
To estimate the relative and absolute timing of the HGT
of GSIIB, we used Bayesian relaxed molecular clock analy-
ses [28]. Both the uncalibrated (Figure 4) and calibrated
analyses (Additional file 3) show an overlap of the 95%
highest density posterior node ranges of the origin of
GSIIB in the early-diverging Chloroplastida coinciding
with the GSIIE divergence in the opisthokonts and in the
primary photosynthetic eukaryotes (Archaeplastida).
Our analyses indicate that GSIIB and GSIIE may have
coexisted for an extended period of time and under this
scenario, the putative timing of the HGT event from
eubacteria to eukaryotes could be placed either prior to
or after the divergence of the primary photosynthetic lin-
eages. At present, there is no evidence of GSIIB in
genomes of red algae (Cyanidioschyzon merolae [29] and

Galdieria sulphuraria [30,31]), or the glaucophyte
Cyanophora paradoxa. We acknowledge that taxon sam-
pling is not extensive within these two lineages and hence
cannot exclude the possibility of the existence GSIIB in
these groups. However, given these limited data it is most
parsimonious to assume that GSIIB was acquired only by
the Chloroplastida, early after the divergence from the
Glaucophyta and Rhodophyceae (red algae).

The distribution of GSIIB within Chloroplastida covers
the major lineages of Chlorophyta (Chlorophyceae,
Trebouxiophyceae, and Prasinophyceae; Additional file
1). In addition, a partial GSIIB sequence was identified in
a member of the Ulvophyceae (Acetabularia acetabulum;
(Additional files 2 and 4). Within Streptophyta, GSIIB
genes are present in Mesostigmatophyceae (Mesostigma
viride; Additional files 2 and 4), Zygnemophyceae

Figure 3 Evolutionary relationship of GSIIB genes from prokaryotes and eukaryotes, terminal taxa expanded. The inclusion of GSIIB genes 
from eukaryotes (early-diverging Chloroplastida) within prokaryotic GSIIB clade is evidence of HGT from prokaryotes to eukaryotes within this group. 
Nodes with BBP support > 0.95 are represented by thick lines. RAxML bootstrap values are indicated for major nodes. RAxML values are not indicated 
for terminal bifurcations. The sequence characterized in the present study is shown in bold.
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(Desmidiales; Closterium peracerosum-strigosum-litto-
rale complex), Marchantiophyta (liverworts; Marchantia
polymorpha) and Bryophyta (mosses; Physcomitrella pat-
ens). GSIIB is absent from the single Lycopodiophyta
genome (Selaginella moellendorffii) and from all seed
plants. Hence, we propose that GSIIB was lost in the plant
lineage after the colonization of land by early plants,
marked by the divergence of bryophytes and lycopodio-
phytes, which is one of the oldest vascular plant lineages
[32].

Functional localization and GSIIB gene duplication
The Chloroplastida lineages that contain the GSIIB gene
also have a GSIIE counterpart, which attaches to a basal
node within the photosynthetic eukaryotes (Figure 1).
Both the GSIIB and GSIIE genes are nuclear encoded and
thus we identified the cellular location of each of the gene
products based on the presence (organelle-localized) or
absence (cytosol-localized) of N-terminal transit peptides
using TargetP ver. 1.1 ([33], see Additional file 5). None of
the early-diverging Chloroplastida GSIIE enzymes con-
tained transit peptides. In contrast, chloroplast transit
sequences were identified in the GSIIB protein sequences
from Chlorella sp. NC64A, C. vulgaris and the strepto-
phyte, Closterium peracerosum-strigosum-littorale
(Zygnemophyceae) but not in the moss (P. patens) or liv-
erwort (M. polymorpha). Mitochondrial-targeting transit
peptides were predicted in GSIIB sequences from C. rein-
hardtii, Volvox carteri f. nagariensis and Scenedesmus
obliquus (see Additional file 5). Previous work indicated
that chloroplast transit sequences from C. reinhardtii
shared features with both mitochondrial and higher plant
chloroplast pre-sequences [34] and thus the prediction of
a mitochondrial location of GSIIB may not reflect its true
functional localization. Alternatively, GSIIB may be tar-
geted to both the mitochondria and chloroplast, similar
to what is observed for GSIIE in leaves of some vascular
plants [35,36]. While experimental evidence is required
to confirm the cellular localization of the GSIIB, it
appears that the GSIIB enzymes function in either the
chloroplast or mitochondrion in the chlorophytes and
early-diverging streptophytes (Closterium sp.) and that
GSIIE functions in the cytosol.

The GSIIB gene is duplicated in C. reinhardtii, V. carteri
f nagariensis and P. patens. The duplicated copies of
GSIIB in C. reinhardtii and V. carteri f nagariensis were
nearly identical (90% and 95% identical, respectively) and
present in the genome in a head-to-head orientation.
Similarly, the GSIIB genes in P. patens were 98% identical
but do not appear to be in close genomic proximity.

Within our phylogenetic analyses (Figure 3), the dupli-
cated GSIIB of C. reinhardtii, V. carteri f. nagariensis and
P. patens each formed separate clades, suggesting the
genes evolved by independent duplication events. Alter-
natively, the GSIIB genes in C. reinhardtii and V. carteri
may have evolved via an early duplication within the
Chlamydomonadales with subsequent gene conversion
following the divergence of these lineages. The GSIIB are
differentially expressed in C. reinhardtii suggesting the
need for maintenance of both the copies in the organism
[37].

GSIIB loss and replacement of function
In contrast to the expression of GSIIE and GSIIB genes in
the early-diverging Chloroplastida, the chloroplast- and
cytosolic-localized GSII enzymes in angiosperms are
both members of the GSIIE family and form two distinct
clades in our phylogenetic analyses (Figures 1 and 2). As
predicted in earlier studies [19], the genes encoding these
enzymes arose via a recent gene duplication event with
further expansion in the number of genes encoding cyto-
solic isoenzymes in several plant lineages (Figure 2,
[38,39]). Since GSIIB is absent from vascular plants, it
appears that the chloroplast function of GSIIB has been
replaced by a gene duplication event in higher plants
allowing for subsequent loss of the gene from this lineage.
There is also an expansion of the GSIIE gene family in
gymnosperms (Figure 2), but the enzymes are all local-
ized to the cytosol and the plastid targeted isoform
appears to have been lost from this group. The expansion
of the GSIIE gene family coincides with the development
of vascularization of land plants and maybe correlated
with the partitioning of nitrogen assimilation between
below and above ground tissue (see Additional file 3).

Conclusions
We have provided evidence of an ancient HGT event
involving the gene for an essential enzyme, GSII. GSII has
been well characterized at the molecular level in angio-
sperms but has been largely overlooked in the early-
diverging plant lineages, which were addressed in the
present study. Although recent comparative genomic
analyses failed to identify bacterial genes in Chlamy-
domonas reinhardtii [40], our discovery of a eubacterial-
like GSII in the chlorophytes and early-diverging strepto-
phytes suggests that further exploration within these lin-
eages is merited. The branching pattern within the
monophyletic assemblage of the chlorophytes and early-
diverging streptophytes is similar to other molecular and
organismal phylogenies, suggesting the occurrence of a
single HGT event. As a result, GSIIB may be useful in
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Figure 4 Maximum clade probability chronogram from the BEAST analysis of the GSIIB and GSIIE amino acid sequence alignment. All lineag-
es were allowed to evolve according to a relaxed molecular clock and WAG + Inv + Gamma model. Bars on nodes indicate the width of the 95% high-
est posterior density for each divergence time.
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resolving taxonomic associations within and among
green algal and early-diverging streptophyte lineages.

Several genes of bacterial origin have been identified in
Dictyostelium discoideum and are thought to be advanta-
geous to organisms living in soil [40]. More recently,
Richards et al. [41] identified five genes in plants that
appear to be of fungal origin and argue that two may have
been advantageous for organisms colonizing a terrestrial
environment. We propose that the acquisition of
enzymes by HGT results in a more rapid change in enzy-
matic capacity or kinetic diversity than evolution of
isoenzymes by gene duplication and subsequent special-
ization. Biochemical studies have suggested that GSIIB
has a lower affinity for NH4 

+ and Glu than GSIIE [42],
characteristics that would be advantageous for enzymes
assimilating higher concentrations of NH4 

+ from envi-
ronmental sources, NO3 

- assimilation, or increased rates
of photorespiration. Increased taxon sampling and an
enlarged fossil age constraint dataset will allow for a more
detailed examination of the timing of GSII gains and
losses over geological history and coupled with major
transitions in plant evolution.

Methods
Algal cultures and sequencing
Four members in the class Trebouxiophyceae were
selected for GSII gene amplification. Cultures of
Pseudochlorella sp. CCAP211/1A, Chlorella luteoviridis,
and Auxenochlorella protothecoides were a gift from Dr.
Peggy Winter (University of West Florida), and Prototh-
eca zopfii was a gift from Dr. Drion Boucias (University of
Florida). Cultures were grown axenically in ATCC
medium 847, (Pseudochlorella sp. CCAP211/1A, C.
luteoviridis and A. protothecoides) and in ATCC medium
28: Emmons' modification of Sabouraud's agar (P. zopfii)
at 17°C and 12:12 h light: dark cycle. Cells were collected
by centrifugation (approximately 50 mL of culture), flash
frozen in liquid nitrogen, ground in a mortar and pestle
and subjected to DNA and RNA extraction. DNA was
extracted using a hexadecyltrimethylammonium bromide
extraction protocol [43]. RNA was extracted using an
RNeasy® Mini Kit (Qiagen Inc., Valencia, CA) with modi-
fications outlined in Brown et al. [44] for extraction with
glass beads using bead beating. Extracted nucleic acids
were quantified spectrophotometrically for downstream
applications using a MWG BIOTECH Lambda Scan
200×, 96-well Microplate Reader with KCJunior Software
(MWG BIOTECH, High Point, NC). cDNA was synthe-
sized using an Omniscript RT kit (Qiagen Inc., Valencia,
CA). Total RNA (1.5 μg) was used as a template and the
oligo-d (T) primer GCGGCCGCTCTAGACTAG(T)18 as
the first strand primer. Primers were designed to target

specifically GSIIE and GSIIB sequences. GSIIE primers
were based on existing sequences from vascular plants,
chlorophytes and rhodophytes. GSIIB primers were based
on existing sequences from Chlamydomonas reinhardtii
and Physcomitrella patens. PCR was performed in a final
volume of 25 μL with Taq PCR core kit (Qiagen) with Q
solution to overcome problems associated with high GC
content. Primer sequences are listed in Table 2. Thermal
conditions for GSIIE: 30 cycles of 95°C for 30s, 50°C for
30s, 72°C for 1 min, performed for 30 cycles. Thermal
conditions for GSIIB: Initial denaturation of 94°C for 2
min, followed by 35 cycles of 94°C for 1 min, 51°C for 1
min, 72°C for 1 min and extension at 72°C for 5 min.

Nested PCR amplification was used to obtain GSIIB
sequences with first round done with cDNA and primer
concentrations of 0.4 μM (MossGS2-1F [forward] and
MossGS2-2R [reverse]). The amplicon was used for a sec-
ond round of amplification with primers Green UNI 1-F
(forward) and cpGSII(QGPFY)-R (reverse) and yielded a
DNA fragment of 330 bp. Amplified sequences were
cleaned and sequenced either commercially (MWG Bio-
tech, Charlotte, NC and Macrogen, Seoul, South Korea)
or at Clark University using an automated DNA
sequencer (ABI 3130), with ABI Prism Terminator Big
Dye ver 3.1 (Applied Biosystems, Carlsbad, CA). Some
PCR products were cloned into TOPO vectors following
the manufacturer's protocol (TOPO TA Cloning Kit for
Sequencing, Invitrogen, Carlsbad, CA) prior to sequenc-
ing. Rapid Amplification of cDNA Ends (RACE) methods
were used to obtain the entire open reading frame for
GSIIE sequences from Pseudochlorella sp. CCAP211/1A,
C. luteoviridis, A. protothecoides and P. zopfii and partial
GSIIB sequence from Pseudochlorella sp. CCAP211/1A. 3'
RACE reactions used a combination of gene specific
primers and a portion of the oligo-d (T) primer (GCG-
GCCGCTCTAGACTAGT) used for cDNA synthesis. 5'
RACE reactions were performed using 5' RACE System
version 2.0 from Invitrogen (Invitrogen) and SMART™
RACE cDNA Amplification Kit (Clontech Laboratories
Inc., Mountain View, CA) following manufacturers' rec-
ommendations. Contigs were assembled using Codon-
Code Aligner (CodonCode Corporation, Deadham, MA).
All sequences were translated into amino acids in silico.

Phylogenetic analyses
GSII sequences were retrieved from public databases as
well as genome and EST projects using the GSII sequence
from the diatom Skeletonema costatum (AAC77446) as
query, or glutamine synthetase as a keyword. Subsequent
queries with eubacterial GSII sequences did not retrieve
any additional sequences. Complete information on taxa,
database sources and accession numbers is provided in



Ghoshroy et al. BMC Evolutionary Biology 2010, 10:198
http://www.biomedcentral.com/1471-2148/10/198

Page 10 of 12
Additional file 1. The initial alignment of amino acid
sequences was done with the web based program
CLUSTAL W, using default parameters [45], followed by
manual adjustment using BioEdit Sequence Alignment
Editor [46] and MacClade 4.08 [47]. The N- and C termi-
nal ends of the proteins along with highly variable regions
within the alignments were excluded in the phylogenetic
analyses.

The final GSII alignment consisted of 196 taxa and 333
characters for Bayesian analysis. Trees were inferred by
calculating Bayesian posterior probabilities using
MrBayes 3.1.2 [48,49]. Two parallel runs, each with four
chains (three heated and one cold) were run for 106 gen-
erations. The evolutionary models implemented in
MrBayes3.1.2 were explored using the mixed amino acid
model. Rate variation across sites was approximated
using a gamma distribution with proportion of invariable
sites estimated from the data. Trees were sampled every
100 generations. Likelihood tree scores of two indepen-
dent runs were plotted to estimate the point of conver-
gence to a stable likelihood, and to determine the trees to
be excluded via "burnin." Bayesian posterior probabilities
of the branches were calculated from trees from both the
runs, totaling 20,002 trees. Trees remaining (10,000) after
a burnin of 5001 for each run were used to compute a
50% majority-rule consensus.

Maximum likelihood (ML) based inference of the phy-
logenetic trees was done using the software RAxML 7.0.4
[50,51]. The analysis used a random starting tree and the
rapid hill-climbing algorithm (i.e., option -f d in RAxML)
and the WAG model of amino acid substitution were
used. A random seed number was used to turn on rapid
bootstrapping (-x) and 1000 bootstrap trees were gener-
ated by invoking -# 1000 and - x options in RAxML. A
majority rule consensus tree was created in PAUP* 4.0 b
[52]. The phylogenetic trees in figures 1, 2 &3 are the 50%

majority rule consensus trees from the Bayesian analyses
on which the RAxML bootstrap values have been indi-
cated. The eubacterial GSIIB sequences were used as the
monophyletic outgroup in the graphical representation of
the phylogenies.

Prediction of functional localization of GSIIB and GSIIE 

protein sequences in early-diverging Chloroplastida
We used the web-based programs TargetP 1.1[33] and
ChloroP 1.1 [53] to identify N-terminal transit peptides
in GSIIB and GSIIE proteins (see Additional file 5).

Estimation of divergence times
We estimated the divergence times using Bayesian
approach implemented in BEAST 1.4.8 [28]. We did an
un-calibrated and calibrated run. A relaxed molecular
clock model of uncorrelated log normal distribution was
used. For the un-calibrated analysis, a starting tree gener-
ated by RAxML 7.0.4 [50] was used as the input tree with
the GS amino acid sequence alignment. For the calibrated
analysis we set uniform priors on tmrca parameter. Fossil
dates were used as minimum dates and were, as follows,
Ascomycota, 400 MYA [54], Bilateria, 550 MYA [55] and
streptophytes 475 MYA [56]. Secondary age constraints
based on published estimates of divergence times were
not used. We used the following models, WAG + Inv +
Gamma with priors, birth death speciation on the tree.
Markov Chain Monte Carlo was set to default 10 million
with sampling at every 1000 generation, resulting in
10,000 trees. Convergence was assessed in Tracer v 1.4
[57] and the first three million samples were excluded as
burnin. A maximum clade credibility tree was generated
by analyzing the BEAST tree file in TreeAnnotator 1.4.6
[58]. This program determined the 95% highest posterior
densities and estimated the node heights as mean heights.

Table 2: Primers used for amplification of GSII genes from green algae

Gene Primer name Direction Sequence

MossGS2-1F Forward 5'-TGGGTTGATGGTMANGARGG-3'

GSIIB MossGS2-2R Reverse 5'-ATNCCGAAMTCTTCNCC-3'

Green UNI 1-F Forward 5'-CCIRAITGGWSITTYGAYGG-3'

cpGSII(QGPFY)-R Reverse 5'-CCRCARTARAAIGGICCYTGIGG-3'

GALG GS F Forward 5' - TGC CCA TCC CCA CCA ACA C - 3'

GSIIE GALG GS R Reverse 5' - TCT CGT GCT TGC CCG TCA GG - 3'

GS2ChloroF Forward 5' - CGG CWT CGA GCA GGA GTA CAC - 3'

GS2ChloroR Reverse 5' - CCG AYC TGG WAC TCC CAC TGG - 3'

Sequences of degenerate primers are presented using IUBMB single letter codes. I represents inosine.
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