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Abstract

identical sequences.

Background: Pelobacter carbinolicus, a bacterium of the family Geobacteraceae, cannot reduce Fe(lll) directly or
produce electricity like its relatives. How P. carbinolicus evolved is an intriguing problem. The genome of P.
carbinolicus contains clustered regularly interspaced short palindromic repeats (CRISPR) separated by unique spacer
sequences, which recent studies have shown to produce RNA molecules that interfere with genes containing

Results: CRISPR spacer #1, which matches a sequence within hisS, the histidyl-tRNA synthetase gene of P.
carbinolicus, was shown to be expressed. Phylogenetic analysis and genetics demonstrated that a gene paralogous
to hisS in the genomes of Geobacteraceae is unlikely to compensate for interference with hisS. Spacer #1 inhibited
growth of a transgenic strain of Geobacter sulfurreducens in which the native hisS was replaced with that of P.
carbinolicus. The prediction that interference with hisS would result in an attenuated histidyl-tRNA pool insufficient
for translation of proteins with multiple closely spaced histidines, predisposing them to mutation and elimination
during evolution, was investigated by comparative genomics of P. carbinolicus and related species. Several ancestral
genes with high histidine demand have been lost or modified in the P. carbinolicus lineage, providing an
explanation for its physiological differences from other Geobacteraceae.

Conclusions: The disappearance of multiheme c-type cytochromes and other genes typical of a metal-respiring
ancestor from the P. carbinolicus lineage may be the consequence of spacer #1 interfering with hisS, a condition
that can be reproduced in a heterologous host. This is the first successful co-introduction of an active CRISPR
spacer and its target in the same cell, the first application of a chimeric CRISPR construct consisting of a spacer
from one species in the context of repeats of another species, and the first report of a potential impact of CRISPR
on genome-scale evolution by interference with an essential gene.

Background

Clustered regularly interspaced short palindromic
repeats (CRISPR), which consist of direct repeats of a
short sequence (21-47 bp) separated by nonrepetitive
sequences of similar size, have been identified in the
genome sequences of almost all archaea and numerous
bacteria, with a variable complement of adjacent
CRISPR-associated (cas) genes [1-9]. A fraction of the
spacer sequences between repeats have been found to
match sequences termed “proto-spacers” within genes,
from which they may be derived [8,10,11], and the fact
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that many of these genes belong to phage or plasmid
entities led to the hypothesis that CRISPR and the Cas
proteins may function as an RNA interference-based
immune system [6]. The link between specific CRISPR
spacers and proto-spacers and phage resistance has been
established by mutational analysis in Streptococcus ther-
mophilus [12,13], and by testing synthetic CRISPR con-
structs in Escherichia coli [14]. Similarly, resistance of
Staphylococcus epidermidis to a conjugative plasmid has
been shown to depend on a CRISPR spacer and the cor-
responding proto-spacer [15]. Expression of CRISPR loci
as long transcripts processed into smaller RNA mole-
cules has been observed in several archaea [5,16-19] and
bacteria [14,20]. A complex of Cas proteins has been
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shown to carry out this processing in E. coli and to be
required for resistance to infection [14]; a different pro-
tein (Cas6) processes CRISPR transcripts in Pyrococcus
furiosus [21]. CRISPR-derived RNAs have been shown
to form RNA-protein complexes in P. furiosus [19],
which leads to degradation of RNAs containing match-
ing proto-spacers [22], whereas DNA was shown to be
the target of interference by spacer-containing RNAs in
S. epidermidis [15]. Although CRISPR are widely
regarded as an immunological phenomenon, CRISPR and
cas genes have also been implicated in spore develop-
ment of Myxococcus xanthus [3,23] and in inhibition of
biofilm formation and swarming of Pseudomonas aerugi-
nosa by a lysogenic phage [24], and there has been specu-
lation that spacers with matches to housekeeping genes
represent a novel mechanism of gene regulation [25].
The Geobacteraceae, a Fe(lll)-respiring family of Del-
taproteobacteria, are of interest for their role in biore-
mediation of U(VI)-contaminated environments and
their ability to donate electrons directly to graphite elec-
trodes, producing an electrical current [26,27]. Pelobac-
ter carbinolicus is a member of the Geobacteraceae that
grows by fermentation of acetoin and 2,3-butanediol, as
well as by indirect Fe(III) respiration with ethanol as the
electron donor and acetate as the end product [28,29].
Unlike its relatives in the genus Geobacter, P. carbinoli-
cus cannot reduce Fe(III) directly in the absence of sul-
fur or sulfide [30], or produce electricity [31]. The
genome of P. carbinolicus was sequenced for the pur-
pose of comparison to those of Geobacter species, three
of which have been extensively curated: Geobacter sul-
furreducens [32], Geobacter metallireducens [33] and
Geobacter bemidjiensis (Aklujkar et al., submitted). This
report explores how evolution of the P. carbinolicus
genome may have been influenced by a spacer within
the CRISPR locus that matches a proto-spacer within
histidyl-tRNA synthetase (%isS), resulting in the elimina-
tion of ancestral genes containing multiple closely
spaced histidines. The interfering nature of the spacer
was confirmed by introducing it to a transgenic G. sul-
furreducens strain containing the target gene.

Methods

Analysis of CRISPR spacers

The CRISPR locus was identified when manual curation
of the P. carbinolicus genome revealed a series of suspi-
ciously repetitive predicted genes. The nonredundant
nucleotide sequence database was queried with each of
the 111 CRISPR spacers of P. carbinolicus using the
BLAST algorithm [34], with the minimum possible
word size of 7 bp and without filtering out low-com-
plexity regions of the queries. Alignments with five or
fewer mismatches out of 32 bases were considered
significant.
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Phylogenetic analysis of HisS and HisZ proteins

The sequences of all predicted /4isS gene products of the
Geobacteraceae, together with HisS and HisZ protein
sequences representative of various families of Bacteria
and Archaea, were aligned by TCoffee [35] and trimmed
using Mesquite (Maddison, W. P., and Maddison, D. R.
2006. Mesquite: a modular system for evolutionary ana-
lysis. Version 1.12). Phylogenetic trees were constructed
using Phylip (Felsenstein, J. 2005. PHYLIP (Phylogeny
Inference Package) version 3.6) with 500 bootstrap runs.

Quantitative real-time PCR of reverse-transcribed RNA

P. carbinolicus strain DSM2380 was grown as previously
described [36] with ethanol as the electron donor and
Fe(III) as the electron acceptor. RNA was isolated from
triplicate chemostat cultures as previously described
[37,38]. Transgenic G. sulfurreducens strains were grown
in NBAF medium [39] and RNA was isolated from
actively growing triplicate batch cultures at an ODggg of
0.20 to 0.31. The absence of DNA contamination was
confirmed by PCR as previously described [36] with pri-
mer pairs specific for CRISPR spacer #1, for hisS and
for hisZ (Table 1), using P. carbinolicus or G. sulfurre-
ducens genomic DNA (isolated with the MasterPure
DNA Purification Kit from EPICENTRE Biotechnolo-
gies, Madison, WI) as a control. Six to twelve clones of
each genomic DNA PCR product were sequenced to
verify the specificity of the primers. Reverse transcrip-
tion was performed with the Enhanced Avian First
Strand Synthesis Kit (Sigma-Aldrich, St. Louis, MO) as
described previously [37], using each primer individually
at 2 pM concentration with 400 ng of RNA in 20 pl
total volume. Successful reverse transcription and the
feasibility of DNA amplification in the presence of RNA
were verified by PCR using 5 pl of this reaction. Quanti-
tative real-time PCR (QRT-PCR) was performed with
two to four technical replicates (9.5 pl of a tenfold dilu-
tion of cDNA, corresponding to 19 ng of RNA) for each
of three biological replicates in a Tagman 7500 instru-
ment using 2 x Power SYBR Green PCR master mix
(Applied Biosystems, Foster City, CA) and primer pairs
at 9 nM concentration in 25 pl total volume, for 50
cycles with an annealing temperature of 60°C and tripli-
cate standards of spacer #1 and kisS PCR products from
P. carbinolicus genomic DNA and a hisZ PCR product
from G. sulfurreducens genomic DNA, encompassing
four orders of magnitude.

Recombinant DNA techniques

All restriction enzymes were purchased from New Eng-
land Biolabs; LA Taq polymerase was from Takara
Mirus Bio; plasmids were propagated in E. coli TOP10
cells from Invitrogen; DNA purification kits for plasmids
and agarose gel slices were from QIAGEN, and the
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Table 1 Oligonucleotides for QRT-PCR and genetic manipulations.

Primers for QRT-PCR

Name Purpose Location Sequence (5’ to 3')
MAO0326 PCR of spacer #1 spacer #2 CCTGGTTGAGGTTAGCGTTGA
MAO0327 outside CRISPR AATTCGGTGGCCAGTTGTTC
MA0328 PCR of hisS Pcar_1041 sense strand CAGGAAGCCACCAAGGAT
MA0329 antisense strand TGGGAGCCGAGTTGATTG
MAQ441 PCR of hisZ GSU3307 sense strand CAAACTGATTGCCGTTCCTT
MA0442 antisense strand AGGCCGATGAGTTCTACGC

Primers for construction of hisS transgenic strain MA159

Name Purpose Sequence (5’ to 3')

MA0330 PCR on 5' side of hisS GSU1659 TGACATCTCGCTGGACCGGG

MA0331 CTATGCTAGCACTAGTTTGTAATCATGAACGTACCTACTC
CTTTAATTG

MA0332 PCR on 3’ side of hisS GSU1659 GTACGTTCATGATTACAAACTAGTGCTAGCATAGCAATAC
CTGCATTG

MA0333 AGTCCATTCCTCCTGTGG

MAOQ334 PCR of hisS Pcar_1041 AAGGGATCTATCATGAGCATATCAGGCATTAAGGG

MA0335 GCGCGGCGCGACTAGTTTCCTCGTGICTTTTCC

MAQQ52 gentamicin marker TGCATATGGCTCTAGAATAACTTCGTATAGC

MAOQQ53 TCGATAAGCTTCTAGAATAACTTCGTATAATG

Oligonucleotides for construction of chimeric CRISPR expression plasmid pMA35

Name Purpose Sequence (5’ to 3')

MA0269 PCR of lacl-taclacUV5 promoter ACATGTCACTGCCCGCTTTCCAGTC

MAO0270 GCATGCGTGTGAAATTGTTATCCGC

MA0429 syntheticCRISPR of spacer #1 AATTCGGTTCATCCCCGCGCATGCGGGGAACACATACAT
GAGGGCAAACGCCTTTTGGCCGGCGGCGGTTCATCCCCG
CGCATGCGGGGAACACG

MAO0430 GATCCGTGTTCCCCGCATGCGCGGGGATGAACCGLCCGLC
GGCCAAAAGGCGTTTGCCCTCATGTATGTGTTCCCCGCAT
GCGCGGGGATGAACCG

MA36R sequencing CGACATCATAACGGTTC

Note: Within the sequence of the chimeric CRISPR, a single base pair (underlined) has been duplicated in plasmid pMA35-], at the exact centre of spacer #1.

MasterPure kit for genomic DNA extraction was from
EPICENTRE. To construct a transgenic strain of G. sul-
Sfurreducens in which the native /isS gene was replaced
with #isS from P. carbinolicus, three primer pairs (Table
1) were used to amplify the 5'-side and 3'-side flanking
regions of hisS GSU1659 and the coding sequence of
hisS Pcar_1041. The two flanking regions were digested
with Spe I and ligated; this product and the Pcar_1041
amplicon were separately TOPO-cloned (Invitrogen)
and sequenced. Digestion with BspH I (overlapping the
start codon) and Spe I (overlapping the stop codon) was
used to insert the Pcar_1041 gene between the flanking
regions of GSU1659. As a selectable marker, a gentami-
cin resistance cartridge was amplified from plasmid
pCM351 [40] with Xba I site-containing primers (Table
1), maintained as a TOPO clone, and ligated into the
Nhe 1 site between the Spe I site and the 3’ flanking
region of GSU1659. (A similar construct, in which only

the marker was inserted without Pcar 1041, was used in
unsuccessful attempts to delete GSU1659.) The entire
hisS replacement construct was excised using EcoR I,
purified from an agarose gel, and electroporated into the
wild type G. sulfurreducens strain DL1 as previously
described [39]. An isolated gentamicin-resistant colony
was streaked for purity before transfer to liquid. The
genotype of this strain, called MA159G, was confirmed
by PCR of genomic DNA, with primers MA0334 and
MAO0335 (which amplify 4isS Pcar_1041 but not hisS
GSU1659) as well as MA0330 and MA0333 (which give
a larger product for MA159G than for DL1, due to the
inserted marker). The marker, which had /loxP sites on
either side, was removed from the chromosome of strain
MA159G by introducing the Cre recombinase expres-
sion plasmid pCM158 [40] by electroporation and
selecting for resistance to kanamycin (Sigma). Four colo-
nies of the resultant strain called MA159 were streaked
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for purity and their genotypes were confirmed by PCR;
amplicons were digested with Pst I to distinguish
Pcar_1041 from GSU1659. This strain was electropo-
rated with a plasmid called pRG6 (R. Glaven, personal
communication), which is incompatible with pCM158
and selectable with spectinomycin (Sigma); it differs
from pRG5 [41] only in that it carries the lacl repressor
gene. The chromosomal genotype of this strain was con-
firmed by PCR and Pst I digestion.

A plasmid vector called pMA36, incompatible with
pRG6, was constructed for isopropylthio-B-D-galacto-
pyranoside (IPTG)-inducible expression of a chimeric
CRISPR containing spacer #1 from P. carbinolicus
between two repeats typical of the CRISPR2 locus of
G. sulfurreducens. The lacl repressor gene and tacla-
cUV5 promoter of plasmid pCD341 [42] were amplified
by PCR with Pci I and Sph I site-containing primers
(Table 1), TOPO-cloned and sequenced, and excised for
ligation into plasmid pCM66 [43], resulting in plasmid
pMA36. The chimeric CRISPR, consisting of annealed
oligonucleotides MA0429 and MAO0430 (Table 1), was
ligated between the BamH I and EcoR I sites of pMA36.
The sequence of this plasmid, called pMA35-1, was con-
firmed using the sequencing primer MA36R (Table 1).
Serendipitously, two variants were discovered: pMA35-2
in which the chimeric CRISPR had expanded to two
copies of spacer #1 with a third copy of the repeat
between them, and pMA35-! in which spacer #1 was
disrupted by duplication of a single G:C base pair at its
exact centre (underlined in Table 1). All three chimeric
CRISPR expression plasmids were electroporated into
DL1 and MA159(pRG6), in parallel with pMA36 as a
control. The genotypes of multiple kanamycin-resistant
colonies of each transformation were confirmed by PCR
of Pcar_1041 followed by Pst I digestion as well as clon-
ing and sequencing, and by sequencing of plasmids pre-
sent in the genomic DNA extracts (after transformation
into E. coli to improve DNA quality). Another variant of
pMA35-1 called pMA35-0 was serendipitously discov-
ered in which spacer #1 had been deleted by recombina-
tion of the repeats on either side.

Growth conditions

Transformants of G. sulfurreducens were selected on
NBAF medium [39] containing 1.5% Agar Noble
(Difco), supplemented with 5 mM cysteine hydrochlor-
ide and 0.1% yeast extract in an anaerobic chamber.
Growth experiments were carried out with liquid cul-
tures in either NBAF medium supplemented with 1 mM
cysteine hydrochloride or FWAFC medium [39] modi-
fied to contain 10 mM acetate and supplemented with
1 mM ferrous ammonium sulfate, in an atmosphere of
N, and CO, (80%:20%) in rubber-stoppered 26 ml glass
tubes at 30°C.
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Bioinformatics

Codon usage was determined using the CodonFre-
quency algorithm of the Genetics Computer Group
Wisconsin Package version 10.3 (Accelrys Inc., San
Diego, CA). A script to compute the number of histi-
dines and the distances between them for every protein
sequence in a list was written in Perl.

Results

The CRISPR locus of P. carbinolicus includes a spacer
matching its own histidyl-tRNA synthetase

During manual curation of the P. carbinolicus genome
annotation, the CRISPR locus was identified as 112
repeats of the sequence 5'-GAGTTCCCCGCA-
GATGCGGGGATGAACCG-3' (bases in bold predicted
to form a hairpin), separated by spacer sequences of 32
bp (Figure 1). This repeat sequence belongs to phyloge-
netic cluster 2 of the CRISPR classification system [44]
and the adjacent cas genes (Figure 1) are of the subtype
“Ecoli” [3]. The nonredundant nucleotide sequence data-
base was queried in an attempt to identify genes from
which the 111 CRISPR spacers of P. carbinolicus might
be derived. The only hits with five or fewer mismatched
bases were hits with zero mismatches within the P. car-
binolicus genome itself: spacer #1, located at the “trailer”
end of the locus, farthest from the AT-rich “leader
sequence” and cas genes encoding CRISPR-associated
proteins (Figure 1), matched a sequence within the histi-
dyl-tRNA synthetase (hisS) gene Pcar_1041 (Figure 2);
spacer #43 matched the adjacent spacer #44; and spacer
#28 matched the nonadjacent spacer #50. Spacer #1 is
likely to be the oldest spacer because new spacers are
added next to the leader sequence upon exposure of
streptococci to bacteriophage [12,13,45-47], and closely
related strains of bacteria and archaea contain identical
spacers only near the trailer ends of their CRISPR
[2,5,11,18,45,48-51]. This observation led to the hypoth-
esis that P. carbinolicus has experienced interference
with the 4isS gene, encoding an essential housekeeping
enzyme, over a significant period of its evolutionary
history.

Quantitative detection of CRISPR spacer #1 transcripts

In an attempt to determine whether spacer #1 is tran-
scribed into RNA that could have interfered with the
hisS gene at one time, and which strand of trailer end
RNA is predominant in P. carbinolicus, two oligonucleo-
tide primers were designed flanking spacer #1 (Figure 1,
Table 1): MA0326 within spacer #2 and MA0327 just
outside the outermost repeat of the CRISPR. Reverse
transcription of P. carbinolicus RNA into cDNA was
attempted with each single primer, followed by quantita-
tive real-time PCR amplification with both primers. The
amount of spacer #1-containing RNA including the
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QRT-PCR amplicon

cas genes of spacer #1
l primer MA0326
WLULULELLLEUECLUELULELELELELEU L LULULELELUEUELEELLELULLLLLE AT ALULULULLLULUELALALELELULULLETELULELULL LU
T primer MA0327
AT-rich “leader” noncoding “trailer”
sequence of CRISPR sequence
Pcar 0956 Pcar 0957 Pcar 0958 Pcar 0959  Pcar 0960 Pcar 0961 Pcar 0964 Pcar 0965
| P P m—y > 1 ¢ o | e—
cas3 csel cse2 csed casSe cse3 casl cas2

Figure 1 The CRISPR locus of P. carbinolicus. This locus consists of 112 repeats (black diamonds) separated by 111 nonrepetitive spacers
(white rectangles). Spacer #1 is at the trailer end, farthest from the cas genes and the AT-rich leader sequence near which new spacers are
typically inserted. Primers MA0326 and MAQ327 are based on sequences surrounding spacer #1, and were used to detect its RNA transcript. The
arrangement of the cas genes (located immediately to the left of the leader sequence) is illustrated in the lower half of the figure. The two
intervening genes encode a putative toxin (Pcar_0962) and transcriptional regulator or antitoxin (Pcar_0963).

(a) hisS gene (b) predicted structure of processed spacer #1 RNA

sense primer MA0328 5’ -AUGAACGGCCGCCG-CUCAUGUAUGUGGUCCCCG-3"

proto-spacer

antisense primer MA0329
= A G
QRT-PCR G C
amplicon G

(C) processed spacer #1 RNA

5’ -AUGAACGGCCGCCGGCCAAAAGGCGUUUGCCCUCAUGUAUGUGGUCCCCG-3

37 -GACCGGCGGGACCCGCTTCGGCGGCCGGTTTTCCGCAAACGGGAGTACATAGCGGACGTCGCTGAGCTG-5"
57 -CTGGCCGCCCTGGGCGAAGCCGCCGGCCAAAAGGCGTTTGCCCTCATGTATCGCCTGCAGCGACTCGAC-3
LeuAlaAlaLeuGlyGluAlaAlaGlyGlnLysAlaPheAlaLeuMetTyrArgLeuGlnArgLeuAsp

proto-spacer within 4isS DNA sequence and corresponding HisS amino acid sequence

Figure 2 CRISPR spacer #1 matches a nucleotide sequence within the hisS gene. (a) hisS consists of a catalytic domain (dark grey) and an
anticodon loop recognition domain (light grey) connected by a linker (white stripe). The proto-spacer sequence matching spacer #1 (black
stripe) is within the anticodon loop recognition domain. Primers MA0328 and MA0329 were designed to amplify a cDNA segment from the
catalytic domain. (b) Predicted secondary structure of a processed CRISPR transcript (initiated at the leader sequence) that contains spacer #1,
before hybridization to hisS DNA. Sequences from the repeats flanking spacer #1 are underlined. (c) Predicted hybridization of a proto-spacer
segment within the anticodon loop recognition domain of hisS DNA (template strand) with a processed spacer #1 RNA. The proto-spacer-
adjacent motif CTT is shown in bold.
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sequence found on the sense strand of kisS, detected by
primer MA0327, was not significantly different from the
amount of spacer #1-containing RNA corresponding to
the antisense of hisS, detected by primer MA0326
(Figure 3). Control PCR reactions without reverse tran-
scription yielded no product, indicating that DNA con-
tamination was negligible and only RNA of both strands
was detected.

The sense strand spacer #1-containing RNA detected in
this experiment may represent the 3' end of a long tran-
script initiated near the leader sequence, whereas the
antisense strand spacer #1-containing RNA may be pro-
duced independently from a promoter at the opposite
end of the CRISPR. It is also possible that one strand is
produced from the other by an unidentified RNA-direc-
ted RNA polymerase. If the sense strand spacer #1-con-
taining RNA undergoes processing similarly to the
E. coli CRISPR transcript [14], which belongs to the
same phylogenetic cluster of repeat sequences as the
P. carbinolicus CRISPR [44], cleavage within the stem-
loops of the repeats flanking spacer #1, followed by 3’
end trimming, would release a short RNA with pre-
dicted secondary structure (Figure 2b). This or the cor-
responding antisense strand spacer #1-containing RNA

1.2 x 107

0.8 x 107

molecules per ng

0.4 x 107

MAO0327 MAO0326

Figure 3 Spacer #1 is transcribed into RNA in P. carbinolicus,
with both strands similarly abundant. Reverse transcription was
performed with either primer MA0327 (grey bar) or primer MA0326
(white bar), and the amount of cDNA was quantified by QRT-PCR.
The mean of three biological replicates is shown; error bars
represent the minimum and maximum.
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may hybridize to the proto-spacer DNA sequence within
the hisS gene (Figure 2c).

Phylogenetic and experimental evidence that

interference with hisS cannot be compensated

It is surprising that spacer #1 is retained by P. carbinoli-
cus if it interferes with the essential function of histidine
activation for protein synthesis. Comparative genome
analysis revealed that P. carbinolicus and its close
relatives, the Geobacteraceae, possess two full-length
hisS-like genes, whereas other bacteria have only one.
Interference with Pcar_1041 by spacer #1 might have
had negligible effect if Pcar_0202 also produced histidyl-
tRNA synthetase activity. However, both phylogenetic
and mutational studies suggest that Pcar_1041 is essen-
tial, being the only real /isS, as detailed below.

In some bacteria there is a hisS-related gene called

hisZ, which produces a protein that lacks the C-terminal
anticodon loop recognition domain of a true histidyl-
tRNA synthetase, functioning instead as a regulatory
subunit of ATP phosphoribosyltransferase, the first
enzyme of histidine biosynthesis [52]. In bacteria that
possess hisZ, the hisG gene encoding the catalytic
domain of ATP phosphoribosyltransferase is shorter
than in bacteria that do not possess hisZ [53]. A short
hisG gene is present in P. carbinolicus and all other
Geobacteraceae, but unlike previously described hisZ
genes, both /KisS-like genes contain obvious anticodon
loop recognition domains. Phylogenetic analysis showed
that the Pcar_1041 gene product and orthologous pro-
tein sequences of Geobacteraceae cluster among the
HisS proteins of other bacteria, whereas the Pcar_0202
gene product and its orthologs belong among the HisZ
proteins (Figure 4). Furthermore, the ortholog of
Pcar_0202 in G. sulfurreducens (GSU3307) could be
deleted (Aklujkar and Lovley, manuscript in prepara-
tion), whereas the ortholog of Pcar_1041 (GSU1659)
could only be replaced with Pcar_1041 (this study).
Three electroporation attempts failed to delete
GSU1659 outright. This result indicates that Pcar_0202
and its orthologs lack significant histidyl-tRNA synthe-
tase activity, and suggests that interference with
Pcar_1041 by spacer #1 would exert severe pressure on
P. carbinolicus.
The phylogenetic tree also demonstrates that the AisS
gene Pcar_1041 was not acquired laterally; it is clearly
an ancestral gene containing a proto-spacer that is not
present in its closest relatives.

Spacer #1 inhibits growth of a transgenic G.
sulfurreducens strain containing hisS of P. carbinolicus

It is not yet possible to make mutations in P. carbinoli-
cus. Therefore, interference of spacer #1 with hisS was
tested in the more genetically tractable species
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— Desulfuromonas acetoxidans HisZ
496 b—— Pelobacter carbinolicus HisZ Pcar 0202
_: Geobacter daltonii HisZ
478 Geobacter uraniireducens HisZ
493 416 Geobacter metallireducens HisZ
493 385 Geobacter sulfurreducens HisZ
218 500 Geobacter bemidjiensis HisZ
Pelobacter propionicus HisZ
Listeria monocytogenes HisZ
298 Chromatium violaceum HisZ
399 | Nitrosococcus oceani HisZ
387 500 378 Pseudomonas fluorescens HisZ
Rhodoferax ferrireducens HisZ
473 Lactococcus lactis HisZ
Bradyrhizobium japonicum HisZ
— Methanococcus jannaschii HisS
] 486 —— Haloarcula marismortui HisS
Thermotoga maritima HisS
Aquifex aeolicus HisS
— Desulfuromonas acetoxidans HisS
500 483 —— Pelobacter carbinolicus HisS Pcar 1041
Pelobacter propionicus HisS
361 200 Geobacter daltonii HisS
148 500 493 Geobacter uraniireducens HisS
295 Geobacter metallireducens HisS
493 500 Geobacter sulfurreducens HisS
Geobacter bemidjiensis HisS
— Chromatium violaceum HisS
498 b Rhodoferax ferrireducens HisS
136 _: E}I’wifqia cqro{ovora HisS
=00 — 443 Escherichia coli HisS . .
Y Photorhabdus lumzi?escens HisS
Shewanella oneidensis HisS
2 : Nitrosococcus oceani HisS
367 Pseudomonas fluorescens HisS
Streptococcus pneumoniae HisS
395 _: Listeria monocytogenes HisS
499 Bacillus subtilis HisS
Figure 4 Phylogeny of HisS and HisZ proteins. Pcar_1041 and orthologous proteins of Geobacteraceae cluster among true histidyl-tRNA
synthetases (HisS), whereas Pcar_0202 and its orthologs cluster among the HisZ proteins, which are the regulatory subunit of ATP
L phosphoribosyltransferase. Confidence values are out of 500 bootstraps.

G. sulfurreducens, in which the repeat sequence of the
CRISPR2 locus (5'-GTGTTCCCCGCATGCGCGGG-
GATGAACCG-3') is very similar to that of the P. carbi-
nolicus CRISPR. A plasmid called pMA35-1 was
designed for IPTG-inducible expression of a chimeric
CRISPR construct consisting of spacer #1 of P.

carbinolicus between two copies of the G. sulfurreducens
repeat, and a transgenic strain of G. sulfurreducens
called MA159 was generated in which the native AhisS
gene GSU1659 was replaced by Pcar_1041, the hisS
gene of P. carbinolicus. The tRNA-His sequences of the
two species are very different (Figure 5), suggesting that
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P. carbinolicus tRNA-His gene

G. sulfurreducens tRNA-His gene

Figure 5

GGTGGGTGTAGCTCAGTTGGTAGA-GCACTGGATTGTGGCTCCAGTTGTCGAGGGTTCGAACCCCTTCACTCACCCCA

GGTGGCTATGGTGAAGGGGTCTAACACACATGACTGTGACTCATGCATTCGTGGGTTCAAATCCCACTAGCCACCCCA

Alignment of the sequences of tRNA-His genes from P. carbinolicus and G. sulfurreducens.

the histidyl-tRNA synthetase of P. carbinolicus might
have difficulty recognizing its substrate in G. sulfurredu-
cens. However, replacement of GSU1659 with Pcar_1041
resulted in a viable strain, which grew more slowly than
the wild type (Figure 6).

Despite prior expression of the Lacl repressor protein
from plasmid pRG6 to prevent premature expression of
the chimeric CRISPR, electroporations of MA159(pRG6)
with pMA35-1 and two serendipitously obtained var-
iants (pMA35-2 with two copies of spacer #1 and

pMA35-! with spacer #1 interrupted by a single base
pair insertion as shown in Table 1) were marginally suc-
cessful (yielding zero to 4 colonies per attempt), whereas
electroporation with an equal amount of the empty vec-
tor pMA36 produced hundreds of colonies per attempt.
Electroporations of the wild type G. sulfurreducens
strain DL1, carried out in parallel, yielded hundreds of
colonies for all three chimeric CRISPR expression plas-
mids. These observations suggest that even leaky expres-
sion of the chimeric CRISPR containing spacer #1, or its
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Figure 6 Growth of G. sulfurreducens with hisS of P. carbinolicus is inhibited by spacer #1. (a) Growth on NBAF medium by reduction of
fumarate. (b) Growth on FWAFC medium by reduction of Fe(lll) citrate. The strains shown are wild type G. sulfurreducens DL1 (black squares);
DL1(pMA35-2) with two copies of spacer #1 in a plasmid-borne chimeric CRISPR (white squares); transgenic strain MA159, which has hisS of P.
carbinolicus (black diamonds); MA159(pMA35-2) with both the hisS transgene and two copies of spacer #1 (white diamonds); and MA159(pMA35-
0) with the hisS transgene and a CRISPR repeat without spacer #1 (grey diamonds).
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mere presence as DNA, is largely incompatible with the
hisS gene of P. carbinolicus containing the matching
proto-spacer, which is present in the MA159 host, but
not with the native /isS gene of G. sulfurreducens in the
DL1 host.

Growth experiments provided further proof that
spacer #1 interferes with /isS of P. carbinolicus. The G.
sulfurreducens transformants were first checked by PCR,
restriction digestion, and sequencing to verify that the
hisS transgene and spacer #1 were intact. In one trans-
formant, spontaneous recombination of the repeats on
either side of spacer #1, eliminating it from the chimeric
CRISPR expression plasmid, resulted in a strain called
MA159(pMA35-0) that possessed both kisS of P. carbi-
nolicus and the repeat sequence on the plasmid, but no
spacer #1. Compared to this control that grew similarly
to MA159, the presence of spacer #1 in the other
MA159 transformants (i.e., with kisS of P. carbinolicus)
resulted in long lag periods and somewhat reduced
growth rates in NBAF medium with fumarate as the
electron acceptor (Figure 6a), and very poor growth in
FWAFC medium with Fe(III) citrate as the electron
acceptor (Figure 6b). This effect was the same with
either one copy of spacer #1 in MA159(pMA35-1) or
two copies in MA159(pMA35-2), or with a single base
pair insertion in spacer #1 in MA159(pMA35-!) - for
the sake of clarity, only MA159(pMA35-2) is shown.
The only exception was that in one experiment, tripli-
cate cultures of MA159(pMA35-!) grew especially poorly
after three transfers in NBAF (not shown). Wild type
growth patterns were observed when any of the three
plasmids was present in the DL1 host (i.e., with %isS of
G. sulfurreducens) - for clarity, only DL1(pMA35-2) is
shown (Figure 6). Although expression of spacer #1 is
expected to be low in the absence of IPTG, growth inhi-
bition of the MA159 strains was observed, and addition
of IPTG had no effect, indicating that expression of
chimeric CRISPR RNA was not the limiting factor for
inhibition of growth.

Spacer #1 reduces the amount of hisS RNA in transgenic
G. sulfurreducens no more than it affects hisZ RNA

Total RNA was isolated from NBAF-grown cultures of
strains containing /isS of P. carbinolicus. The amount of
hisS RNA was higher in the control MA159(pMA35-0)
strain than in the growth-inhibited MA159(pMA35-2)
strain with spacer #1 (Figure 7), and lowest in the
MA159(pMA35-!) strain that had the most severe
growth defect in a parallel growth experiment using the
same inoculum. However, when the amount of hisZ
RNA was compared across the same three strains as a
control, a similar pattern was observed (Figure 7), sug-
gesting that reduced expression of other housekeeping
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MA159 MAI59 MA159

pMA35-0 pMA35-! pMA35-2
MA159 MAI59 MA159
pMA35-2 pMA35-0 pMA35-!

6.0 x 10*
4
:E:: 4.0x 10* ZT : T
1%

hisS mRNA  hisZ mRNA

Figure 7 Spacer #1 has similar effects on the amounts of hisS
and hisZ RNA. The strains shown are G. sulfurreducens MA159
(PMA35-0) with the hisS transgene and a CRISPR repeat without
spacer #1 (diagonally striped bars); MA159(pMA35-2) with both the
hisS transgene and two copies of spacer #1 (speckled bars); and
MAT159(pMA35-1) with the hisS transgene and a single mutated copy
of spacer #1 (diamond-patterned bars). Reverse transcription was
performed with either primer MA0329 for hisS or primer MAQ0442 for
hisZ, and the amount of cDNA was quantified by QRT-PCR. The
mean of three biological replicates is shown; error bars represent
the minimum and maximum.

genes besides /isS occurs when growth is slowed by the
incompatibility between spacer #1 and #isS.

The P. carbinolicus genome has fewer genes with
numerous or closely spaced histidine codons than

closely related genomes

The evidence that P. carbinolicus expresses CRISPR
spacer #1, and that spacer #1 inhibits growth of a
G. sulfurreducens strain that is dependent on hisS of
P. carbinolicus, led to the question of whether any effect
of this interference during recent evolution could be dis-
cerned in the genome of P. carbinolicus. If the expected
shortage of histidyl-tRNA were occasionally severe
enough for ribosomes to stall during translation of
genes with numerous histidine codons, one would
expect these genes to be predisposed for elimination
from the genome, because abortive expression wastes
energy and because any selective advantage of the genes
would be diminished. Missense mutations of closely
spaced histidine codons would also be favoured as long
as they did not interfere with an essential function.
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Therefore, the number of histidine codons in every gene
and the harmonic mean distance between histidine
codons in every gene were computed for P. carbinolicus
and its closest relative with a nearly completely
sequenced genome, Desulfuromonas acetoxidans
[GenBank:NZ_AAEWO00000000], as well as for the com-
pletely sequenced and manually curated genome annota-
tions of the more distantly related G. sulfurreducens
[32], G. metallireducens [33] and G. bemidjiensis (Akluj-
kar et al., submitted). A plot of the fraction of protein
sequences in each genome that have a given minimum
number of histidines shows that the P. carbinolicus gen-
ome is deficient in genes with 35 or more histidine
codons, and possesses none with 45 or more (Figure
8a). To identify ancestral genes that might have been
counterselected in P. carbinolicus due to close spacing
of histidine codons, an index of histidine demand was
computed as the number of histidine codons in a gene
divided by the harmonic mean distance between them.
Fewer genes with histidine demand above 5.0 are pre-
sent in the P. carbinolicus genome, and none has an
index above 10.0 (Figure 8b). Despite these trends, the
overall frequency of histidine codons in the P. carbinoli-
cus genome is 22.50 per thousand, very similar to
D. acetoxidans (23.94 per thousand), G. sulfurreducens
(20.55 per thousand), G. metallireducens (20.42 per
thousand) and G. bemidjiensis (19.76 per thousand).
This observation is consistent with the expected effect
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of an acute histidyl-tRNA shortage in the vicinity of
gene transcripts with multiple or closely spaced histidine
codons undergoing translation, whereas a defect in histi-
dine biosynthesis prior to histidyl-tRNA synthetase
would be expected to affect histidine codon usage in
general.

The P. carbinolicus genome has lost ancestral genes

with numerous or closely spaced histidines

Genes of D. acetoxidans, G. sulfurreducens, G. metallire-
ducens and G. bemidjiensis that contain 35 or more his-
tidine codons, or have a histidine demand index above
5.0, were examined in order to identify ancestral genes
that have reduced their histidine demand or have been
lost specifically in the P. carbinolicus genome (Addi-
tional file 1: Table S1). Many genes found in Geobacter
species are not necessarily ancestral to P. carbinolicus;
they lack homologs in either the unfinished D. acetoxi-
dans genome or the partial genome sequences of a mix-
ture of D. acetoxidans and D. palmitatis (D. R. L. and
coworkers, unpublished). Other genes that are present
in D. acetoxidans, but not Geobacter species, could have
been acquired after divergence from P. carbinolicus. Five
gene families actually show increased histidine demand
in P. carbinolicus compared to other Geobacteraceae,
and in many other cases, a P. carbinolicus gene has
lower histidine demand than its orthologs, but is still
above the cutoff value of 5.0, or contains a similar

-
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Figure 8 The P. carbinolicus genome encodes fewer proteins with multiple closely spaced histidines. (a) The fraction of proteins with a
given minimum number of histidines, plotted for the genomes of P. carbinolicus (black diamonds), D. acetoxidans (grey squares), G.
sulfurreducens (white circles), G. metallireducens (white triangles) and G. bemidjiensis (white squares). (b) The fraction of proteins with two or more
histidines and a given minimum histidine demand index, plotted for the same five genomes.
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number of histidine codons. However, after all these
considerations there remain sixteen clearly ancestral
gene families with typically high histidine demand that
are missing or have reduced histidine demand specifi-
cally in P. carbinolicus (Additional file 1: Table S1). The
functional annotations of these gene families are briefly
described below.

The nuoL-1 gene family, with a high-histidine-demand
representative in every Geobacter species and D. acetoxi-
dans, encodes the L subunit of an NADH dehydrogen-
ase I complex that P. carbinolicus has entirely lost. The
NuoL protein is thought to have a proton-pumping
function [54], for which the imidazole groups of its clus-
tered histidines are well suited.

The znuA (or zntC) gene encodes the periplasmic pro-
tein of an ATP-binding cassette transporter, within
which a cluster of histidines is thought to bind zinc
with high affinity [55]. The znuA gene of D. acetoxidans
has eight histidines in its putative metal-binding cluster,
whereas its closest relative, the P. carbinolicus znuA
gene (Pcar_3026), has only four.

D. acetoxidans possesses two clearly ancestral genes
related to arsenite S-adenosylmethyltransferase
(Dace_2134, Dace_3081), with homologs in Geobacter
lovleyi and other Deltaproteobacteria that contain
numerous histidines. The closest homolog of Dace_3081
is in P. carbinolicus (Pcar_2089), with fewer histidines
and a much reduced histidine demand index. P. carbino-
licus lacks an ortholog of Dace_2134.

Two ancestral genes encoding polyketide synthase-
type enzymes, with representatives in D. acetoxidans,
G. lovieyi, Geobacter uraniireducens, Geobacter bemid-
jiensis, Geobacter sp. M21, Geobacter sp. M18, Geobac-
ter daltonii, and Pelobacter propionicus that contain
numerous histidines, have clearly been lost by P. carbi-
nolicus. Both polyketide synthases are composed of unu-
sual domain combinations. Dace_0979 and its orthologs
contain just one elongation domain, one acyl carrier
protein acylation domain, two to five acyl carrier protein
domains, one reductase domain, and no dehydratase or
thioesterase domains, suggesting that they build up a
long-chain fatty acid with multiple hydroxyl groups, or
possibly a storage polymer of a precursor resembling
3-hydroxybutanoate. Dace_1838 and its orthologs con-
tain two elongation domains, one acyl carrier protein
acylation domain, three to four dehydratase domains,
and no acyl carrier protein or reductase or thioesterase
domains, suggesting that their product may be polyhy-
droxylated, polyunsaturated, or cyclic. The loss of these
two enzymes likely means that P. carbinolicus does not
make secondary metabolites that are present in most
other Geobacteraceae.

Three other high-histidine-demand gene families that
P. carbinolicus has lost encode a DUF323 domain-
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containing methyltransferase (Dace_1886) with homo-
logs in G. uraniireducens, G. bemidjiensis, Geobacter sp.
M21, and Geobacter sp. M18, a glycoside hydrolase
(GSU2359) with homologs in D. palmitatis, G. bemid-
jiensis, Geobacter sp. M21, Geobacter sp. M18, G. dalto-
nii, and P. propionicus, and a predicted c-type heme-
binding, GAF domain-containing phosphohydrolase
(GSU2622) with homologs in D. palmitatis, G. metallir-
educens, G. uraniireducens, G. bemidjiensis, Geobacter
sp. M21, Geobacter sp. M18, and G. daltonii. The speci-
fic reactions catalyzed by these enzymes are not known.

The remaining eight ancestral gene families are multi-
heme c-type cytochromes represented in D. acetoxidans
or D. palmitatis and one or both of G. sulfurreducens
and G. metallireducens. At least one gene of each family
was most probably inherited by P. carbinolicus from a
common ancestor of the Geobacteraceae, and then lost.
Several other cytochrome families, found in the Geobac-
ter genomes but not the incomplete D. acetoxidans and
D. palmitatis genomes, may have been inherited and
lost by P. carbinolicus, but the evidence is inconclusive.
Nevertheless, it is notable that there are no cytochromes
among the eighteen proteins of P. carbinolicus that have
either more than 35 histidines or a histidine demand
index above 5.0 (Additional file 1: Table S1).

Discussion

Although CRISPR spacers that match phage/plasmid
genes have been shown to confer immunity against
infection [12,15], and it is known that their mode of
action is distinct from previously described mechanisms
of phage resistance [13], the significant number of
spacers that match host genes have not been investi-
gated [25]. The activity of CRISPR spacers against genes
encoding essential housekeeping enzymes has not been
demonstrated before, nor have its consequences for gen-
ome-scale evolution been examined. The present study
establishes that when spacer #1 of the P. carbinolicus
CRISPR and its putative target, the &isS gene of the
same species, are both present in a transgenic G. sulfur-
reducens strain, interference occurs that severely affects
growth. Very few cells containing the /isS transgene
were able to take up the chimeric CRISPR expression
plasmids. Transformants in which spacer #1 was present
grew more poorly. Attempts to induce expression of
spacer #1 with IPTG had no effect, but growth was
almost totally inhibited by switching from fumarate to
Fe(III) as the electron acceptor, under which condition
expression of Cas proteins and the chromosomal
CRISPR? is upregulated [56]. Therefore, the limiting fac-
tor for interference with /isS may be the amount of one
or more Cas proteins, or the leader sequence, rather
than the amount of spacer #1 transcript. Alternatively,
growth by respiration of Fe(III) may require protein
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factors that cannot be expressed properly when histidyl-
tRNA synthetase activity is low. Induction of CRISPR
expression with IPTG in S. epidermidis has also shown
no effect on interference with a target plasmid [15], but
that CRISPR was inactive without a leader sequence in
cis, whereas severe interference between spacer #1 and
hisS requires neither the native leader sequence of the
G. sulfurreducens CRISPR nor that of the P. carbinolicus
CRISPR in cis.

The small decrease in the amount of /4isS RNA in the
presence of spacer #1, comparable to the decrease in the
amount of transcript for a control housekeeping gene
(hisZ) that accompanies the growth defect, is unlike the
extent of decimation that one would expect if spacer
#1-containing RNA catalyzed degradation of /isS RNA.
It is even less likely that any transgenic strains could be
viable if spacer #1-containing RNA targeted hisS DNA
for degradation. An alternative possibility is that spacer
#1 RNA hybridizes with the /isS gene without marking
it for degradation (but perhaps recruiting one or more
proteins), and must be displaced by RNA polymerase in
order to complete transcription. In this scenario, even
leaky expression of spacer #1 would saturate the avail-
able targets, and overexpression of spacer #1-containing
RNA would not prevent RNA polymerase from displa-
cing the one molecule obstructing transcription of the
hisS gene. Consistent with these predictions, induction
of spacer #1 expression with IPTG was not required for
inhibition of growth, and did not cause stronger inhibi-
tion. It will be interesting to examine whether any puta-
tive nucleases have mutated in the few viable
transformants that carry both spacer #1 and its target.
None of the Cmr proteins implicated in RNA-targeted
CRISPR function in P. furiosus [22] has a homolog in G.
sulfurreducens or P. carbinolicus, nor does the CRISPR-
associated double-stranded DNA/RNA-specific endonu-
clease of Sulfolobus solfataricus [57].

Sequencing confirmed that neither /isS nor spacer #1
was mutated in the viable transformants. Therefore, in
contrast to earlier studies that showed absolute incom-
patibility between host spacers and phage proto-spacers,
evaded only by mutation of the proto-spacers or proto-
spacer-adjacent motifs [12,13], these results indicate that
it is possible to establish a spacer that persistently inter-
feres with an essential housekeeping gene. Both spacer
and target can be maintained intact over numerous gen-
erations of inhibited growth. Insertion of a single base
pair in the middle of the spacer did not reduce its effi-
cacy, indicating that a small bulge in the region of com-
plementarity between spacer and proto-spacer does not
necessarily mitigate interference.

The experiments described herein with the chimeric
CRISPR construct also show that a spacer from one spe-
cies can be active in the context of the somewhat
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different repeats and cas genes of another species. The
P. carbinolicus and G. sulfurreducens genomes encode
homologs of all five components of the Cascade com-
plex (csel CasA Pcar_0957, GSU1385; cse2 CasB
Pcar_0958, GSU1386; cse4 CasC Pcar_0959, GSU1387;
cas5e CasD Pcar_0960, GSU1388; and cse3 CasE
Pcar_0961, GSU1389), which processes CRISPR tran-
scripts into target-active RNAs in E. coli [14], along
with the Cas3 helicase (Pcar_0956, GSU1384) that is
required for their activity against targets [14], the Cas2
endoribonuclease (Pcar_0965, GSU1393) that may
degrade them [58], and the Casl endodeoxyribonuclease
(Pcar_0964, GSU1392) that may aid in the acquisition of
new spacers [59], and promote DNA/RNA annealing
[60]. However, the sequences of most of these Cas pro-
teins are so divergent between the two species (e.g. 28%
identity for Cas3) that it is noteworthy that the G. sul-
furreducens system seemingly required no context other
than its cognate repeat to recognize spacer #1 as a guide
and #isS of P. carbinolicus as a target. There is evidence
that proto-spacer-adjacent motifs are determinants of
target recognition [13,20]. The proto-spacer within /isS
is followed by a CTT motif (Figure 2), typical of
sequences captured by CRISPR of phylogenetic cluster 2
[61], to which the P. carbinolicus CRISPR and G. sulfur-
reducens CRISPR2 loci both belong [44]. The facile
reconstitution of interference between species with simi-
lar repeats and proto-spacer-adjacent motifs despite Cas
protein divergence is encouraging for future develop-
ment of CRISPR-based gene silencing technology with
synthetic spacers.

A CRISPR transcript containing spacer #1 and flank-
ing sequences is expressed in P. carbinolicus, and
potentially processed by the Cas proteins into a hisS-
interfering RNA. There are at least four possible expla-
nations why the spacer and proto-spacer, which are
incompatible in the transgenic G. sulfurreducens strain,
still co-exist in P. carbinolicus. Firstly, being the spacer
farthest from the leader sequence in P. carbinolicus,
spacer #1 may produce comparatively few target-active
RNA molecules, as processed RNAs containing spacers
distal to the leader sequence are underrepresented in a
clone library from P. furiosus [19]. Secondly, the repeats
on either side of spacer #1 may not be good targets for
processing because they deviate from the consensus
repeat sequence of the P. carbinolicus CRISPR more
than it has diverged from that of D. acetoxidans since
the time of their last common ancestor (Figure 9).
Thirdly, pairing of the two strands of RNA derived from
spacer #1 might prevent targeting of the proto-spacer.
The fourth possibility is that P. carbinolicus in its nat-
ural environment experiences only growth conditions
under which the incompatibility between spacer #1 and
hisS is permissive, as it is for the transgenic strain
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P. carbinolicus CRISPR consensus
repeat on leader side of spacer #1
repeat on trailer side of spacer #1
D. acetoxidans CRISPR consensus

and G. sulfurreducens.

GAGTTCCCCGCAGATGCGGGGATGAACCG
GTGGTCCCCGCAGGTGCGGGGATGAACGG
GTGGTCCCCGCAGGTGCGGGGATGAACGA
ATGTTCCCCGCAGATGCGGGGATGAACCG
G. sulfurreducens CRISPR consensus GTGTTCCCCGCATGCGCGGGGATGAACCG

Figure 9 Alignment of the repeats on either side of spacer #1 with the CRISPR consensus sequences of P. carbinolicus, D. acetoxidans

growing by respiration of fumarate, and has evolved to
avoid growth conditions under which the incompatibility
is absolute, comparable to respiration of Fe(III) by the
transgenic strain.

Both strands of spacer #1 were detected at similar levels
in P. carbinolicus RNA from actively growing cultures,
in contrast with previous observations that both strands
are present as RNA in Sulfolobus acidocaldarius only
during stationary phase [5], that unequal amounts of
RNA were detected with probes for the two strands in
P. furiosus [19] and Thermus thermophilus [62], and
that only transcripts from one strand were detected in
E. coli [14], S. epidermidis [15], and Xanthomonas ory-
zae [20]. The presence of RNA representing both
strands is consistent with CRISPR spacers on one strand
of a cluster matching both the sense and antisense of
proto-spacers [6], and with artificial spacers in both
orientations having activity against their targets,
although the efficacy may differ by several orders of
magnitude [14].

Together, the evidence of spacer #1 expression and
the proof that spacer #1 can inhibit growth in a hisS-
dependent manner indicate that interference with /hisS
by spacer #1 almost certainly occurred during the recent
evolutionary history of P. carbinolicus. It is likely that
this interference resulted in a growth-limiting shortage
of histidyl-tRNA. As expected under this selective pres-
sure, genes with numerous and/or closely spaced histi-
dine codons have evidently been counterselected in the
genome of P. carbinolicus. Although loss or mutation of
ancestral genes is easiest to surmise from comparative
genomics, acquisition of low-histidine-demand genes
and failure to acquire new high-histidine-demand genes
also contribute to this difference.

Among the ancestral gene losses from the P. carbinoli-
cus genome attributable to interference with kisS by
spacer #1, the most obvious are the multiheme c-type
cytochromes typical of Geobacter species. The P. carbi-
nolicus genome encodes only 14 ¢-type cytochromes
[36], whereas the D. acetoxidans genome encodes at
least 80 such genes (M. A., unpublished). These cyto-
chromes are not well conserved even between closely

related Geobacter species [33,63], and it has been
hypothesized that they have a generic function as capa-
citors [64]. Therefore, in addition to the loss of eight
ancestral multiheme c-type cytochrome families by P.
carbinolicus, the non-evolution of new families may also
be an effect of interference with /isS.

Of the other eight families of ancestral genes that
exhibit loss or reduced histidine demand in P. carbinoli-
cus, two have especially interesting metabolic and phy-
siological implications. The nuoL-1 gene encodes a
subunit of NADH dehydrogenase I with a conserved
histidine cluster, implicated in proton pumping. Abor-
tive expression of nuoL-1 due to interference with hisS
by spacer #1 in an ancestor of P. carbinolicus, leading to
a loss of function for the entire NADH dehydrogenase I
complex, would have favoured the elimination of all
fourteen structural genes of the complex from the gen-
ome, which is what has occurred. The reason why this
deletion was not lethal is probably that another ancestral
NADH dehydrogenase I complex, for which the nuoL-2
gene does not contain a cluster of histidine codons, has
been retained by P. carbinolicus. Conceivably, loss of a
major respiratory enzyme complex by P. carbinolicus
caused it to rely more on laterally acquired fermentative
pathways.

Interference with 4isS by spacer #1 also offers an
explanation for the diminutive histidine cluster in the
znuA gene product of P. carbinolicus, which functions
to bind zinc in the periplasm for active transport into
the cell. Zinc is a cofactor of key metabolic enzymes
such as carbonic anhydrase, acetate kinase and phospho-
transacetylase [65-67]. If the mutations in the histidine
cluster of znuA reduce the efficiency of zinc uptake, it
could have an impact on metabolism related to the
unexplained inability of P. carbinolicus to oxidize acetate
[28] despite the presence of a complete set of tricar-
boxylic acid cycle genes in the genome.

Conclusions

This paper reports genetic and comparative genomic
evidence that housekeeping genes can be targets of
chronic CRISPR interference. Spacer #1 is shown to be
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transcribed into RNA with comparable amounts of both
strands in P. carbinolicus, and to inhibit the growth of a
transgenic strain of G. sulfurreducens that relies on hisS
of P. carbinolicus, without drastically reducing the level
of hisS RNA. The genome of P. carbinolicus exhibits the
expected effect of a histidyl-tRNA shortage. Overall, the
ancestral genes lost or mutated by the P. carbinolicus
genome as part of its tendency towards fewer histidines
per gene and lower histidine demand illustrate the de-
emphasis of the metal-respiring metabolism that is typi-
cal of other Geobacteraceae. More generally, while pre-
vious studies have approached CRISPR as a microbial
immune system, another important role of the system
may be to exert pressure on endogenous and essential
genes, resulting in dramatic changes in the genome con-
tent and physiology of the host species.

Additional material

Additional file 1 : Table S1. Analysis of gene families of P.
carbinolicus, D. acetoxidans and three Geobacter species for which one or
more members have histidine content or histidine demand above the
cutoffs (35 histidines or demand index 5.0).
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cDNA: complementary deoxyribonucleic acid; CRISPR: clustered regularly
interspaced short palindromic repeats; DNA: deoxyribonucleic acid; IPTG:
isopropylthio-8-D-galactopyranoside; PCR: polymerase chain reaction; QRT-
PCR: quantitative real-time polymerase chain reaction; RNA: ribonucleic acid;
tRNA: transfer ribonucleic acid.
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