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Abstract

evolution.

Background: The processes governing the origin and maintenance of mimetic phenotypes can only be
understood in a phylogenetic framework. Phylogenetic estimates of evolutionary relationships can provide a
context for analyses of character evolution; however, when phylogenetic estimates conflict, rigorous analyses of
alternative evolutionary histories are necessary to determine the likelihood of a specific history giving rise to the
observed pattern of diversity. The polyphenic butterfly Limenitis arthemis provides a case in point. This species is
comprised of three lineages, two of which are mimetic and one of which is non-mimetic. Conflicting estimates of
the relationships among these three lineages requires direct evaluation of the alternative hypotheses of mimicry

Results: Using a coalescent framework, we found support for a sister-taxon relationship between the non-mimetic
L. a. arthemis and the mimetic L. a. astyanax, congruent with the previous hypothesis that the non-mimetic form
of L. a. arthemis was derived from a mimetic ancestor. We found no support for a mimetic clade (L. a. astyanax +
L. a. arizonensis) despite analyzing numerous models of population structure.

Conclusions: These results provide the foundation for future studies of mimicry, which should integrate

phylogenetic and developmental analyses of wing pattern formation. We propose future analyses of character
evolution accommodate conflicting phylogenetic estimates by explicitly testing alternative evolutionary hypotheses.

Background

Batesian mimicry and the conditions favoring its origin
and maintenance have provided insight to the process of
natural selection. Central to our understanding of Bate-
sian mimicry is the evolutionary fate of mimics in the
absence of their model. That is, once a profitable species
evolves to mimic an unprofitable Batesian model, what
happens in time or space when the model is not pre-
sent? The Batesian mimic could persist in locations
without its model, especially when predation is weak
[1,2]. A mimic could also go extinct in these locations
due to intense predation [2]. Or the mimic could evolve
a new color pattern to mimic another model species or
revert back to its ancestral, non-mimetic phenotype
[3,4].
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Empirical phylogenetic trees are estimations, or
hypotheses, of the true evolutionary history of a given
group, based on a fit to observed data (morphological
characters, DNA sequences, etc.). Such trees can be
used as a “best estimate” for studies of character evolu-
tion, especially when trees based on different analyses
and data converge on the same estimate of evolutionary
relationships. But how to proceed with analyses of char-
acter evolution when phylogenetic estimates conflict
with one another? One approach is to compare trees on
the basis of some objective function (number of parsi-
mony steps, likelihood, Bayesian posterior probability,
etc.), and simply interpret the tree with the best score as
the true evolutionary history. However, because empiri-
cal phylogenetic tree estimates do not always reflect true
evolutionary history [5,6], inferring a “best estimate” tree
does not eliminate the possibility that an alternative evo-
lutionary history gave rise to the observed pattern of
character data. By way of analogy, comparing trees
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based on an objective function alone is similar to com-
paring the means of two population variables to assess
whether the distributions of the variables are different
between the two populations. Comparisons between
means, and trees in this case, must account for the
potential variation in the underlying distributions which
gave rise to the observed data.

The necessity of evaluating support for alternative
phylogenetic hypotheses has been recognized for some
time [7], but has not yet become common practice.
Methodological limitations and the stochastic nature of
molecular evolution may contribute to misleading phy-
logenetic estimates [8], so when trees conflict, one must
account for the possibility that an alternative phylogeny
underlies the history that generated the observed data.
However, unlike the analogy with means presented
above, evolutionary inferences are constrained to a sin-
gle observation, so there is no empirical measure of var-
iance in observed data. Parametric bootstrapping [9,10]
can be used to simulate expected distributions of data
corresponding to specific evolutionary hypotheses (e.g.
trees). These distributions are then compared with
observed data to assess the relative support for alterna-
tive phylogenies. Alternative hypotheses in which the
expected distribution does not match observed data are
rejected; when observed data fall within the expected
distribution, those alternative hypotheses remain plausi-
ble, and must be accounted for in hypotheses of charac-
ter evolution.

The butterfly genus Limenitis (Fabricius) (Lepidoptera:
Nymphalidae) has long been a model for the study of
Batesian mimicry and is an ideal system to employ phy-
logenetic hypothesis testing. Three of the four North
American species include populations which are Bate-
sian mimics of distasteful models [11-14]. Limenitis
arthemis (Drury) includes two populations, L. a. astya-
nax (Fabricius) and L. a. arizonensis Edwards, which are
mimics of the distasteful model Battus philenor (L.)
(Lepidoptera: Papilionidae), and a non-mimetic popula-
tion, L. a. arthemis (Drury), characterized by a disrup-
tive non-mimetic wing pattern [12,15]. The distribution
of the phenotypes (mimetic or non-mimetic) is pre-
dicted by the distribution of the model species’ host
plants (Aristolochia spp.), which limits the distribution
of the model [4]. Although gene flow occurs between
the mimetic L. a. astyanax and the non-mimetic L. a.
arthemis [15,16], differing selection pressures in the pre-
sence and absence of the model species presumably
maintains the polymorphism in wing phenotypes [15].
The origin of the mimetic phenotype, as well as that of
the non-mimetic wing pattern of L. a. arthemis has eli-
cited recent attention [4,17].

Multi-locus DNA sequence estimates of North Ameri-
can Limenitis relationships posit that the mimetic L. a.
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arizonensis diverged from a lineage which eventually
gave rise to the mimetic L. a. astyanax and the non-
mimetic L. a. arthemis [4,18]. Additionally, explicit
hypothesis tests based on mitochondrial DNA sequences
rejected the hypothesis that the mimetic lineages L. a.
astyanax and L. a. arizonensis form a clade [4]. The
topology of such a relationship suggests that mimicry
either evolved once, and was subsequently lost in the
lineage ultimately leading to L. a. arthemis, or was
gained two times, once in L. a. astyanax and once in
L. a. arizonensis [18]. Based on these phylogenetic esti-
mates and tests, along with the biogeography of
L. arthemis and the model B. philenor, Prudic & Oliver
[4] advocated the hypothesis that the mimetic pheno-
type evolved in the ancestral L. arthemis lineage and
was subsequently lost in L. a. arthemis after the diver-
gence of L. a. arthemis and L. a. astyanax (figure 1a)
[18]. A recent phylogeny based on AFLP data challenges
this view [17]. Based on a distance analysis of eleven
individuals, the authors [17] proposed that the mimetic
lineages are sister taxa, and that the mimetic phenotype
arose only once in the L. arthemis lineage and was not
subsequently lost (figure 1b). These two conflicting
hypotheses beg the question: which evolutionary process
best explains the observed data? Is a loss of mimicry a
plausible explanation for the observed wing diversity?

Here we evaluate support for the two hypotheses of
wing pattern evolution in Limenitis arthemis by per-
forming explicit phylogenetic hypothesis tests. The first
hypothesis, the reversion hypothesis (figure 1a) posits
that L. a. astyanax and L. a. arthemis are sister taxa,
while the second, the monophyletic mimic hypothesis,
asserts that the mimetic L. a. astyanax and L. a. arizo-
nensis form a clade (figure 1b). We employed a para-
metric bootstrapping approach, using coalescent
simulations of population structure to determine which
evolutionary histories would be most likely to produce
the observed pattern of genetic diversity. Simulating
data under various models based on previous studies
[16], we assess the support for the two hypotheses of L.
arthemis wing pattern evolution. With these results in
hand, we discuss the relative likelihood of the gain and
loss of mimetic phenotypes in L. arthemis. The analyses
demonstrate the power of explicit phylogenetic hypoth-
esis tests and provide exciting directions for the future
study of mimicry evolution.

Methods

To test the two hypotheses of wing pattern evolution
(figure 1), we used gene tree estimates from eight
nuclear loci (see Gene tree sources below) combined
with coalescent simulations of gene trees to evaluate
support for a variety of models of population structure.
We compared the observed value of two statistics (see
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Figure 1 Two hypotheses of mimicry evolution in Limenitis arthemis lineages. In the reversion hypothesis (a), mimetic L. a. astyanax is sister
to non-mimetic L. a. arthemis. Under this hypothesis, the mimetic phenotype arose in the ancestor to all L. arthemis and was subsequently lost
in the L. a. arthemis lineage. In (a), T is the divergence time of L. a. arthemis and L. a. astyanax and T, is the divergence time of L. a. arizonensis
from the lineage giving rise to L. a. arthemis and L. a. astyanax. In the monophyletic mimic hypothesis (b), the mimetic lineages L. a. astyanax
and L. a. arizonensis are sister taxa. T, is the divergence time of L. a. astyanax and L. a. arizonensis and T, is the divergence of L. a. arthemis from

/

L. a. arizonensis
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Model evaluation below), to distributions of these statis-
tics based on simulated gene trees. Correspondence
between observed and simulated values of the test statis-
tics were used as measures of support for or against a
particular model of evolution.

Gene tree sources

We included gene tree estimates for eight nuclear loci
from previous studies [4,16,18]: four protein-coding loci
(elongation factor 1 alpha (EF1a), wingless (wg), kettin,
and lactate dehydrogenase (Ldh)) and four anonymous
loci (Anon6, Anonl0, Anonls, and Anonl?7) (GenBank
accession numbers available in Additional File 1). We
used the consensus of Bayesian MCMC searches for
each locus (Additional Files 2 and 3) for calculating
observed values of test statistics.

For simulated gene trees, we used coalescent simula-
tions performed in the software package MS [19]. For
each simulation replicate, we simulated eight gene trees,
with one tree each corresponding to the sampling effort
represented by the observed gene trees. That is, for each
of eight nuclear loci, we simulated a gene tree with the
same number of individuals sampled from each of the
six lineages included in this study (table 1).

Models of Limenitis evolution
We evaluated 15 models of population structure, twelve
models corresponding to the hypothesis that the two

mimetic lineages, L. astyanax and L. arizonensis, are
monophyletic (MM’ models, figure 1b), and three mod-
els corresponding to the reversion hypothesis, in which
the mimetic L. a. astyanax is most closely related to the
non-mimetic L. a. arthemis (R’ models, figure 1a). For
each model being tested, we used parameter estimates
from previous analyses and mitochondrial DNA diver-
gences (table 2) (Additional File 2). The MM models
included three divergence time estimates for the split of
L. a. arthemis from the lineage leading to L. a. astyanax
and L. a. arizonensis, each of which included two diver-
gence time estimates of L. a. astyanax and L. a. arizo-
nensis. These six models were each evaluated under two
estimated migration rates, based on previously published
analyses [16]. ‘Moderate’ migration models used the
maximum likelihood estimates of population migration
rates (measured in number of migrants per generation):
3.2 L. a. astyanax to L. a. arthemis and 0.14 L. a. arthe-
mis to L. a. astyanax. ‘High’ migration models used the
maximum of the 90% posterior density intervals: 17.71
L. a. astyanax to L. a. arthemis and 15.53 L. a. arthemis
to L. a. astyanax. The three R models differed from one
another only in their estimated divergence time between
L. a. arthemis and L. a. astyanax. All 15 models had
identical divergence time estimates for the three remain-
ing North American Limenitis species (Additional Files
2 and 4), and all models included hybridization between
L. a. arthemis and L. a. astyanax beginning 12,000 ybp,
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Table 1 Sampling of North American Limenitis
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Locus L. archippus L. a. arizonensis L. a. arthemis L. a. astyanax L. lorquini L. weidemeyerii
Anon06 1 2 11 7 1 1
Anonl0 1 2 11 8 1 1
Anonl5 1 1 11 9 0 1
Anonl7 0 2 13 8 1 1
EFla 22 12 14 16 17 15
kettin 1 4 11 9 1 1
Ldh 1 3 11 9 1 1
wg 7 2 16 4 1 4

Number of individuals sampled from each lineage of North American Limenitis for each locus included in this study. Data originally presented in [4,16,18].

following the recession of the Laurentide ice sheet [20].
Additionally, the effective population size of each lineage
was 2.5 million individuals, all lineages had two genera-
tions per year, and the ancestral lineage that gave rise to
the three lineages of L. arthemis had an effective popu-
lation size of 350,000, based on previous estimates [16].

Model evaluation

Each model was evaluated for two criteria, each corre-
sponding to a particular test statistic: (1) the relative fit
of the simulated data to the two hypotheses of evolution
in L. arthemis (figure 1) and (2) the absolute fit of the
simulated data to the species tree topology being tested.
Support for models was determined by whether the
simulated distribution of the test statistics reflected as
good or better fit to hypotheses as observed in empirical
data. The first test statistic, 3, measuring the relative fit
of the gene trees to the two hypotheses of L. arthemis,
was calculated as the difference in the minimum num-
ber of deep coalescences [21] between a species tree in

Table 2 Parameters used in models of Limenitis history

Hypothesis Migration  Model T, T,
Monophyletic Mimic ~ Moderate MM1 117,500 235,000
MM2 211,500 235,000
MM3 327,500 655,000
MM4 589,500 655,000
MM5 537,000 1,075,000
MMé 966,600 1,075,000
High MM7 117,500 235,000
MM8 211,500 235,000
MM9 327,500 655,000
MM10 589,500 655,000
MM11 537,000 1,075,000
MM12 966,600 1,075,000
Reversion Moderate R1 235,000 1,095,000
R2 655,000 1,095,000
R3 1,075,000 1,095,000

Parameters used in coalescent simulations for models evaluated in this study.
See text for migration rate parameter values; divergence times are measured
in years. See figure 1 for definitions of T, and T,.

which L. a. arthemis and L. a. astyanax are sister taxa
and a species tree in which L. a. arizonensis and L. a.
astyanax are sister taxa (figure 2). For the eight nuclear
loci included in this study, a species tree with L. 4.
astyanax sister to L. a. arthemis provided a better fit
than did a species tree with L. a. astyanax sister to L. a.
arizonensis (93 versus 108 deep coalescences, respec-
tively). The observed value of the test statistic § is thus
93-108 = -15, reflecting a better fit of the L. a. arthemis +
L. a. astyanax tree (figure 1a) to the observed sequence
data.

As a second metric of support for the models of Lime-
nitis evolution, we calculated the minimum number of
deep coalescences under a species tree corresponding to
the topology of the model being tested. That is, for MM
models, we calculated the minimum number of deep
coalescences in a species tree with a L. a. arizonensis +
L. a. astyanax, while for R models, we calculated the
minimum number of deep coalescences in a species tree
with L. a. arthemis + L. a. astyanax. It is important to
note that the two test statistics (the difference in the
number of deep coalescences, 8, and the absolute num-
ber of deep coalescences) are not independent, but both
are necessary to measure support for each model. The
former is necessary to evaluate if, under a particular
model, one topological relationship is better supported
than another, while second is used to determine if the
simulated gene trees have been generated under models
that could represent the true evolutionary history. Only
models in which the observed values of both test statis-
tics fell within the 95% simulated distributions were
considered supported. Models in which the 95% simu-
lated distribution did not include observed values were
rejected. All statistics were calculated using the Mes-
quite software system [22].

Results

A summary of the support for each model is shown in
table 3 and Additional Files 5 and 6. None of the twelve
models of a mimetic clade within L. arthemis corre-
sponding to the monophyletic mimic hypothesis
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Figure 2 Description of two statistics used in this study. In the first step (1), one gene tree is sampled for each locus; for observed data,
these would be estimated gene trees or trees sampled from a posterior distribution; for simulated data, trees for each locus would be simulated
under identical models of population structure. These trees, one from each locus, are then fit into each of the hypotheses being tested (2). The
measure of fit for the sampled gene trees is calculated for each species tree hypothesis (3); in this case, the minimum number of deep
coalescences is used to measure the absolute fit of gene trees to each species trees. Finally, the difference in the two measures of absolute fit is
used as the relative measure of fit to the two hypotheses being tested (4).

Table 3 Support for models of Limenitis history

(MM models) were supported as none of these models
produced simulated results which fulfilled both criteria

Hypmhes's_ — Model 5 (p) Deep Coalescences (p) for support. All MM models produced gene trees with
Monophyletic Mimic MM 8.7 (0.0005) 15678 (<0.0005) poorer fit for a species tree with L. a. astyanax sister to
mmi 12(,)535(?;.)(:5())5) 115176(??3(?22031? L. a. a.lrthemis than observed iq empiricel gene trees.
Vi 233 (0.001) 108.88 (0.492) That is, values for 6 were consistently higher in MM
MMS 1377 (<00005) 65.94 (0.9195) models than our observed value of § = -15, although for
some MM models the 95% simulated distribution of the
mmj 25'9:64(;06%(?055)) 196‘::; ES;;;;;) absolute fit (minimum number of deep coalescences)
' ) ’ ’ did include observed values (models MM3-MM6, MM9-

MM8 -2.52 (0.032) 164.36 (<0.0005) MM12).
mmio ?;;4(?5520:55)) 112243;‘6466(::?06;65)) Of the ‘three models corresponding to the reversion
MM 657 (00005) 113.96 (03105) hypothe.51s.(R mgdels), only one, R2, was support.ed b.y
MM 338 (0025) 112.45 (0.391) both criteria. Thls model produced gene trees which fit
Reversion . 2969 (00025) 19612 (<0.0005) a L. a. arthemis + L. a. atstyanax. tree as well as observed
. 1234 (0.316) 101.47 (0.173) data, and the absolute fit to this species tree matched
the observed gene trees. One model, R1, with a very

R3 -0.23 (0.0025) 96.27 (0.381)

Simulated values of test statistics for each of the fifteen models evaluated in
this study. & is the measure of relative fit of the model to the two hypotheses
(figures 1 and 2); while Deep Coalescences measures the absolute fit of the
simulated gene trees to the model tree used for simulation. Values in bold
indicate observed value of statistic fell within the 95% simulated distribution.
P-values represent probability that simulated gene trees fit hypotheses as well
or better than observed data. See text and table 2 for details of analyses.

recent divergence of L. a. arthemis and L. a. astyanax,
produced gene trees which showed a significantly better
fit to a L. a. astyanax + L. a. arthemis species tree than
did the observed gene tree estimates, and thus was not
supported. The divergence of the mimetic from non-
mimetic lineage in model R1 was based on the



Oliver and Prudic BMC Evolutionary Biology 2010, 10:239
http://www.biomedcentral.com/1471-2148/10/239

divergence time estimate of Mullen et al. [16]. Conver-
sely, an older divergence time model, R3, based on
mitochondrial DNA divergences, produced gene trees
which showed a worse fit to a L. a. astyanax + L. a.
arthemis tree than did the observed gene tree estimates.
In models R2 and R3, with L. a. astyanax sister to L. a.
arthemis, the 95% distribution of the absolute fit (the
minimum number of deep coalescences) included the
observed value (table 3).

Discussion

A sister-taxa relationship between non-mimetic L. a.
arthemis and mimetic L. a. astyanax was supported by
our analyses. (table 3, Additional Files 5 and 6). This
topology is expected under the reversion hypotheses, in
which the mimetic form evolved once and was subse-
quently lost in L. a. arthemis (figure 1a) [4]. The only
model to fulfill both criteria, R2, corresponds to a sister-
taxa relationship between L. a. arthemis and L. a. astya-
nax, with a divergence between the two approximately
0.66 mya (table 2). Our analyses failed to support the
hypothesis that the mimetic lineages of L. arthemis form
a clade (figure 1b). In all monophyletic mimic models
analyzed, gene trees predicted a worse relative fit to a
species tree with L. a. astyanax sister to L. a. arthemis
than the observed data. That is, the difference in the
number of deep coalescences between the two model
trees was less for simulated gene trees from any MM
model than observed in empirical gene tree estimates
(Additional File 5). Even in models with a high migration
rate between L. a. astyanax and L. a. arthemis (MM?7-
MM12), which would increase the fit of the gene trees to
a L. a. astyanax + L. a. arthemis species tree, the simu-
lated distribution of & was still significantly higher than
the observed value (table 3, Additional File 5). The avail-
able phylogenetic data and population parameter esti-
mates [4,16] do not support the hypothesis that mimetic
lineages of L. arthemis are sister taxa [17] and, along with
previous studies [4,18], indicate that L. a. astyanax is
likely sister to the non-mimetic L. a. arthemis.

There are a variety of reasons why the results of this
and prior studies [4,18] conflict with the AFLP estimate
in [17], including the high potential for homoplasy
among AFLP markers [23]. Additionally, the lack of
applicable evolutionary models to AFLP markers and
dependence on distance-based estimates of phylogeny
may result in inconsistent estimates of phylogeny, espe-
cially when terminal branches are connected by rela-
tively short internodes [23-25]. Finally, phylogenetic
estimates with low taxon sampling may be prone to
inconsistency, especially when markers used for estima-
tion are evolving relatively rapidly [26]. Alternatively,
published estimates of model parameters [16] used in
simulations may not accurately reflect the true history
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of this group, and thus the models we evaluated did not
encompass sufficient parameter space. More complex
parametric models, tests accommodating uncertainty in
gene tree estimates [27], and increased precision in
population parameters would all benefit our understand-
ing of how mimetic phenotypes arise and change over
time.

Did the white-banded L. a. arthemis evolve from a
mimetic lineage, as proposed in the reversion hypoth-
esis? In light of the phylogenetic tests on multi-locus
data presented here, this remains a plausible explanation
for the observed data. The mimetic phenotype is
hypothesized to have arisen in the lineage which even-
tually gave rise to all L. arthemis taxa; in areas where
the model, B. philenor was absent, the mimetic pheno-
type was lost, giving rise to the disruptively colored L. a.
arthemis. Selection against mimetic phenotypes in the
absence of the model is predicted to favor phenotypes
with alternative defensive strategies, such as disruptive
coloration, and may occur in other systems, such as
king snakes [23]. Although it remains possible that the
monophyletic mimic hypothesis [17] is correct, or that
mimicry evolved twice in the L. arthemis lineage [18],
additional data would be needed to support these
hypotheses.

The key to understanding the evolution of mimicry
within this group will require integration of geographical
and developmental approaches. Extensive geographical
sampling and geographically explicit models of popula-
tion structure will be necessary to determine the extent
of gene flow between L. a. arthemis and L. a. astyanax,
and the degree to which introgression causes discor-
dance between gene trees and species trees. The biogeo-
graphical history of all L. arthemis lineages, based on
increased sampling of L. a. arizonensis, along with
detailed history of the model, B. philenor, will be neces-
sary for a better understanding of mimicry evolution [4].
Future work should also couple the phylogenetic esti-
mates of ancestry with a developmental genetic
approach assessing homology among the various
mimetic and non-mimetic phenotypes. The identity and
history of the genetic loci responsible for the respective
phenotypes will prove invaluable in studying the evolu-
tion of mimicry [18,28]. This approach will be necessary
to distinguish among the various hypotheses regarding
the history underlying the non-mimetic phenotype of
L. a. arthemis, including, but not limited to: a loss of
function mutation in the mimetic coloration network
resulting in a reversion to an ancestral phenotype; a
gain of function mutation representing novel evolution
of the white-banded phenotype; or a gain of disruptive
coloration via adaptive introgression with other North
American white-banded lineages (L. weidemeyerii,
L. lorquini).
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Conclusions

Hypothesis tests based on mitochondrial [4] and nuclear
loci (this study), which explicitly evaluated support for a
mimetic clade within L. arthemis, rejected the hypoth-
esis that L. a. astyanax and L. a. arizonensis are sister
taxa [17] and found support only for a phylogeny con-
sistent with the reversion hypothesis (figure 1a). These
results also demonstrate how studying character evolu-
tion requires an understanding of the basis of and lim-
itations to phylogenetic tree estimation. The future of
the comparative approach lies in accommodating deter-
ministic and stochastic processes responsible for the
observed patterns of biological diversity. The possibility
of different processes giving rise to identical patterns
must be accounted for, and the relative support for
those processes can be measured in a quantitative fra-
mework as presented here. This study presents a modest
attempt at evaluating the different evolutionary models
of the mimetic phenotype, and the phylogenetic analyses
presented here provide a framework for future investiga-
tions of the evolution of mimicry. With the current
computational resources available, studies should move
away from relying solely on phylogenetic point estimates
(e.g., single trees) for comparing processes of character
evolution. Instead, we should use model-based
approaches, such as parametric bootstrapping, to assess
the relative support of alternative evolutionary hypoth-
eses. By comparing the variation underlying the
observed pattern of diversity, we can gain deeper
insights into the likelihood of various evolutionary
processes.
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Additional file 1: GenBank accession numbers for sequences used
in this study. GenBank accession numbers for all genetic data used in
phylogenetic tree estimation.

Additional file 2: Gene tree estimation and parameter estimates.
Details of Bayesian gene tree estimation and sources of parameters used
in simulations.

Additional file 3: Gene tree estimates of eight nuclear loci. Bayesian
phylogenies of North American Limenitis taxa.

Additional file 4: Models of North American Limenitis divergences.
Schematic of relationships among North American Limenitis lineages
used in coalescent simulations.

Additional file 5: Simulated distributions of the test statistic &.
Frequency distribution for the test statistic & simulated in 15 models of
population structure.

Additional file 6: Simulated distributions of the minimum number
of deep coalescences. Frequency distribution for the number of deep
coalescences simulated in 15 models of population structure.
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