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Abstract

Background: Recent approaches for context-dependent evolutionary modelling assume that the evolution of a
given site depends upon its ancestor and that ancestor's immediate flanking sites. Because such dependency
pattern cannot be imposed on the root sequence, we consider the use of different orders of Markov chains to

model dependence at the ancestral root sequence. Root distributions which are coupled to the context-dependent
model across the underlying phylogenetic tree are deemed more realistic than decoupled Markov chains models,
as the evolutionary process is responsible for shaping the composition of the ancestral root sequence.

Results: We find strong support, in terms of Bayes Factors, for using a second-order Markov chain at the ancestral
root sequence along with a context-dependent model throughout the remainder of the phylogenetic tree in an
ancestral repeats dataset, and for using a first-order Markov chain at the ancestral root sequence in a pseudogene

given dataset quite challenging.

dataset. Relaxing the assumption of a single context-independent set of independent model frequencies as
presented in previous work, yields a further drastic increase in model fit. We show that the substitution rates
associated with the CpG-methylation-deamination process can be modelled through context-dependent model
frequencies and that their accuracy depends on the (order of the) Markov chain imposed at the ancestral root
sequence. In addition, we provide evidence that this approach (which assumes that root distribution and
evolutionary model are decoupled) outperforms an approach inspired by the work of Arndt et al,, where the root
distribution is coupled to the evolutionary model. We show that the continuous-time approximation of Hwang and
Green has stronger support in terms of Bayes Factors, but the parameter estimates show minimal differences.

Conclusions: We show that the combination of a dependency scheme at the ancestral root sequence and a
context-dependent evolutionary model across the remainder of the tree allows for accurate estimation of the
model's parameters. The different assumptions tested in this manuscript clearly show that designing accurate
context-dependent models is a complex process, with many different assumptions that require validation. Further,
these assumptions are shown to change across different datasets, making the search for an adequate model for a

Background

Over the past decades, context-dependent evolutionary
models have been the subject of an increasing number
of studies. These studies demonstrate that the assump-
tion of site-independent evolution is overly restrictive
and that evolutionary models that take into account
context-dependencies greatly improve model fit. Most
context-dependent models have a temporal aspect in
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that the evolution of a given site over a branch is
assumed to depend upon its immediate neighbours at
the start of the branch. Specifically, context-dependent
models are useful when studying mammalian genomes,
due to the extensive methylation of C in CG doublets,
which could make such Cs hotspots for mutation (see
e.g. [1], for a review).

By allowing for mutations of both single nucleotides
and pairs of neighbouring nucleotides, Arndt et al. [2]
considered the evolution of an initial random sequence
of nucleotides in discrete time steps, according to a set

© 2010 Baele et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:yves.vandepeer@psb.vib-ugent.be
http://creativecommons.org/licenses/by/2.0

Baele et al. BMC Evolutionary Biology 2010, 10:244
http://www.biomedcentral.com/1471-2148/10/244

of update rules. Arndt et al. [2] further computed dinu-
cleotide odds ratios to measure whether a given dinu-
cleotide pair is over- or underrepresented and
concluded that these correctly capture the strong under-
representation of the CpG-dinucleotides in the human
chromosome 21.

Hwang and Green [3] not only allow the evolution of
a given site over a branch to depend upon its immediate
neighbours at the start of the branch but further parti-
tion each branch into two or more small discrete time
units, when the length of that branch is sufficiently
long, in order to accurately approximate the continu-
ous-time Markov substitution process. The authors esti-
mate separate context-dependent rate matrices for five
different clades and for a sixth group comprising the
remaining ancestral branches. Hwang and Green [3]
further model a dependency pattern along the sequence
at the ancestral root using a second-order Markov
chain.

Empirical studies (see e.g. [4-8]) have shown that the
preceding or succeeding bases in a sequence have a large
influence on the occurrence of a base, both in coding and
non-coding sequences. This suggests the importance of
modelling dependencies along the sequence. For exam-
ple, Erickson and Altman [9] studied the nucleotide
sequence of the RNA of the bacteriophage MS2 using
Markov chains found that the total nucleotide sequence
of the RNA of the bacteriophage MS2 showed very signif-
icant second-order dependence. Blaisdell [10] studied
sixty-four eukaryotic nuclear DNA sequences, half of
them coding and half non-coding using first-, second-
and third-order Markov chains and found significant sta-
tistical evidence in favour of a third-order Markov chain
in 5 of the 10 non-coding sequences longer than 1400
bases, suggesting that most sequences required at least
second-order Markov chains for their representation
while some required chains of third order.

In previous work [1], we have introduced a context-
dependent model of evolution which allows the evolu-
tion of a site across a branch to depend upon the
identities of its two immediate flanking bases at the
start of the branch. Since the root of the tree does not
have any ancestral sequence, we have assumed a site-
independent distribution at the ancestral root sequence
using a set of context-independent model frequencies,
which is also used in the estimation of the context-
dependent substitution rates. In this paper, we relax this
assumption by modelling Markov chains of varying
orders at the ancestral root sequence, thus modelling a
context-dependency scheme across the entire tree. We
also show that the assumption of using a single set of
model frequencies for analyzing context-dependencies is
overly restrictive. We allow for a set of context-depen-
dent model frequencies which aims to accurately model
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the context-specific sequence composition throughout
the underlying tree and test the performance of such a
model by calculating the appropriate (log) Bayes Factors
using thermodynamic integration [11]. We show that
context-dependent model frequencies drastically
increase the model fit and allow for accurate estimation
of the parameters involved in specifying the ancestral
root distribution. We assess the performance of an
ancestral sequence composition that is coupled to the
context-dependent model, inspired by the approach of
Arndt et al. [2] and provide evidence that a decoupled
root distribution outperforms a coupled root distribu-
tion. We compare the parameter estimates of our
model for two approaches, i.e. a first approach that
allows the evolution of a given site to depend only
upon the identities of its immediate flanking bases at
the start of a branch versus a second approach which
partitions each branch into two or more parts to better
accommodate evolving flanking bases across the branch.

Methods

Data

We have used a first dataset consisting of 10 vertebrate
species (human, chimpanzee, gorilla, orang-utan,
baboon, macaque, vervet, marmoset, dusky titi and
squirrel monkey), as in Baele et al. [1]. In terms of the
sequences used, this dataset is a subset of the alignment
analyzed in the work of Hwang and Green [3] and
Margulies et al. [12], containing sequences all ortholo-
gous to a ~1.9-Mb region on human chromosome
7q31.3 which contains the cystic fibrosis transmembrane
conductance regulator gene (CFTR). We have extracted
the ancestral repeats, transposons that appear to have
been dispersed, and then become inactive, prior to the
divergence of the species in question, and that are
believed to have been evolving more or less neutrally
since that time ([13]; see [1], for details on the prepara-
tion of the dataset). The resulting ancestral repeats data-
set consists of the same type of sites as in the work of
Siepel and Haussler [13], but contains only primate
sequences. The dataset consists of 114,726 sites for each
of the 10 sequences and is analyzed using the following
rooted tree topology (((((human, chimpanzee), gorilla),
orang-utan), ((baboon, macaque), vervet)), ((marmoset,
dusky titi), squirrel monkey)).

A second dataset consists of the yn-globin pseudo-
gene sequences of six primates (human [Homo Sapiens],
chimpanzee [Pan Troglodytes], gorilla [Gorilla Gorilla],
orang-utan [Pongo Pygmaeus], rhesus monkey [Macaca
Mulatta] and spider monkey [Ateles Geoffroyi]), contain-
ing 6,166 nucleotides in each sequence. We have used
the fixed consensus tree shown in the work of Yang
[14]: ((((human, chimpanzee), gorilla), orang-utan), (rhe-
sus monkey, spider monkey)).
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Bayesian Markov Chain Monte Carlo using

data augmentation

Bayesian inference of phylogeny is based on a quantity
called the posterior probability function of a tree, in the
same way as maximum-likelihood inference is based on
the likelihood function. While the posterior probability
is generally tedious to calculate, simulating from it is
relatively easy through the use of Markov chain Monte
Carlo (MCMC) methods ([15,16]). Relaxing the assump-
tion of independent evolution leads to computational
difficulties, which we handle via a data augmentation
scheme [17]. Let @ be the collection of unknown para-
meters indexing the evolutionary model of interest, Y,
the observed nucleotide sequences (i.e., the observed
data) and Y,,;; the unknown ancestral sequences (i.e.,
the missing data). The observed-data posterior

_ f(Yobs‘O)f(Q)
f(0|Yobs)_ f(Yobs)
model because it involves the likelihood of the observed
data which is computationally cumbersome. However,
when Y, is “augmented” by a random draw for Y,,,;
from the distribution f (Y,,is| Yops, 6) of the ancestral
sequences, the resulting complete-data posterior f0|Y,,
Y,.is) becomes tractable. A detailed discussion of the
data augmentation approach in our proposed Bayesian
Markov chain Monte Carlo approach and in the ther-
modynamic integration framework for model compari-
son can be found in previous work [1,18].

is intractable under our

Context-dependent modelling assumptions

We provide a model-based approach to test the assump-
tions put forward in the empirical research of Blaisdell
[10] and assume zero-, first-, second- and third-order
Markov chains to specify the probability that a given
base appears at a given site in the (ancestral) root
sequence, given the identities of its preceding sites (i.e.
the nucleotides occupying the preceding sites in the
ancestral root sequence). For example, a second-order
Markov chain is a temporal or spatial sequence of
events characterized by the property that the outcome
of any event in the chain may be dependent upon (e.g.
influenced by) the two events immediately preceding it,
but has no residual dependence on any further events
preceding those. In other words, in the ancestral root
sequence the probability that a given site occurs
depends on the identities of the sites preceding it (i.e.
which nucleotides precede the given site) in that same
ancestral sequence. Arndt et al. [2] used a two-cluster
approximation to calculate dinucleotide frequencies,
yielding an exact solution if the stationary state of the
mutation process is a first-order Markov chain, while
Hwang and Green [3] modelled the distribution of bases
at the ancestral root as a second-order Markov chain.
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In the case of a zero-order Markov chain, one set of
frequencies mroor = {74, 7c, TG, 77} is used to specify
the distribution at the root sequence. When a first-order
Markov chain is used, four independent sets of frequen-
cies are required: mrooT = {7x4, TTx|C) TTX|G> TTx|7)> With
X e {A, C, G, T} the identity of the site preceding the
given site. Likewise, a second-order mroor = {7Tyxjar Tyx|
o Tyx|G Tyx|r} Markov chain and a third-order mzoor
= {zyx14, Tzyx|0» TzvxiG» Tzyx;T} Markov chain is speci-
fied with Y e {A, C, G, T} the identity of the site 2 posi-
tions prior to the given site and Z € {4, C, G, T} the
identity of the site 3 positions prior to the given site.
Zero-, first-, second- and third-order Markov chains
increase the parameter space with respectively 1, 4, 16
and 64 sets of base frequencies (i.e., 4, 16, 64 and 256
parameters). Note that our notation for the distribution
at the root sequence differs from the typical notation for
conditional probabilities in that we put the conditional
part before the ‘pipe’ symbol (|’).

To study the context-dependent substitution process
across the remainder of the underlying tree, we estimate
a general time-reversible model (GTR; 5 free evolution-
ary parameters and 3 free base frequency parameters;
[19]) in each of the 16 possible neighbouring base com-
binations, yielding a context-dependent model consisting
of 160 parameters (or 5 free evolutionary parameters
and 3 free base frequency parameters to describe the
GTR model in each context). In each context (i.e. in
each of the 16 neighbouring base combinations), the
general time-reversible model has the following substitu-
tion rates in the case of context-dependent model fre-
quencies 7xy = {7Ixja|vs 7Tx|c|ys Tx|G|y: Tx|7|y} and rate
exchangeability parameters gx|w 7y, with X (before the
first ‘pipe’ symbol ‘|’) the 5’ and Y (after the second
‘pipe’ symbol ‘|’) the 3’ neighbouring base at the ances-
tral sequence of the branch (i.e. X, Ye {4, C, G, T})
and W the base at the start of a branch and Z the base
at the end of that branch (the second ‘pipe’ symbol
hence differs from the typical notation for conditional
probabilities). These parameters are estimated for each
context independently:

A G C T

Txlolydx|ascly  Tx|clydx|{ascly  Tx|r)vdx|asTiy

7 x| aly9x| a-scly Txqydxicoely  Fxjrivdx|coy |

500 >

Y /\‘qu‘ ascly x| (."qu‘(,‘a(.“y ”x\T\vqx\(HT\v

ﬂX‘A‘YqX‘AH'I‘V ”X‘(.‘qu‘(‘.ﬂ'l‘)’ 7x|q vqx\(.a'l\y

Let 6 be the collection of terms of the off-diagonal
elements of the matrix above (with the starting base
indicated by the row index and the resulting base indi-
cated by the column index), each multiplied by the
probability that one would start with that starting base
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(see e.g. [20]). This context-dependent model, although
consisting of a collection of reversible models, allows for
describing non-reversible evolutionary phenomena, such
as the CpG-methylation-deamination process (see e.g.
[21]). The context-dependent evolutionary model and
the Markov chain(s) used to estimate the ancestral root
distribution are hence decoupled (i.e. estimated indepen-
dently from one another). Note that in the case of con-
text-independent model frequencies, the model
simplifies to the model in [1]. Throughout the remain-
der of this paper, we will use the notation rxjaciy 7xj46
v» X|AT|Y» YX|CA|Ys TX|CG|y» TX|CT|Ys TX|GA|Y» TX|GC|ys TX|GT|Y»
rxita|y » Fxjrc)y and rxjrg|y to indicate the substitution
rates between two nucleotides. For instance, rxjac|y =
Txjacly - 9x|a—c|y denotes the substitution rate from A
to C with X the 5" and Y the 3’ neighbouring base at the
ancestral sequence of the branch. When it is clear
which neighbouring bases are meant or when no con-
text-effects are assumed, we will use the notation r,¢,
YaGr YaT» TCar YCGr YO TGA» TGO TG T1as TTC and g to
indicate the substitution rates.

Further, we assume a fixed underlying phylogenetic
tree structure (see the Data section and [12]) for the
evolutionary relationship between the species in our
dataset. The branch lengths of the tree are estimated in
our MCMC-run, along with all the other parameters of
the context-dependent evolutionary model.

Prior Distributions

Let T be the set of branch lengths with £,(¢;, = 0) one
arbitrary branch length and g a hyperparameter in the
prior for £, in T. The following prior distributions ¢(.)
are chosen for our analysis, with I'(.) the Gamma func-
tion. Dirichlet priors (which are uninformative priors)
assign densities to groups of parameters that measure
proportions (i.e., parameters that must sum to 1). For
each set of model frequencies of which the ancestral
root sequence is composed, the following prior distribu-
tion is assumed:

T roor~Dirichlet(1,1,1,1),  q(mroor) = T(4).

For the model parameters of each context (i.e. neigh-
bouring base combination) independently, the following
prior distribution is assumed (see e.g. [22] and Addi-
tional file 1):

O~Dirichlet(1,1,1,1,1,1), ¢(6) =T(6).

For each of the frequencies in each neighbouring base
combination, with X the 5" and Y the 3’ neighbouring
base at the ancestral sequence of the branch (i.e. X, Y e
{A, C, G, T}), the following prior distribution is assumed:
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myy~Dirichlet (1,1,1,1), q(7xy)=T(4).

Further, branch lengths are assumed i.i.d. given u:

ty|u ~Exponential (u), at|w)=1e " for each ¢, in T

and

¢ ~Inv-gamma (2.1, 1.1), q(y):%,ﬂ““)e*' Ve, > 0.
Bayes Factor Calculation
By allowing for context-dependent evolution, evolution-
ary models become more parameter-rich. As previously
discussed [23], consistency problems may arise with
such high-dimensional models, along with potential
computational burdens. In view of this, a model-selec-
tion approach should be used that penalizes the addition
of extra parameters unless there is a sufficiently
impressive improvement in fit between model and data
[23]. To compare the different assumptions concerning
the root distribution, we have calculated (log) Bayes Fac-
tors [24]. Log Bayes Factors are typically divided into 4
categories depending on their value: from 0 to 1, indi-
cating nothing worth reporting; from 1 to 3, indicating
positive evidence of one model over the other; from 3 to
5, indicating strong evidence of one model over the
other; and larger than 5, indicating very strong evidence
of one model over the other [24]. We have chosen to
calculate Bayes Factors using thermodynamic integration
[11], since the traditional harmonic mean estimator of
the marginal likelihood systematically favors parameter-
rich models and is hence unfit to compare these com-
plex context-dependent models. We have used the
model-switch integration method and have performed
bidirectional checks, i.e., we have calculated both
annealing and melting integrations under various set-
tings to obtain very similar runs, as suggested in the
work of Rodrigue et al. [25]. When comparing different
models, we report (log) Bayes Factor estimates for both
annealing and melting integrations, as well as their
mean. More details concerning the Bayes Factor calcula-
tion using a data augmentation approach can be found
in Baele et al. [18].

Coupled root distribution and context-dependent
evolutionary model

Our approach for estimating context-dependent evolu-
tionary patterns across a phylogenetic tree separates the
estimation of the root distribution probabilities from the
estimation of the context-dependent evolutionary pat-
terns. This approach is similar to that of Hwang and
Green [3] but clearly different from the approach of
Arndt et al. [2] and Jensen and Pedersen [26]. Arndt et
al. [2] derive the root distribution probabilities from the
substitution process. Our substitution probabilities are
different from theirs, as the dependencies cascade from



Baele et al. BMC Evolutionary Biology 2010, 10:244
http://www.biomedcentral.com/1471-2148/10/244

the leaves of the tree up to its root, whereas the substi-
tution probabilities in Arndt et al. [2] do not. In view of
this, we integrated both approaches by means of a two-
cluster approximation (see e.g. [27]) to derive the root
distribution probabilities from our context-dependent
evolutionary model. We focus here on deriving formulas
for calculation of a first-order root distribution (with the
‘pipe’ symbol ‘|” denoting a traditional conditional prob-
ability) using the context-dependent model frequencies
present in the context-dependent evolutionary model,
with a; the identity of the base at a given site i, p(a;) the
probability of observing a;, p(a;|a;.;) the probability of
observing a; when the preceding base is a; 1, p(a; | a1,
a;,1) the probability of observing a; when the preceding
base is a;; and the succeeding base is a;,; (i.e. the con-
text-dependent model frequencies) and p(a;,; | a;.1 ) the
probability of observing a;,; when its second left-most
base is a; 1:

P(‘lilai—l)=2P(“i|ai—1fai+1 )'p(aiﬂlai—l ),

i+l

with:

p(ai+l|ai—l):Zp(ai+1|aifai—l)'p(ai|ai—l)~

This last equation can be rewritten using the two-
cluster approximation as:

p(ai+l|ai—l)zzp(ai+l|ai)'p(ai|ai—l)'

Substitution in the expression for p(a;|a;.;) then yields
the expression for the first-order root distribution prob-
abilities. Since analytic solutions were not possible, we
used an iterative approach based on successive approxi-
mation (see e.g. [28]) to solve this system in each itera-
tion of our MCMC approach. For each approximation
we have used five iterations (in most cases, two were
sufficient) to make the system converge towards a new
solution.

Simulation studies

We have performed two series of simulation experi-
ments to examine the accuracy of our MCMC-approach
and to assess whether our results might be influenced
by the choice of prior distributions. The first series of
simulations focuses on a second-order ancestral root
distribution decoupled from the context-dependent evo-
lutionary model while the second series of simulations
focuses on a first-order ancestral root distribution
coupled to the context-dependent model. Both
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simulations show that our method is able to reliably
infer root distribution estimates, context-dependent
model parameters and frequencies, as well as branch
lengths from a large dataset. For more information on
the set-up of the simulations, as well as the results of
both simulations, we refer to Additional file 1, Addi-
tional file 2 and Additional file 3.

Continuous-time approximation

In view of the computational complexity, we make the
weak assumption that the identities of the immediate
flanking neighbors remain constant across each branch
of the tree. As the dataset analyzed in this paper con-
tains closely related organisms, i.e. short internal and
terminal branches will be estimated for the given tree
topology, we expect that this assumption will not lead
to drastically different parameter estimates compared to
a branch-partitioning approach such as the one pro-
posed by Hwang and Green [3]. Indeed, while this
assumption makes our approach less biologically realis-
tic, branch-partitioning is most likely only required for
longer branches (i.e. branches longer than or equal to
0.005 using the approach of Hwang and Green [3,20]).
To assess the need for partitioning the branches in our
dataset, we split each branch into two or more parts of
equal length such that the average substitution rate per
time unit is smaller than or equal to 0.005 [3] and com-
pare all the parameter estimates of our context-depen-
dent model with a second-order Markov chain at the
ancestral root to our approach without branch partition-
ing. Instead of estimating context-dependent substitu-
tion patterns on 18 branches, these patterns now have
to be estimated on 52 branch parts, which leads to an
almost 3-fold increase in computation time. The
branch-splitting approach of Hwang and Green is a dis-
crete-time method. For a comparison of both continu-
ous and discrete-time methods to sample substitution
histories along branches, in terms of performance and
accuracy, we refer to the work of de Koning et al. [29].
Apart from comparing the parameter estimates, we have
also calculated an additional (log) Bayes Factor of our
context-dependent model with a second-order Markov
chain against an independent GTR model, with the
branch lengths partitioned.

Results

Ancestral Repeats

Independent model frequencies: Bayes Factors

In Figure 1, we calculate the increase in model fit vis-a-
vis the general time-reversible model, brought about by
relaxing the assumption of site-independent evolution at
the ancestral root sequence (the numerical results are
reported in Table S1 in Additional file 1). The assump-
tion of a separate set of base frequencies at the root
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Figure 1 Ancestral repeats: Influence of root sequence
distributions on model fit (against independence throughout
the entire tree) using independent model frequencies. Various
orders of Markov chains for the ancestral root sequence are tested
against the assumption of site-independent evolution throughout
the entire tree, revealing that a second-order Markov chain yields
the largest increase in model fit vis-a-vis the independent GTR
model. The first model comparison (of which the order is indicated
by -) does not assume a separate Markov chain at the ancestral
root but uses the independent model frequencies to describe the
ancestral root sequence. Both annealing and melting schemes are
shown for each model comparison. The 95% confidence intervals
are at most 30 log units wide (not shown).

already provides a significant increase in terms of model
fit over the model of Baele et al. [1], even though such a
zero-order Markov chain still assumes a site-indepen-
dent distribution at the ancestral root sequence. The
first- and second-order Markov chain at the root
sequence yield a phenomenal increase in terms of model
fit. The assumption of a third-order Markov chain at the
root sequence yields no further improvement, which
may be related to the corresponding drastic increase in
number of parameters.

Context-dependent model frequencies: Bayes Factors

We have calculated (log) Bayes Factors for our context-
dependent model with context-dependent model fre-
quencies and Markov chains of different orders at the
ancestral root sequence in the same way as reported
above, with the general time-reversible model as the
reference model. The results are shown in Figure 2 (the
numerical results are reported in Table S2 in Additional
file 1). Even when assuming a site independent distribu-
tion at the ancestral root sequence, a drastic increase in
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Figure 2 Ancestral repeats: Influence of root sequence
distributions on model fit (against independence throughout
the entire tree) using context-dependent model frequencies.
Various orders of Markov chains for the ancestral root sequence are
tested against the assumption of site-independent evolution
throughout the entire tree using the context-dependent model
with context-dependent model frequencies, revealing once again
that a second-order Markov chain yields the largest increase in
model fit vis-a-vis the independent GTR model. Both annealing and
melting schemes are shown for each model comparison. The 95%

confidence intervals are at most 30 log units wide (not shown).

model fit is realized through context-dependent model
frequencies. As when assuming independent model fre-
quencies, optimal fit is reached when assuming a sec-
ond-order Markov chain at the ancestral root sequence,
although the increase in model fit is now higher than
when assuming independent model frequencies.

Coupled root distribution and context-dependent
evolutionary model: Bayes Factor

Inspired by the work of Arndt et al. [2], we have calcu-
lated the log Bayes Factor for this first-order successive
approximation approach with coupled root distribution
against the independent GTR model, resulting in an
annealing estimate of 6648.61 ([6628.69; 6668.52]) and a
melting estimate of 6682.52 ([6659.95; 6705.09]), yield-
ing a bidirectional mean log Bayes Factor of 6665.56 log
units. We conclude that our approach to couple the
root distribution to the evolutionary model, inspired by
the work of Arndt et al. [2], yields a suboptimal model
fit for this data.

Continuous-time approximation: Bayes Factor

As mentioned above, the context-dependent model with
context-dependent model frequencies and a second-



Baele et al. BMC Evolutionary Biology 2010, 10:244
http://www.biomedcentral.com/1471-2148/10/244

order Markov chain at the ancestral root sequence
yields a a bidirectional mean log Bayes Factor of
7221.47 log units, compared to the independent GTR
model (7218.01 ([7200.34; 7235.68]) log units for the
annealing scheme and 7224.94 ([7207.16; 7242.71]) log
units for the melting scheme). We have recalculated the
log Bayes Factor for this model, this time splitting the
branches where appropriate. Due to the use of a full
data likelihood (as a consequence of using a data aug-
mentation approach), the branches under both the con-
text-dependent and independent model being compared
need to be split into parts as otherwise the two likeli-
hoods corresponding to the two models would be
incomparable. The independent model will however not
benefit from the branch partitioning, as it is an
approach aimed at approximating the continuous distri-
bution of the context-dependent Markov substitution
process. The split branches model comparison yields a
bidirectional mean log Bayes Factor of 7626.70 log units,
compared to the independent GTR model (7617.66
([7600.11; 7635.21]) log units for the annealing scheme
and 7635.74 ([7617.94; 7653.55]) log units for the melt-
ing scheme). This difference of approximately 405 log
units cannot solely be attributed to the difference in
evolutionary model estimates, given that these differ
only slightly between both approaches. The main reason
for this significant difference is hence likely the more
accurate approximation of the context-dependent Mar-
kov substitution process by allowing the ancestral
sequences to change in between the internal speciation
nodes (which is also responsible for the small differences
in model estimates).

Independent model frequencies: root distribution estimates
From previous work [1], we have obtained the stationary
distribution given (with accompanying 95% credibility
intervals) by: m4 = 0.300 ([0.297; 0.302]), mc = 0.192
([0.190; 0.194]), 7g = 0.192 ([0.190; 0.194]) and 77 =
0.317 ([0.314; 0.320]). These estimates, as well as those
presented in the remainder of this work, were obtained
by performing 100,000 MCMC iterations, discarding the
first 20,000 as the burn-in sequence and calculating the
mean of the remaining 80,000 samples.

Modelling a zero-order Markov chain along the ances-
tral root sequence still assumes a site-independent dis-
tribution but relaxes the stationarity assumption by
allowing for a different set of base frequencies to esti-
mate the evolutionary models that describe substitutions
in the remainder of the tree. By comparing the two sets
of base frequencies, one can assess the restrictions
imposed by assuming a stationary distribution across
the entire tree. The estimates for the base frequencies
along the ancestral root sequence (with accompanying
95% credibility intervals) 74 = 0.295 ([0.293; 0.298]),
7e = 0.198 ([0.195; 0.200]), 77g = 0.196 ([0.194; 0.199]),
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mr = 0.311 ([0.3087; 0.314]) are different from those
used throughout the remainder of the tree m, = 0.317
([0.307; 0.328]), 7c = 0.161 ([0.155; 0.168]), ng = 0.167
([0.161; 0.174]), 777 = 0.354 ([0.344; 0.365]).

Allowing for a first-order Markov chain along the
sequence yields the four sets of base frequencies for the
ancestral root sequence in Table 1. The estimates from
the first-order Markov chain at the ancestral root
sequence clearly show an important effect of mamma-
lian evolution, i.e. the presence of a so-called CpG-effect
(see e.g. [21]). Indeed, the probability of encountering a
G at the ancestral root sequence when it is preceded by
a C is extremely low (0.69%), which leads to increased
probabilities of observing either A, C or T at the root
sequence when the preceding site is a C. This confirms
the result of Arndt et al. [2], who calculated dinucleo-
tide frequencies and odds ratios and showed that the
CpG dinucleotide is underrepresented in mammalian
sequences as a result of the CpG-methylation-deamina-
tion process, although the estimate in Table 1 is much
lower than theirs. This underscores the importance of
(at least) a first-order Markov chain when modelling
context-dependent evolution. The comparison of the
remaining rows in Table 1 illustrates the presence of
other evolutionary patterns. For example, while the
probability of observing a C or a G in the ancestral root
sequence is quite similar regardless of whether the pre-
ceding site is G or T, there is a higher probability of
observing an A when the preceding site is G than when
itis T.

Table 1 Ancestral repeats - First-order root sequence
distribution

Root
X Tyja Ty TiyiG i1
A 03114 0.1682 0.2355 0.2849
[0.3063; 0.3162] [0.1641; 0.1723] [0.2307; 0.2400] [0.2799; 0.2899]
C 0.3760 0.2439 0.0069 03733
[0.3697; 0.3826] [0.2380; 0.2496] [0.0057; 0.0083] [0.3668; 0.3799]
G 03014 0.1926 0.2448 0.2612
[0.2954; 0.3077] [0.1873; 0.1981] [0.2389; 0.2504] [0.2554; 0.2672]
T 0.2287 0.1966 0.2451 0.3296

[0.2241; 0.2331] [0.1924; 0.2012]  [0.2405; 0.2497]

Rest of the tree

[0.3247; 0.3347]

s Tc ng mr

03114 0.1676 0.1730 0.3480
[0.3015; 0.3217] [0.1610; 0.1739]  [0.1665; 0.1798]  [0.3374; 0.3582]

Estimates (mean and accompanying 95% credibility interval) for the four sets
of base frequencies at the ancestral root sequence and the set of base
frequencies used in the remainder of the tree, for the context-dependent
model with independent model frequencies and a first-order Markov chain at
the ancestral root. The extremely low estimate for the probability of observing
a G when the preceding base is a C, is a direct consequence of the CpG-
methylation-deamination process in mammalian sequences. Note that the
base frequencies used throughout the remainder of the tree differ from those
when assuming a zero order Markov chain at the ancestral root sequence.
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To assess whether the probability of observing a given
nucleotide at a given site in the ancestral root sequence
depends only on its immediate preceding site, we have
also modelled a second-order Markov chain at the
ancestral root sequence. This was also used by Hwang
and Green [3], but without testing whether it was sup-
ported by the data. The estimates for the sixteen sets of
base frequencies for the ancestral root sequence are
shown in Table 2.

The estimates from the second-order Markov chain at
the ancestral root sequence show additional differences
in base frequencies when compared to the estimates
from the first-order Markov chain. For example, there
are large relative differences in the probabilities of
observing a G when the preceding site is a C. When
that C is preceded by an A, the probability of observing
a G is more than twice as much as when C is preceded
by G. Likewise, from Table 2 we see that the probability
of observing an A equals 31.14% when its preceding site
is an A. However, the site two positions away causes
variation in this estimate, i.e. from 24.37% up to 34.96%.
This illustrates the importance of using a second-order
Markov chain at the ancestral root sequence.
Independent model frequencies: parameter estimates
We have shown that the addition of a second-order
Markov chain at the ancestral root sequence increases
model fit drastically over a site-independent distribution
at the root. To determine whether the inferred context-
dependent parameters are influenced by modelling a
second-order Markov chain at the ancestral root
sequence we have performed two separate MCMC runs
of 100,000 iterations, one for the independent general
time-reversible model and one for the context-depen-
dent model (using independent model frequencies) with
a second-order Markov chain at the root. After discard-
ing the first 20,000 iterations as the burn-in sequence,
we have constructed posterior difference densities for
each of the 192 entries in the context-dependent
matrices. The resulting posteriors were used to deter-
mine a Bayesian p-value (see e.g. [30]) for each of the
192 entries to test whether the parameter estimates
were significantly different between both MCMC runs.
This approach resulted in the detection of 24 signifi-
cantly differing evolutionary parameters (at a 5% level).
Interestingly, all of these were found to include one of
the transition parameters. Indeed, 4 out of 16 neigh-
bouring base combinations showed different estimates
for raAGg (specifically: TA|AG|T>» TC|AG|As TClAG|C and rclAG|
7), 6 out of 16 neighbouring base combinations showed
different estimates for ry¢ (specifically: 74 7cjas 7a|7c|Gr
rA|TC|Tr rC|TC|T: rG|TC|A and rT|TC|A) and 13 out of 16
neighbouring base combinations showed different esti-
mates for rcr (rejcria Yejerio and rgjcrjc did not). As
the assumption of a second-order Markov chain at the
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Table 2 Ancestral repeats - Second-order root sequence
distribution

Root
YX TTyx|A Tyxic Tyxic Tyxr
AA 0.3496 0.1518 0.2160 0.2826
[0.3404; 0.3587] [0.1449; 0.1588] [0.2080; 0.2241] [0.2737; 0.2916]
CA 0.2437 0.1987 0.2648 0.2928
[0.2343; 0.2533] [0.1899; 0.2074] [0.2554; 0.2748] [0.2831; 0.3028]
GA 0.3326 0.1553 0.2753 0.2367
[0.3212; 0.3442] [0.1461; 0.1647] [0.2644; 0.2864] [0.2261; 0.2473]
TA 0.3148 0.1679 0.1983 0.3190
[0.3044; 0.3253] [0.1594; 0.1766] [0.1894; 0.2075] [0.3083; 0.3298]
AC 04062 0.2295 0.0092 0.3551
[0.3929; 0.4199] [0.2177; 0.2406] [0.0064; 0.0124] [0.3422; 0.3681]
cC 0.3791 0.2357 0.0057 0.3795
[0.3661; 0.3922] [0.2242; 0.2473] [0.0036; 0.0083] [0.3665; 0.3927]
GC 0.3763 0.2541 0.0040 0.3656
[0.3614; 0.3916] [0.2407; 0.2679] [0.0020; 0.0065] [0.3503; 0.3803]
TC 0.3487 0.2554 0.0083 0.3875
[0.3373; 0.3603] [0.2448; 0.2664] [0.0060; 0.0109] [0.3757; 0.3994]
AG 03153 0.1941 0.2464 0.2441
[0.3051; 0.3260] [0.1853; 0.2032] [0.2368; 0.2562] [0.2343; 0.2537]
CG 0.2557 0.1960 0.2617 0.2866
[0.1796; 0.3398] [0.1272; 0.2723] [0.1887; 0.3433] [0.2044; 0.3719]
GG 0.3081 0.2049 0.2400 0.2471
[0.2955; 0.3212] [0.1939; 0.2163] [0.2281; 0.2517] [0.2353; 0.2592]
TG 0.2844 0.1839 0.2462 0.2855
[0.2747; 0.2944] [0.1754; 0.1926] [0.2368; 0.2556] [0.2757; 0.2953]
AT 0.2575 0.1657 0.2495 03272
[0.2484; 0.2668] [0.1582; 0.1735] [0.2405; 0.2586] [0.3175; 0.3368]
cT 0.1968 0.2200 0.2630 0.3202
[0.1879; 0.2059] [0.2111; 0.2290] [0.2533; 0.2725] [0.3100; 0.3307]
GT 02322 0.1919 0.2814 0.2945
[0.2208; 0.2437] [0.1812; 0.2025] [0.2694; 0.2938] [0.2824; 0.3069]
T 02256 0.2077 0.2110 0.3558

[0.2179; 0.2334]

[0.2000; 0.2153]

[0.2036; 0.2187]

[0.3472; 0.3646]

Rest of the tree

A Tic Mg mr
03114 0.1681 0.1721 0.3484
[0.3016; 0.3211] [0.1617; 0.1746] [0.1658; 0.1785] [0.3385; 0.3589]

Estimates (mean and accompanying 95% credibility interval) for the sixteen
sets of base frequencies at the ancestral root sequence and the set of base
frequencies used in the remainder of the tree, for the context-dependent
model with independent model frequencies and a second-order Markov chain
at the ancestral root. The probabilities are grouped by the identity of the
immediate preceding site. Note that the base frequencies used throughout
the remainder of the tree are similar to those when assuming a first order
Markov chain at the ancestral root sequence.

ancestral root sequence results in a drastic increase in
model fit over assuming a site independent distribution
at that root sequence, we show the substitution rates for
the 192 off-diagonal elements in our context-dependent
model using independent model frequencies in Figure 3.
The difference with the substitution rates shown in our
previous work [1] is that Figure 3 shows the matrix
entries of the evolutionary models (thus evolutionary
parameters after being multiplied by the model
frequencies).
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Figure 3 Ancestral repeats: Substitution parameters for independent model frequencies and a second-order Markov chain at the root.
Substitution parameter estimates (mean and 95% credibility intervals) for each of the twelve entries of the general time-reversible model in each
of the sixteen neighbouring base combination using independent model frequencies and a second-order Markov chain to specify the ancestral
root distribution.
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Context-dependent model frequencies: root distribution
estimates

As a second-order Markov chain at the ancestral root
sequence yields the largest increase in model fit, we have
re-estimated the corresponding root distribution probabil-
ities when assuming context-dependent model frequen-
cies. The results can be seen in Table 3. We compare
them with the results reported in Table 2, which were
obtained using a single set of independent model frequen-
cies. Large relative differences occur in those combinations
of sites involved in the CpG-methylation-deamination pro-
cess. Indeed, the root distribution probabilities differ in the
following combinations of preceding sites: AC, CC, GC,
TC and CG. As each row in Table 3 sums to one, a differ-
ence in one probability estimate influences the three
remaining probability estimates given the same combina-

tion of preceding sites.

Table 3 Ancestral repeats - Second-order root
distribution estimates

YX Tyxia Tyx|c Tyxic Tyxit
AA 0.3492 0.1539 02132 0.2837
[0.3398; 0.3586] [0.1466; 0.1613] [0.2050; 0.2215] [0.2747; 0.2928]
CA 0.2453 0.2036 0.2639 0.2872
[0.2355; 0.2552] [0.1942; 0.2133] [0.2536; 0.2742] [0.2767; 0.2981]
GA 0.3308 0.1588 0.2737 0.2367
[0.3192; 0.3426] [0.1495; 0.1682] [0.2626; 0.2848] [0.2261; 0.2473]
TA 03134 0.1698 0.1977 03191
[0.3031; 0.3237] [0.1613; 0.1788] [0.1888; 0.2068] [0.3083; 0.3298]
AC 03824 02331 0.0462 03384
[0.3684; 0.3960] [0.2215; 0.2451] [0.0380; 0.0551] [0.3252; 0.3516]
CcC 0.3579 0.2379 0.0406 0.3636
[0.3447; 0.3715] [0.2259; 0.2497] [0.0331; 0.0486] [0.3501; 0.3772]
GC 0.3597 0.2585 0.0291 0.3527
[0.3443; 0.3752] [0.2448; 0.2724] [0.0218; 0.0372] [0.3375; 0.3678]
TC 03344 0.2587 0.0290 03779
[0.3228; 0.3458] [0.2480; 0.2695] [0.0236; 0.0347] [0.3661; 0.3896]
AG 03160 0.1941 0.2492 0.2407
[0.3052; 0.3265] [0.1851; 0.2036] [0.2394; 0.2594] [0.2309; 0.2506]
CG 02122 0.1598 0.2467 03813
[0.1726; 0.2542] [0.1237; 0.1990] [0.2025; 0.2934] [0.3310; 0.4327]
GG 0.3053 0.2070 0.2429 0.2448
[0.2927; 0.3181] [0.1959; 0.2185] [0.2312; 0.2546] [0.2331; 0.2569]
TG 0.2842 0.1857 0.2499 0.2802
[0.2741; 0.2945] [0.1771; 0.1946] [0.2402; 0.2598] [0.2699; 0.2904]
AT 0.2643 0.1683 02378 03296
[0.2550; 0.2736] [0.1606; 0.1762] [0.2285; 0.2471] [0.3198; 0.3394]
cT 0.2025 02247 02514 03214
[0.1934; 0.2117] [0.2152; 0.2342] [0.2416; 0.2614] [0.3112; 0.3320]
GT 0.2387 0.1944 02727 0.2942
[0.2271; 0.2501] [0.1837; 0.2048] [0.2608; 0.2846] [0.2823; 0.3067]
T 0.2295 0.2106 0.2051 0.3548

(0.2216; 0.2372]

[0.2030; 0.2183]

(0.1974; 0.2126]

[0.3460; 0.3637]

Estimates (mean and accompanying 95% credibility interval) for the sixteen
sets of base frequencies at the ancestral root sequence under the context-
dependent model with context-dependent model frequencies. The

probabilities are grouped by the identity of the immediately preceding site.

Page 10 of 21

Each of the four preceding site combinations AC, CC,
GC, TC has a drastically different estimate for the prob-
ability of a G occurring at the succeeding site. This is in
accordance with Arndt et al. [2], who considered a more
approximate development based on dinucleotide fre-
quencies and odds ratios conditional on the left preced-
ing base (rather than the two left preceding bases). The
estimates indicate a dependence of the probability of
observing a G on the second left-most base. Indeed, the
probability of observing a G at a given site is respec-
tively 4.62% and 4.06% when AC and CC precede that
site, but only 2.91% and 2.90% respectively, when GC
and TC precede that site.

The decreased probabilities of observing a G at a
given site when a C precedes it, is caused by the hyper-
mutability of CpG in human and other species, which,
in turn, is due to the fact that cytosine is methylated
only in CpG dinucleotides (in vertebrates). Both cytosine
and 5-methylcytosine undergo high rates of spontaneous
hydrolytic deamination, but deamination of 5-methylcy-
tosine produces thymine, and mismatch repair of C —
T transitions is less efficient than that of C — U transi-
tions (for more information, see [31]). Further, when
CG precedes a given site, the probability of observing a
C at that site drops from 19.60% when assuming a sin-
gle set of independent model frequencies to 15.98%
when assuming context-dependent model frequencies.
These differences demonstrate the importance of relax-
ing the assumption of independent model frequencies.
Context-dependent model frequencies: parameter estimates
Based on the estimated 192 off-diagonal matrix entries
of our context-dependent model assuming context-
dependent model frequencies, we constructed Bayesian
p-values (see e.g. [30]) to test whether the parameters
were significantly different between an MCMC assuming
independence at the ancestral root (i.e., a zero-order
Markov chain) and a second-order Markov chain. For
matters of comparison, Figure 4 shows all the substitu-
tion rates of our context-dependent model using
context-dependent model frequencies, assuming a zero-
order Markov chain to describe the sequence composi-
tion of the ancestral root. It shows large variation in
substitution rates across different neighbouring base
combinations. Given the presence of the CpG-methyla-
tion-deamination process in mammals, we focus on the
substitution rates from C to T (r¢7) in the AXG, CXG,
GXG and TXG contexts as well as their compensating
substitution rates from G to A (rga) in the respective
CXT, CXG, CXC and CXA contexts. The mean substi-
tution rates rcr are 9.26, 7.01, 5.91 and 5.19 for the
AXG, CXG, GXG and TXG contexts, respectively, and
27.32, 31.62, 30.77 and 26.04 for the compensating sub-
stitution rates rgu in the CXT, CXG, CXC and CXA
contexts, respectively. While the compensating
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Figure 4 Ancestral repeats: Substitution parameters for context-dependent model frequencies and a zero-order Markov chain at the
root. Substitution parameter estimates (mean and 95% credibility intervals) for each of the twelve entries of the general time-reversible model
in each of the sixteen neighbouring base combination using context-dependent model frequencies and a zero-order Markov chain to specify
the ancestral root distribution. Note that the log-scale is used for the y-axis.
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substitution rates are clearly elevated, they can hardly be
called compensating (rather over-compensating).

When comparing these estimates to the estimates of
the matrix entries when assuming a second-order
Markov chain at the ancestral root sequence, 27 signifi-
cantly differing substitution rates are observed out of
the 192 tested at the 5% significance level. Specifically,
the following substitution rates were found to differ
most (in terms of their p-values): rg4 in contexts CXA,
CXC, CXG and CXT; rcr in contexts CXA, AXG, CXG,
GXG and TXG; ryr in contexts CXA, CXC, CXG and
CXT; ryg in contexts CXC and CXT; rc4 in context
CXG; rry4 in context CXG; rgr in context CXA; and
rac, Yec in contexts CXA, CXC, CXG and CXT and rcr
in context CXG. All these differences are observed in
those contexts related to the CpG-methylation-deamina-
tion process, as the increase in rcr and rga substitution
rates influences the remaining parameters of the evolu-
tionary model.

However, as can be seen from Figure 2, a second-
order Markov chain at the ancestral root sequence
along with context-dependent model frequencies offers
the largest increase in model fit when compared to the
independent general time-reversible model. We show
the substitution rates for the 192 off-diagonal elements
in our context-dependent model using context-depen-
dent model frequencies and a second-order Markov
chain at the ancestral root sequence in Figure 5. The
difference with employing a zero-order Markov chain at
the ancestral root is staggering, specifically in terms of
the substitution parameters that describe the CpG-effect.
The mean substitution rates rc7 are now 11.69, 11.22,
9.82 and 7.53 for the AXG, CXG, GXG and TXG con-
texts, respectively, versus 11.23, 8.84, 8.30 and 7.21 for
the compensating substitution rates rg4 in the CXT,
CXG, CXC and CXA contexts, respectively.

The context-dependent substitution rates rcz clearly
illustrate the hypermutability of CpG in mammals, as
the rc7 rates in the CpG-related contexts are about 10
times higher than those in other contexts. Further, they
are in accordance with the root distribution estimates
reported in the previous section. Indeed, the higher the
context-dependent rcr rate, the lower the corresponding
ancestral root distribution estimate as the mean substi-
tution rates rcr of 11.69, 11.22, 9.82 and 7.53 for the
AXG, CXG, GXG and TXG contexts correspond to the
following probabilities of observing a G at a given site of
4.62%, 4.06%, 2.91% and 2.90%, when preceded by AC,
CC, GC and TC respectively.

These results are clearly more indicative of the effect
of compensating mutations at the opposite side of a
stem region and are supported by the largest increase in
model fit. However, as discussed by Green et al. [32]
and Siepel and Haussler [13], three of the nine studied
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genes are located on the opposite strand from the other
six so our data contains a mixture of bases that corre-
spond to the transcribed and non-transcribed strands.
This supports our findings of compensating substitution
rates at opposing stem regions, although we find that
the rcr substitution rate is between 4.1% and 26.9%
higher than the compensating rg4 substitution rate
when a given site has a G as its 3’ neighbour.

Finally, in Table S3 (in Additional file 1), we report
the estimates for the context-dependent model frequen-
cies for our optimal model. Note that these probabilities
are conditional on the identities of the two immediate
flanking bases, while those at the ancestral root
sequence are dependent upon the two left flanking
bases. The table reveals two sets of frequency estimates
related to the CpG-methylation-deamination process:
TTa|clG TIc|cler TTG|clGr TTT|C|G and TIciGla Tc|g|o TIC|G|Gr
7c|G|r- The estimates of 7m4|c|¢ and 7¢|r are nearly
identical, which can be attributed to the fact that these
frequencies represent compositional aspects of opposing
sides of a stem region. This also holds for m7|c|g and
7c|cla but not for the other two pairs. The reason for
7cicle and 7|l as well as 71g|c|g and 7¢(gc to differ
is reflected in the estimated substitution rates in Figure
5. Indeed, for the CXG and GXG neighbouring base
combinations there is a discrepancy between the rcr
and rg, substitution rates corresponding to the differ-
ence in estimates for the context-dependent model
frequencies.

Third-order Markov chains

While Bayes Factor calculations did not support the
assumption of a third-order Markov chain at the ances-
tral root, this may be partly related to the inflation in
number of parameters in such models. To gather addi-
tional information on the usefulness of a third-order
Markov chain at the ancestral root sequence, we have
therefore applied a four-dimensional (i.e. clustering 4,
7, Mg, T together) principal component clustering for
the identity of the left-most base on which a given site
is assumed to depend in a third-order Markov chain.
We found that the most plausible combinations where
the identity of the left-most nucleotide has no additional
influence are: X-A-C, X-C-A, X-C-T, X-T-A and X-T-G
(see Additional file 4). In other words, reducing the
third-order Markov chain for these combinations to a
second-order Markov chain may improve model fit. We
provide additional information on this approach in
Additional file 1.

Coupled root distribution and context-dependent
evolutionary model: parameter estimates

Figure 6 (a) shows a comparison of the substitution pat-
terns obtained using our context-dependent model with
context-dependent model frequencies, with both a first-
order Markov chain and the first-order successive
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Figure 5 Ancestral repeats: Substitution parameters for context-dependent model frequencies and a second-order Markov chain at
the root. Substitution parameter estimates (mean and 95% credibility intervals) for each of the twelve entries of the general time-reversible

model in each of the sixteen neighbouring base combination using context-dependent model frequencies and a second-order Markov chain to
specify the ancestral root distribution. Note that the log-scale is used for the y-axis.
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approximation approach to model the ancestral root
sequence. There are many differences (but also many
similarities) between the two sets of parameter estimates
and here we focus on the magnitude of the CpG-effects
in both approaches (for a more thorough comparison,
we refer to Additional file 1). While Figure 6 (a) shows
a clear tendency for the four rg4 and rcr parameter esti-
mates involved in the CpG-effect to be higher using the
(first-order) Markov chain approach, Bayesian p-values

(see e.g. [30]) did not show significant differences at the
5% level. Table 4 shows the posterior estimates of the
root distribution probabilities using both a first-order
Markov chain and a first-order successive approximation
approach. Again, Bayesian p-values (see e.g. [30]) indi-
cate which estimates are significantly different at the 5%
level.

The underperformance of the coupled root distribu-
tion is quite unexpected as the substitution process
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Table 4 Ancestral repeats - Posterior differences in
first-order root distribution estimates

First-order Markov chain

X TTxja TTx\c Txic xr
A 03112 0.1699 0.2335 0.2854
[0.3059; 0.3165] [0.1657; 0.1744] [0.2286; 0.2383] [0.2801; 0.2908]
C 03583 0.2464 0.0345 0.3607
[0.3515; 0.3653] [0.2403; 0.2527] [0.0308; 0.0382] [0.3539; 0.3678]
G 0.2988 0.1938 0.2481 0.2593
[0.2926; 0.3054] [0.1883; 0.1991] [0.2423; 0.2541] [0.2533; 0.2656]
T 0.2341 0.1997 0.2361 0.3300
[0.2296; 0.2385]  [0.1954; 0.2041] [0.2314; 0.2409] [0.3250; 0.3350]
First-order successive approximation
TTxjA Tix|c Txic T
A 03176 0.1689 0.2241 0.28%4
[03117;0.3237] [0.1641; 0.1738] [0.2186; 0.2295] [0.2835; 0.2953]
(11.40%) (76.38%) (1.28%) (32.79%)
C 03632 0.2351 0.0262 0.3755
[0.3540; 0.3724] [0.2265; 0.2437] [0.0241; 0.0283] [0.3656; 0.3855]
(41.70%) (3.96%) (0.00%) (2.12%)
G 03130 0.1887 0.2307 02677
[0.3055; 0.3205] [0.1822; 0.1953] [0.2238; 0.2375] [0.2606; 0.2750]
(0.62%) (22.97%) (0.07%) (7.94%)
T 0.2399 0.1901 0.2333 0.3367
[0.2343; 0.2455] [0.1846; 0.1957] [0.2276; 0.2390] [0.3302; 0.3433]
(11.93%) (0.98%) (44.57%) (11.10%)

Estimates (mean and accompanying 95% credibility interval) for the four sets
of base frequencies at the ancestral root, for both first-order Markov chain
approach and the successive approximation first-order approach using our
context-dependent model with context-dependent model frequencies.
Bayesian p-values are reported within brackets with the successive
approximation estimates, shedding light on whether the root distribution
probabilities are significantly different from one another under both
approaches.

along the lineages of the tree should give rise to the root
distribution (which is always the case for independent
evolutionary models). Lineage-dependent substitution
processes, when unaccounted for, can disturb the
estimation of the coupled root distribution (but not of
the decoupled root distribution). To assess whether
the context-dependent substitution process is lineage-
dependent, we have divided our observed sequences in
three clades: a first clade, called the ‘human clade’, con-
sists of the sequences for human, chimpanzee, gorilla
and orang-utan; a second clade, called the ‘baboon
clade’, consists of the sequences for baboon, macaque
and vervet; and a third clade, called the ‘marmoset
clade’, consists of the sequences for marmoset, dusky titi
and squirrel monkey. We have performed one MCMC
run for each of these three datasets to estimate the con-
text-dependent substitution parameters. Figure 6 (b) to
6 (d) compares these 192 parameters between the three
clades using XY plots (if all the parameter means are
equal to one another for the two datasets, then the para-
meter estimates will lie on the diagonal). Large differ-
ences can be seen on all three figures, indicating that
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many context-dependent substitution rates are in fact
lineage-dependent, which may explain the underperfor-
mance of the coupled root distribution approach.
Continuous-time approximation: parameter estimates

We have performed 100,000 iterations (discarding the
first 20,000 iterations as burn-in) to estimate the para-
meters of our context-dependent evolutionary model
with a second-order Markov chain at the root, when the
branches are split so that the average substitution rate
per time unit is smaller than or equal to 0.005 [3]. We
compare all the estimates involved with those of the
same model without splitting the branches in Figure 7.
The evolutionary parameters show no differences and
only minor differences can be seen for the estimates of
the model frequencies. No significant differences could
be found for the root distribution estimates nor for the
branch length estimates. For more details, we refer to
Additional file 1.

Pseudogenes

Independent model frequencies: Bayes Factors

We have again compared the performance of the four
different Markov chains (zero-, first-, second- and third-
order) along the root sequence by calculating the appro-
priate (log) Bayes Factors. This time, the general time-
reversible model (GTR) was used as the reference
model. In Figure 8, we calculate the increase in model
fit brought about by relaxing the assumption of site-
independent evolution at the ancestral root sequence,
while assuming a context-dependent model with inde-
pendent model frequencies (the numerical values are
shown in Table S4 in Additional file 1). A first-order
Markov chain at the ancestral root sequence yields the
largest increase in model fit, outperforming a second-
order Markov chain at the ancestral root, which also
drastically increases model fit compared to the reference
model. All other assumptions in terms of the ancestral
root distribution yield negative log Bayes Factors com-
pared to the GTR model and are hence outperformed
by a site-independent evolutionary model. The assump-
tion of a third-order Markov chain at the root sequence
yields a drastic decrease in model fit compared to the
first- and second-order Markov chains, which may be
related to the increase in number of parameters.
Context-dependent model frequencies: Bayes Factors
Figure 9 shows (log) Bayes Factors for our context-
dependent model with context-dependent model fre-
quencies and Markov chains of different orders at the
ancestral root sequence (see also Table S5 in Additional
file 1). Even when assuming a site-independent distribu-
tion at the ancestral root sequence, a drastic increase in
model fit is realized through context-dependent model
frequencies. As when assuming independent model
frequencies, optimal fit is reached when assuming a
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first-order Markov chain at the ancestral root sequence.
Once again, the drastic decrease (both in absolute terms
and compared to the first- and second-order Markov
chains) of a third-order Markov chain is apparent.
Context-dependent model frequencies: root distribution and
parameter estimates

As a first-order Markov chain at the ancestral root
sequence, combined with context-dependent model

frequencies in the evolutionary model, yields the largest
increase in model fit, we here report the root distribu-
tion and parameter estimates for this model. The first-
order ancestral root distribution estimates can be seen
in Table 5, from which the decreased probability of
observing a G at a given site when its preceding site is a
G is immediately apparent due to the 5-methylcytosine
deamination process (i.e., the CpG effect). This is in
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Figure 8 Pseudogenes: Influence of root sequence
distributions on model fit (against independence throughout
the entire tree) using independent model frequencies. Various
orders of Markov chains for the ancestral root sequence are tested
against the assumption of site-independent evolution throughout
the entire tree, revealing that a second-order Markov chain yields
the largest increase in model fit vis-a-vis the independent GTR
model. The first model comparison (of which the order is indicated
by -) does not assume a separate Markov chain at the ancestral
root but uses the independent model frequencies to describe the
ancestral root sequence. Both annealing and melting schemes are
shown for each model comparison, as well as 95% confidence
intervals for both schemes.

accordance with the results for the ancestral repeats
dataset, although in that dataset a second-order Markov
chain was used. These differences once again demon-
strate the importance of relaxing the assumption of
independent model frequencies.

Figure 10 shows all the substitution rates of our con-
text-dependent model using context-dependent model
frequencies, assuming a first-order Markov chain to
describe the sequence composition of the ancestral root.
As for the ancestral repeats dataset, a large variation in
substitution rates across different neighbouring base
combinations can be observed. Given the presence of
the CpG-methylation-deamination process in mammals,
we once again focus on the substitution rates from C to
T (rc7) in the AXG, CXG, GXG and TXG contexts as
well as their compensating substitution rates from G to
A (rga) in the respective CXT, CXG, CXC and CXA
contexts. The mean substitution rates r-r are 8.22, 8.07,
1.18 and 6.25 for the AXG, CXG, GXG and TXG con-
texts, respectively, and 5.54, 7.77, 7.14 and 10.56 for the
compensating substitution rates rg4 in the CXT, CXG,
CXC and CXA contexts, respectively. Note that the con-
text-dependent model does not enforce compensatory

Pseudogenes - Context-dependent model frequencies
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Figure 9 Pseudogenes: Influence of root sequence
distributions on model fit (against independence throughout
the entire tree) using context-dependent model frequencies.
Various orders of Markov chains for the ancestral root sequence are
tested against the assumption of site-independent evolution
throughout the entire tree using the context-dependent model
with context-dependent model frequencies, revealing once again
that a second-order Markov chain yields the largest increase in
model fit vis-a-vis the independent GTR model. Both annealing and
melting schemes are shown for each model comparison as well as
95% confidence intervals for both schemes.

mutations to be equal to one another. Immediately
apparent is the decreased rc7 substitution rate in the
GXG context, which we can only attribute to a lack of
sites in this context, and the increased rg,4 substitution
rate in the CXA context. All context-dependent substi-
tution rates involved in the CpG-methylation-deamina-
tion process (except for the rg4 estimate in the CXA

Table 5 Pseudogenes - First-order root distribution
estimates

Root
X XA x| c W4 xr
A 0.3231 0.1659 0.2315 0.2795
[0.3025; 0.3444] [0.1492; 0.1833]  [0.2124; 0.2508]  [0.2589; 0.3005]
C 0.3440 0.2243 0.0361 0.3956
[0.3160; 0.3727]  [0.2003; 0.2497]  [0.0236; 0.0509] [0.3678; 0.4243]
G 0.3321 0.1730 0.2273 0.2676
[0.3060; 0.3591] [0.1526; 0.1949]  [0.2041; 0.2511]  [0.2430; 0.2925]
T 0.2486 0.1886 0.2547 0.3081

[0.2290; 0.2686] [0.1713; 0.2068]  [0.2350; 0.2748] [0.2869; 0.3291]

Estimates (mean and accompanying 95% credibility interval) for the sixteen
sets of base frequencies at the ancestral root sequence under the context-
dependent model with context-dependent model frequencies. The

probabilities are grouped by the identity of the immediately preceding site.
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Figure 10 Pseudogenes: Substitution parameters for context-dependent model frequencies and a first-order Markov chain at the root.
Substitution parameter estimates (mean and 95% credibility intervals) for each of the twelve entries of the general time-reversible model in each
of the sixteen neighbouring base combination using context-dependent model frequencies and a first-order Markov chain to specify the
ancestral root distribution. Note that the log-scale is used for the y-axis.
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context) are lower than those estimated for the optimal
model for the ancestral repeats dataset.

In Table S6 in Additional file 1, we report the esti-
mates for the context-dependent model frequencies for
our optimal model for the pseudogenes dataset. The
decreased rcr substitution rate in the GXG context
mentioned above is reflected in the first set of frequency
estimates related to the CpG-methylation-deamination
process: 74|c|G» Ic|c|e TTa|cle» TTic|G » Where it can be
seen that the g c|g estimate is much higher than the
estimates for 74|c|, cic|¢ and 77ic|6- The second set
of CpG-related frequency estimates however shows fairly
equal estimates for ¢, 7Tcjg|o TTci6|er TTciG|T-

Discussion

In this paper we have demonstrated the importance of
modelling non-independent root distributions at the
ancestral root sequence in a phylogenetic tree. This
completes the dependency scheme across the entire tree
so that the evolution at every nucleotide, ancestral or
observed, is allowed to depend on other nucleotides. We
have found that the use of a second-order Markov chain
at the ancestral root sequence results in the largest
increase in terms of model fit for a large dataset of pri-
mate ancestral repeat sequences. For a smaller dataset
of primate pseudogenes, we have found that a first-
order Markov chain at the ancestral root sequence
yields the largest increase in model fit. We have calcu-
lated the differences in model fit using computationally
demanding (see Additional file 1 for computation time
requirements), but accurate Bayes Factor calculations
and report drastic increases in model fit by modelling
context-dependence, especially compared to other evo-
lutionary assumptions such as among-site rate variation.
Indeed, as shown in previous work [18], the increase in
model fit brought about by assuming among-site rate
variation equals about 355 log units, which is drastically
lower than the more than 7.000 log units increase
reported here. Further, for the pseudogenes dataset, the
increase in model fit brought about by the optimal con-
text-dependent model and root distribution equals
about 150 log units, compared to an increase in model
fit for among-site rate variation with a bidirectional
mean log Bayes Factor of 5.4 units (annealing: [5.5; 5.7];
melting: [5.0; 5.2]), corresponding to the findings of
Yang [14]. As far as we know and given the known pre-
sence of CpG-effects in our dataset, context-dependent
models seem to be the best choice for increasing the
evolutionary model’s realism.

Our approach is probably best compared to that of
Hwang and Green [3], although we have not employed
branch-specific context-dependent models due to the fact
that our dataset consisted only of primate sequences. We
have shown, using careful and computationally intensive
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model selection, that the choice of the ancestral root dis-
tribution heavily influences the substitution rates for the
CpG-methylation-deamination process and that first- and
second-order Markov chains at the root sequence, inde-
pendent of the context-dependent evolutionary model,
are better fit to describe the data than a first-order
approximation coupled to the context-dependent evolu-
tionary model. Hwang and Green [3] do not employ a
model selection approach in their study on a branch-
specific context-dependent model.

Even though Hwang and Green [3] use more data
(longer sequences and more species), statistical support
for their modelling choices in terms of observed
increase in model fit, which we have shown here to be a
crucial aspect of examining complex evolutionary mod-
els, should be used to further strengthen their findings
[23]. Given the complexity of branch-specific context-
dependent models, model comparison is however ser-
iously hampered by the immense computational
demands. Our estimates of the substitution rates for the
CpG-effect seem to be lower than those reported by
Hwang and Green [3], although the authors do not
report the mean estimates so only a visual comparison
is possible. The rc7 and rrc substitution rates are gener-
ally more elevated in the work of Hwang and Green [3],
but this could be specific to the untranscribed regions
the authors have investigated.

We have also shown that the discrete approximation to
the continuous-time Markov substitution process, as
used by Hwang and Green [3], yields a significant
increase in model fit in terms of the log Bayes Factors
calculated. As the evolutionary model parameters were
unaffected by partitioning the branches where appropri-
ate, the branch partitioning approach itself is responsible
for more accurately modelling the ancestral states
throughout the underlying phylogenetic tree. As men-
tioned in the Methods section, we have split each branch
into two or more parts of equal length such that the aver-
age substitution rate per time unit is smaller than or
equal to 0.005 [3]. However, by no means does this
approach guarantee that the optimal number of branch
partitions are used and that the corresponding increase
in model fit over an independent evolutionary model is
maximized. Further research on such discrete approxi-
mations is reported in the work of de Koning et al. [29].

The design and study of context-dependent evolution-
ary models is also of interest when studying coding
sequence evolution, as shown by recent publications on
mutation-selection models (see e.g. [33-35]). Indeed,
while current mutation-selection models use the gen-
eral-time reversible model (GTR) for modelling muta-
tion bias (see e.g. [34,35]), the context-dependent model
presented in this manuscript may be better suited to
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model mutation bias at either one of the three codon
positions.

Conclusions
Designing accurate context-dependent models is a com-
plex process, with many different assumptions that
require testing using an accurate procedure for model
testing, which are computationally very demanding. Not
only the context-dependent evolutionary model itself
requires estimation and evaluation, we have also shown
that the choice of an adequate ancestral root distribu-
tion is essential to accurately estimate the model’s para-
meters. Moreover, we have also shown that the choice
of an ancestral root distribution, changes across differ-
ent datasets. In other words, there is no single context-
dependent model or ancestral root distribution that can
be argued to work well for a given dataset, without hav-
ing to actually perform a series of model comparisons.
We have shown in this paper that context-dependent
models are very useful when analyzing primate
sequences, due to the presence of the CpG-methylation-
deamination process. Since this is a process known to
occur in mammalian evolution, context-dependent evo-
lutionary models should also prove useful in the analysis
of non-primate mammalian datasets. Even though the
context-dependent models presented in this paper
greatly increase model fit over independent models in
the two datasets studied, additional work on context-
dependent evolutionary models is required. For example,
we have shown that an ancestral root distribution
coupled to the context-dependent model does not
improve model fit as much as a decoupled ancestral
root distribution does. While we have provided a possi-
ble explanation for this result, additional work is
required to clarify this issue.

Software availability

Additional file 5 contains the necessary software rou-
tines, evolutionary models, ancestral root distributions
and several example input files for the software to
reproduce the various results presented in this paper.
More information on how to use the software can be
found in Additional file 1.

Additional material

Additional file 1: File containing supplementary material and
information that was not included in the main document.
Additional file 2: File containing supplementary figure S1.
Encapsulated PostScript figure.

Additional file 3: File containing supplementary figure S2.
Encapsulated PostScript figure.

Additional file 4: File containing supplementary figure S3.
Encapsulated PostScript figure.
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Additional file 5: File containing software classes, alignments used
and example input files.
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