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Abstract

Background: A phylogenetic network is a generalization of phylogenetic trees that allows the representation of
conflicting signals or alternative evolutionary histories in a single diagram. There are several methods for
constructing these networks. Some of these methods are based on distances among taxa. In practice, the methods
which are based on distance perform faster in comparison with other methods. The Neighbor-Net (N-Net) is a
distance-based method. The N-Net produces a circular ordering from a distance matrix, then constructs a collection
of weighted splits using circular ordering. The SplitsTree which is a program using these weighted splits makes a
phylogenetic network. In general, finding an optimal circular ordering is an NP-hard problem. The N-Net is a
heuristic algorithm to find the optimal circular ordering which is based on neighbor-joining algorithm.

Results: In this paper, we present a heuristic algorithm to find an optimal circular ordering based on the Monte-
Carlo method, called MC-Net algorithm. In order to show that MC-Net performs better than N-Net, we apply both
algorithms on different data sets. Then we draw phylogenetic networks corresponding to outputs of these
algorithms using SplitsTree and compare the results.

Conclusions: We find that the circular ordering produced by the MC-Net is closer to optimal circular ordering than
the N-Net. Furthermore, the networks corresponding to outputs of MC-Net made by SplitsTree are simpler than N-
Net.

Background
Phylogenetics is concerned with the construction and
analysis of phylogenetic trees or networks to understand
the evolution of species, populations, and individuals.
Evolutionary processes such as hybridization between
species, lateral transfer of genes, recombination within a
population, and convergent evolution can all lead to
evolutionary histories that are distinctly non-treelike.
Moreover, even when the underlying evolution is tree-
like, the presence of conflicting or ambiguous signals
can make a single tree representation inappropriate. In
these situations, phylogenetic network methods can be
particularly useful.
Phylogenetic network is a generalization of phyloge-

netic trees that can represent several trees simulta-
neously. For any network construction method, the

conflicting signals should be represented in the network
but it is vital that the network does not depict more
conflict than is found in the data. At the same time,
when the data fits well to a tree, the method should
return a network that is close to a tree. Recently, in
addition to biology, the phylogenetic networks methods
are widely used for classifying different types of data
such as those finding in linguistics, music, etc. There
are many different methods to construct phylogenetic
trees or networks which are based on distance matrix
such as ME (minimum evolution) [1], LS (least squares)
[2,3], NJ (neighbor-joining) [4], AddTree [5], N-Net
(neighbor-net) [6] and Q-Net [7]. All these methods are
called distance-based methods.
ME is one of the most well-known methods. It was

first introduced by Kidd and Sgamarella-Zonta [1].
Given a distance matrix, the ME principle consists of
selecting the tree whose length (sum of its branch
lengths) is minimal among all tree topologies for taxa.
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Comparative studies of tree-building methods show that
ME generally is an accurate criterion for selecting a true
tree. Nei and Rzhetsky have shown that ME principle is
statistically consistent when branch lengths are assigned
by ordinary least-squares (OLS) fitting [8]. In the OLS
framework, we simply minimize
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where δij is an estimation of input dij and X is the set
of taxa. In fact, the main goal is to find a tree whose
induced metric is closer to dij. The LS was first intro-
duced in [2] and [3].
Nearly 20 years have passed by since the landmark

paper in Molecular Biology and Evolution introducing
NJ [4]. The method has become the most widely used
method for building phylogenetic trees from distances.
Steel and Gascuel showed that NJ is a greedy algorithm
for ME principle [9]. The N-Net is a hybrid of NJ and
split decomposition [10]. It is applicable to data sets
containing hundreds of taxa. The N-Net is an algorithm
for constructing phylogenetic networks.
Split decomposition, implemented in SplitsTree [11],

decomposes the distance matrix into simple components
based on weighted splits. These splits are then repre-
sented using a special type of phylogenetic network
called split network. The N-Net works in a similar way:
it first produces a circular ordering from distance matrix
and then constructs a collection of weighted splits. Dan
Levy and Lior Patcher showed that the N-Net is a
greedy algorithm for the traveling salesman problem
that minimizes the balanced length of the split system
at every step and it is optimal for circular distance
matrices [12]. Balanced minimum evolution (BME) is
designed under the ME principle [13]. The BME is a
special version of the ME principle where tree length is
estimated by the weighted least squares [13].
In this work, we introduce MC-Net algorithm (Monte-

Carlo Network algorithm) which works in a similar way:
First, it finds a circular ordering for taxa, based on
Monte-Carlo with simulated annealing, it then extracts
splits from the circular ordering and uses non-negative
least squares for weighting splits. We compare the results
of the N-Net and the MC-Net for several data sets.

Preliminaries
A split of a given set X of taxa is a bipartition of the set
X into two non-empty subsets of X. A split is called tri-
vial if one of the two subsets contains only one taxon.
Let T be a non-empty tree. Let the leaves of the T are
labeled by the set of taxa, X ={x1,...,xn}. Every edge e of
T defines a split S = A|B, where A and B are two sets of
taxa contained in the two components of T - e. For

example, Figure 1 shows an eight-leaf tree. Removing
the edge e from the tree produces two sets of leaves

A t t t and B t t t t t= ={ , , } { , , , , }.3 4 5 1 2 6 7 8    

In an edge-weighted tree, the weight of each edge is
assigned to its corresponding split. The Phyletic distance
between any two taxa x and y in an edge-weighted tree
is the sum of the weights of the edges along the path
from x to y. Hence, the phyletic distance between x and
y equals the sum of split weights for all those splits in
which x and y belong to separate components.
Two different splits S1 = A1|B1, and S2 = A2|B2, are

compatible, if one of the following conditions holds:

A A A B B A or B B1 2 1 2 1 2 1 2⊆ ⊆ ⊆ ⊆, , .    

A collection of splits is called compatible, if all possi-
ble pairing of splits are compatible. A compatible collec-
tion of splits is represented by a phylogenetic tree
[14,15]. Dress and Huson introduced SplitsTree to dis-
play more complex evolutionary patterns [16]. For a set
of incompatible splits, SplitsTree outputs the split net-
work using bands of parallel edges.
Circular collection of splits is a mathematical generali-

zation of compatible collections of splits. Formally, a
collection of splits of X is circular if there exists an
ordering x1,...,xn of X such that every split is of the form
{xi, xi+1,...,xj}|X - {xi,...,xj} for some i and j, 1 ≤ i ≤ j ≤ n.
A Compatible collection of splits are always circular
[10]. On the other hand, the class of circular collection
of splits contains the class of the collection of splits cor-
responding to a tree. Andreas Dress and Daniel Huson
proved that circular collections of splits always have a
planar splits graph representation [16]. A distance
matrix is circular (also called Kalmanson) if it is the
phyletic distances for a circular collection of splits with
positive weights. Because compatible splits are circular,
treelike distances are circular too [6].
As mentioned above, the ME principle consists of

selecting a tree whose length is minimal. In fact, the ME

Figure 1 The split S = A|B is obtained by removing the edge e
of T.
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principle is equivalent to finding a circular ordering
s = {xs(1),...,xs(n)} in order to find the minimum of the
function h
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Where Σ is the set of all circular orderings of taxa
x1,...,xn. We call function h the energy function, and any
circular ordering that minimizes h is called the optimal
circular ordering.

Methods
There are a number of different methods for con-
structing various kinds of phylogenetic networks. A
phylogenetic network can be constructed from a col-
lection of weighted splits. N-Net uses circular ordering
to construct a collection of weighted splits. Since find-
ing an optimal circular ordering is an NP-hard pro-
blem, so we introduce a heuristic algorithm based on
the Monte-Carlo method to find optimal circular
ordering. The MC-Net seeks to find an optimal circu-
lar ordering from the distance matrix and then
extracts a collection of weighted splits based on that
ordering.

Algorithms
In this section, a new algorithm called the MC-Net, is
presented to construct a set of weighted splits for taxa
set X = {x1,...,xn}with a given distance matrix. The MC-
Net consists of two steps. In the first step, we find a cir-
cular ordering. In the second step, the splits which are
obtained from the circular ordering are weighted. The
core of the first step contains two procedures, namely,
INITIAL and the Monte-Carlo. The INITIAL is a greedy
algorithm to obtain a circular ordering, namely, the
initial circular ordering. The INITIAL works in the fol-
lowing way:
Suppose xs(1),...,xs(k) are ordered and let x be an

element of S = X - {xs(1),...,xs(k)} such that

d x r d x r x S r x x k, min{ | , { , }}., ( ) ( )( ) = ( ) ∈ ∈  1

If r = xs(1), we consider the new ordering
x x x k, ( ), , ( ) 1  . Otherwise the ordering x x xk ( ), , ( ),1 
is considered. This process stops when all taxa are
ordered.
The second procedure, or the Monte-Carlo procedure,

relies on random iteration to find the optimal circular
ordering. The Monte-Carlo algorithm starts its move-
ment from the initial circular ordering, s0 For each cir-
cular ordering s, we define the neighborhood of s, N
(s), by:
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where Σ is the set of all circular orderings.
We choose s1 Î N (s0) randomly. if h (s1) ≤ h (s0),

then the system moves into ordering s1. However we
allow non-greedy movements for the system in order to
avoid having the system trapped in local minima. In
other words, if h (s1) >h (s0), then the system moves
into ordering s1 with a small probability
e T

− +   ( ) ( )1 0 , where T is a constant temperature. For
each temperature, these movements are carried out t
times. To compute the minimum energy we allow this
process to continue until the temperature drops to zero
(see the appendix for more details). Pseudo code of the
Monte-Carlo algorithm is shown in Table 1. It is not-
ticeable that the second procedure can start from any
circular ordering other than the one obtained by the
INITIAL procedure.
In the final step, we use the least squares algorithm to

weight the splits of obtained circular ordering. Let A be
the matrix with rows indexed by pairs of taxa and col-
umns indexed by splits. Then for each pair of texa i and
j and for each split k, Aij,k is defined by:

A
i j k

ij k,
;

=
⎧
⎨

1

0

if  and  are on opposite of split 

otherwise.⎩⎩

The matrix A = [Aij,k] is full rank [17].
Let d = (d12, d13,...,d(n-1)n) be an n(n - 1)/2 dimen-

sional vector corresponding to rows of A where dij is
obtained by distance matrix. Let b be the weight vector
of splits, then the phyletic distance vector is p = Ab.

Table 1 Pseudo code of the Monte-Carlo algorithm with
simulated annealing

Input: T initial temperature

s0 initial ordering
Tlow low temperature

t constant number

s =s0

While T > Tlow
Repeat t time

choose random  ∈ ( )N
If    ( ) ≤ ( )

 = 
Else

x = random(0, 1)

If x e T< − +  ( ) ( )

 = 
T = T * 0.9

Return s and h(s)
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Now, the ordinary least squares(OLS) is used to esti-
mate b by the following standard formula

b A A A d= ′ ′−( ) .1 (2)

If we discard splits with negative weights and leave the
remaining splits unchanged, the weight of the remaining
splits are often grossly overestimated. Similar to the N-
Net algorithm, we compute the optimal least square
estimates with a non-negative constraint. In this paper,
we use the FNNLS algorithm [18].

Results and Discussion
In this section, we compare the results of the MC-Net
and the N-Net on some data sets. We use SplitsTree4
program [19] for drawing phylogenetic networks. Due to
the limitation of space, we insert only six figures in this
article.

Data sets
One of the data sets, a collection of 110 Salmonella
MLST Data, was obtained from authors of the N-Net.
The other data sets presented as the examples in

SplitsTree4 program (version 4.10): Its(46 taxa), Jsa (46
taxa), Mammals (30 taxa), Primates (12 taxa), Rubber
(23 taxa), Dolphins (36 taxa) and Myosin (143 taxa).

Optimal threshold for cooling coefficient and Tlow
There are two parameters, Tlow and cooling coefficient,
in the Monte-Carlo procedure. We first adjust Tlow

between 105 and 0.2 to obtain the best cooling coeffi-
cient. The value of energy function and running time of
algorithm for each Tlow for JSA data are given in Figure
2 (for the other data sets, the figures are the same as
JSA). According to Figure 2, when cooling coefficient is
0.95, running time of the algorithm compared to other
coefficients increases considerably. On the other hand,
the value of energy function for 0.95 or 0.9 as a cooling
coefficient is significantly better than the other cooling
coefficients. Hence, we conclude that the best value of
energy function with respect to running time of the
algorithm is achieved when cooling coefficient is 0.9 and
Tlow < 10-3.

Results
The initial test for performance of our method is done
by calculating the value of energy function for circular
orderings obtained by the MC-Net and the N-Net
(Table 2). The first two rows of Table 2 show that in all

Figure 2 The value of energy function (b) and running time of algorithm (a) for each Tlow for JSA data.

Table 2 Values of energy function: the values of energy
function for circular orderings obtained by the N-Net, the
MC-Net and the MC-Net with initial ordering of the N-Net

Data set Its Jsa Mammals Primates

N-Net 0.4096 0.2808 4.4275 2.1465

MC-Net 0.4079 0.2728 4.4172 2.1410

start N-Net 0.3979 0.2767 4.4202 2.1410

Data set Rubber Dolphins Salmonella Myosin

N-Net 0.7723 2.2 0.2546 43.8199

MC-Net 0.7596 2.1667 0.2575 43.8019

start N-Net 0.7547 2.2 0.2515 43.6935

Table 4 The value of norm for all data sets

Data set Its Jsa Mammals Primates

N-Net 0.0444 0.0329 0.0717 0.0385

MC-Net 0.0358 0.0292 0.0648 0.0358

Data set Rubber Dolphins Salmonella Myosin

N-Net 0.0362 0.1068 0.0487 0.0291

MC-Net 0.0316 0.1019 0.0405 0.0207
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data sets except Salmonella, the value of energy function
for the MC-Net is less than those obtained from the N-
Net. The interesting feature of the MC-Net algorithm is
in finding different circular orderings by changing initial
ordering. So, the MC-Net algorithm could take the cir-
cular ordering obtained by the N-Net as initial ordering.
The third row of Table 2 shows the values of energy
function for circular orderings achieved by the MC-Net
with the circular ordering obtained by the N-Net as an
initial ordering. For four data sets, Its, Rubber, Salmo-
nella, Myosin, the third row indicates better results than
the first row. But for the other data sets, the conclusions
mentioned above are the vice versa.
Another test for the performance of our method is com-

paring the number of splits obtained by both the algo-
rithms. In Table 3, the number of splits of circular
orderings obtained by the MC-Net and the N-Net on dif-
ferent data sets are shown. In all data sets the number of
splits obtained by the MC-Net is less than the N-Net
except Primates. In this case, these two numbers are equal.
Let d be the input distance vector and P and P’ are

the phyletic distance vector of weighted splits obtained
by the MC-Net and the N-Net, respectively. In Table 4,
the value of norm of P - d and P’ - d for each data set

are shown. The norm of P - d is less than P’ - d in all
data sets even in Primates. It means that the results of
the MC-Net algorithm give better approximation for
input distance vector.
To illustrate difference between two algorithms, we

present some examples of networks obtained by both
the MC-Net and the N-Net using SplitsTree4 (Figures
3,4,5,6, 7 and 8). It is obvious that both algorithms
give the same classification of taxa and exhibit the
same major splits. For example, in Figures 5 and 6,
we highlight some edges such that by removing the
same-colored edges, the same clustering of taxa is
obtained. But according to what we see in Tables 3
and 4, split networks obtained by the MC-Net are less
complicated than split networks obtained by the N-
Net. It means that the networks obtained by the MC-
Net have less noise than the networks obtained by the
N-Net. According to Corollary 1 (see Appendix),
when t approaches to 1, the MC-Net finds optimal
circular ordering with the probability 1. We examined
our algorithm on several treelike distance matrices
and it returned corresponding trees quickly. The MC-
Net has been implemented in Matlab and is available
for download at http://bioinf.cs.ipm.ac.ir/softwares/
mc.net.

Conclusions
In this work, we propose an algorithm, MC-Net, which
is a distance based method for constructing phylogenetic
networks. The MC-Net scales well and can quickly pro-
duce detailed and informative networks for large num-
ber of taxa. We compare the performance of the

Table 3 The number of splits obtained by the MC-Net
and the N-Net for all data sets

Data set Its Jsa Mammals Primates

N-Net 110 83 103 34

MC-Net 105 78 99 34

Data set Rubber Dolphins Salmonella Myosin

N-Net 55 67 107 520

MC-Net 53 62 90 507

Figure 3 The N-Net network for the Rubber data set.

Figure 4 The MC-Net network for the Rubber data set.
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MC-Net with the N-Net on eight different data sets. We
have shown (Tables 2, 3 and 4) that the MC-Net per-
forms better than the N-Net for almost test cases and
the networks obtained by the MC-Net are simpler than
the N-Net with the same major splits. The N-Net is a
part of SplitsTree program. So, the results of the MC-
Net could be used in SplitsTree program too.

Appendix
Let S = {E1,...,Es} be a finite set of states, and consider a
physical process having these discrete states at time t. A

Markov chain is a stochastic model of this system, such
that the state of system at time t + 1 depends only on
the state of system at time t.
Consider X0, X1,..., be a collection of Markov random

variables, such that Xn is the state of the system at time
n. Let pij be the probability that the system enters into
the state Ej from the state Ei, where i, j Î {1,...,s} The
matrix P = (pij)1≤i, j≤s is called transition matrix. A prob-
ability distribution q = (q1,...,qs) such that qi is the prob-
ability that system starts its movement from the state Ei ,
is called initial probability distribution. A Markov chain
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Figure 5 The N-Net network for the Mammal data set.
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is a stochastic model X0, X1,..., such that Xt is the state of
the system at time t. For each i and j in {1,2,...,s};

prob X E q

prob X E X E p

i i

t j t i ij

0

1

=( ) =

= =( ) =+

,

| .  

The Markov chain is irreducible, if for all i, j Î {1,...,s}
there exists n > 0 such that pij

n( ) > 0 , where

∀ = = =+     p prob X E X Eij
n

n j i
( ) ( | ).

In other words, the Markov chain is irreducible, if
there exist n such that the probability that the system
enters into the state Ej from the state Ei after n times is
positive. The irreducible Markov chain is called aperio-
dic, if for some n ≥ 0 and some state Ej,

prob X E X E

prob X E X E

n j j

n j j

= =( ) >

= =( ) >+

|

&

| .

0

1 0

0

0

Figure 6 The MC-Net network for the Mammal data set.

Eslahchi et al. BMC Evolutionary Biology 2010, 10:254
http://www.biomedcentral.com/1471-2148/10/254

Page 7 of 10



Theorem 1(Convergence to stationary Markov chain, [20])
If the Markov chain is irreducible and aperiodic then

lim      
t

t j jprob X E j s
→∞

=( ) = = , ,1

such that π = (π1,...,πs) is a unique probability distri-

bution and  j i ij
i

s
p=

=
∑ .

1
.

The probability distribution is π is called stationary
probability of the Markov chain.
It means that if P is the transition matrix and P(t) is

the tth power of P, when t ® ∞ the jth column of transi-
tion matrix is approximately equal to πj. In the Monte-
Carlo algorithm, a special kind of Markov chain is used.

Let Σ be the finite set of states and q = …⎛
⎝⎜

⎞
⎠⎟

1 1
Σ Σ

, , is

Figure 7 The N-Net network for the Salmonella data set. Group A includes the isolates Sty54, Sty54*, Sty2, She9, Sty87, Snp40*, Sty13,
Snp41*, Sen5, Sha160, Sha141, Sty20*, Sha58, Sse18, Sha71, Sty31. Group B includes the isolates Sty61, Sha148, Smb-17, Sag75, Sha124. Group C
includes the isolates UND3, Sha150, Sha173, Sen23*, Sha153, Sha140, San96, Sen30*, Sen24*, Sha138, Sha176, Sha130, Sha164, Sha157, Sen29*,
Sca93, Sha122, Sht20, Sha186. Group D includes the isolates She3, Sha50, Sse95, Sha56, Sen24, Sen34, Sha177, Sty13*, Swo44, Sty86, Ste41, Sha77,
UND80. Group E includes the isolates Ssc40, Sse28, Sty89, Sty15*, Ske69, UND110, Sha49, Sen4, Sha48, Sha165, Sty92, Snp33*, Sty52, UND109,
Sha131, Sha102, Sty6, Sha175.
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the initial probability distribution. For each state i the
neighborhood of i, N(i), is defined as the set of all the
states that are reachable from i by one movement. In
this system the set of neighborhoods have to satisfy the
following properties:

1. i, ∉ N(i).
2. i Î N(j) ⇔ j Î N(i)
3. if i ≠ j, then there exit i1,i2,...,i1 Î Σ such that

i N i i N i i N jl∈ ( ) ∈ ( ) ∈ ( )1 1 2, , ,  .

The matrix P pT
ij
T

i j
= ( )

∈, Σ
is defined as the transi-

tion matrix by

p

N i
j N i and j i

e j i T

N i
j

ij
T =

∈ ≤

− −
∈

1
( )

( ) ( ) ( ),

( ( ) ( ))/

( )

if   

if 

 

 
NN i and j i

pik
T

k k i
i j

( ) ( ) ( ),

,
,

  

if 

otherwise,

 >

−
∈ ≠

∑ =

⎧

⎨

⎪
⎪
⎪
⎪

1

0
Σ

⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

Figure 8 The MC-Net network for the Salmonella data set. Group A includes the isolates Sty54, Sty54*, Sty2, She9, Sty87, Snp40*, Sty13,
Snp41*, Sen5, Sha160, Sha141, Sty20*, Sha58, Sse18, Sha71, Sty31. Group B includes the isolates Sty61, Sha148, Smb-17, Sag75, Sha124. Group C
includes the isolates UND3, Sha150, Sha173, Sen23*, Sha153, Sha140, San96, Sen30*, Sen24*, Sha138, Sha176, Sha130, Sha164, Sha157, Sen29*,
Sca93, Sha122, Sht20, Sha186. Group D includes the isolates She3, Sha50, Sse95, Sha56, Sen24, Sen34, Sha177, Sty13*, Swo44, Sty86, Ste41, Sha77,
UND80. Group E includes the isolates Ssc40, Sse28, Sty89, Sty15*, Ske69, UND110, Sha49, Sen4, Sha48, Sha165, Sty92, Snp33*, Sty52, UND109,
Sha131, Sha102, Sty6, Sha175.
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where T is a positive constant number (constant tem-
perature). The third property of the neighborhood
shows that this Markov chain is irreducible. Also, if

Pii
T > 0 and PT contains non-negative entries then

( )( )P T
ii
t > 0 for all t ≥ 0. So, it is a finite, aperiodic and

irreducible Markov chain. The theorem 1 shows that for
each constant temperature T and i Î Σ, there exists a

stationary probability distribution  i
T such that:

lim ( ) ,
t

t i
Tprob X i

→∞
= = 

Where 


i
T e

i
T

e
j

T
j

=
−

−
∈∑
∑

( )

( ) (see page 45 in [20]).

Proposition 1. Let ( ) i
T

i∈Σ be a probability distribu-
tion such that:





i
T e

i
T

e
j

T
j

=
−

−

∈
∑

( )

( )

Σ

and suppose that m0 = min{h(i) | i Î Σ} and, h0 = {i Î

Σ | h(i) = m0} then for each i
T

i
T

i∈ =
→ +

Σ, lim
0

0  , where

 


i

i
0 0

1

0
0

=
∈⎧

⎨
⎪

⎩
⎪

if 

otherwise

;

.

Proof: The proof is presented in [20] (claim 2.8 and
claim 2.9).
Corollary 1. Let Σ be the finite set of states, then for

each i Î Σ we have

lim lim ( ) .
T t

t iprob X i
→ →∞+

= =
0

0

The corollary 1 illustrates that by cooling temperature
(T ® 0+), system enters into one of the states of h0

with the probability 1 after t (t ® ∞) time. In this arti-
cle, we define the set of all circular orderings of taxa as
the finite set of states. Our definition of neighborhood
in the MC-Net satisfies in three properties of neighbor-
hood and every elements of h0 is an optimal circular
ordering. Therefore, the MC-Net yields a circular order-
ing with approximately minimal energy function.
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