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Abstract

Background: tRNase Z is the endonuclease that is responsible for the 3’-end processing of tRNA precursors, a
process essential for tRNA 3’-CCA addition and subsequent tRNA aminoacylation. Based on their sizes, tRNase Zs
can be divided into the long (tRNase ZL) and short (tRNase ZS) forms. tRNase ZL is thought to have arisen from a
tandem gene duplication of tRNase ZS with further sequence divergence. The species distribution of tRNase Z is
complex. Fungi represent an evolutionarily diverse group of eukaryotes. The recent proliferation of fungal genome
sequences provides an opportunity to explore the structural and functional diversity of eukaryotic tRNase Zs.

Results: We report a survey and analysis of candidate tRNase Zs in 84 completed fungal genomes, spanning a
broad diversity of fungi. We find that tRNase ZL is present in all fungi we have examined, whereas tRNase ZS exists
only in the fungal phyla Basidiomycota, Chytridiomycota and Zygomycota. Furthermore, we find that unlike the
Pezizomycotina and Saccharomycotina, which contain a single tRNase ZL, Schizosaccharomyces fission yeasts
(Taphrinomycotina) contain two tRNase ZLs encoded by two different tRNase ZL genes. These two tRNase ZLs are
most likely localized to the nucleus and mitochondria, respectively, suggesting partitioning of tRNase Z function
between two different tRNase ZLs in fission yeasts. The fungal tRNase Z phylogeny suggests that tRNase ZSs are
ancestral to tRNase ZLs. Additionally, the evolutionary relationship of fungal tRNase ZLs is generally consistent with
known phylogenetic relationships among the fungal species and supports tRNase ZL gene duplication in certain
fungal taxa, including Schizosaccharomyces fission yeasts. Analysis of tRNase Z protein sequences reveals putative
atypical substrate binding domains in most fungal tRNase ZSs and in a subset of fungal tRNase ZLs. Finally, we
demonstrate the presence of pseudo-substrate recognition and catalytic motifs at the N-terminal halves of tRNase
ZLs.

Conclusions: This study describes the first comprehensive identification and sequence analysis of candidate fungal
tRNase Zs. Our results support the proposal that tRNase ZL has evolved as a result of duplication and diversification
of the tRNase ZS gene.

Background
The endonuclease tRNase Z (also called RNase Z or 3’-
tRNase) participates in maturation of tRNA 3’-end by
removing the 3’-trailer sequence from tRNA precursors
(pre-tRNAs, for reviews, see [1-4]). It belongs to the
metallo-b-lactamase (MBL) superfamily, the members of

which have diverse functions from hydrolysis and inacti-
vation of b-lactam antibiotics to processing of RNA pre-
cursors [5-9]. Other nucleases in the MBL superfamily
that act on nuclei acids include members of the b-CASP
(MBL-associated CISF Artemis SNM1/PSO2) family: the
cleavage and polyadenylation specificity factor 73 kDa
subunit (CPSF-73) [10] and the Integrator complex sub-
unit 11 (Int11) [11], which are involved in eukaryotic
mRNA and small nuclear RNA (snRNA) 3’-end forma-
tion, respectively; RNase J, which functions in rRNA

* Correspondence: yhuang@njnu.edu.cn
Nanjing Engineering and Technology Research Center for Microbiology,
Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life
Sciences, Nanjing Normal University, Nanjing 210046, China

Zhao et al. BMC Evolutionary Biology 2010, 10:272
http://www.biomedcentral.com/1471-2148/10/272

© 2010 Zhao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:yhuang@njnu.edu.cn
http://creativecommons.org/licenses/by/2.0


maturation and mRNA stability in bacteria [12] and the
eukaryotic Pso2/Snm1/Artemis proteins, which play a
role in DNA repair [7]. Although displaying distinct
substrate specificity defined by their specific domains,
these proteins appear to have a similar catalytic
mechanism since their active sites are composed of
highly conserved motifs including the histidine motif
(HxHxDH, where x is any hydrophobic residues).
There are two forms of tRNase Z. The long form

(tRNase ZL) with 800-900 aa (amino acids) is about
twice the size of the short form (tRNase ZS) with 300-
400 aa [9]. Sequence analysis suggests that tRNase ZL

has evolved by gene duplication from tRNase ZS fol-
lowed by sequence divergence [9]. The species distribu-
tion of tRNase Z is not homogenous. tRNase ZS exists
in all three domains of life (i.e. Bacteria, Archaea, and
Eukarya) whereas tRNase ZL has been found only in
eukaryotes so far. The number of tRNase Zs varies
among different organisms. The largest number of
tRNase Zs was detected in the plant Arabidopsis thali-
ana (two tRNase ZSs and two tRNase ZLs) [13]. The fis-
sion yeast Schizosaccharomyces pombe contains two
tRNase ZLs. Unexpectedly, the human genome encodes
one tRNase ZS and one tRNase ZL. Human tRNase ZL

gene (also termed ELAC2) was originally identified as
the first prostate cancer susceptibility gene by positional
cloning [9]. However, the mechanism by which specific
mutations in human tRNase ZL lead to an increased risk
of prostate cancer remains unknown. In contrast, the
budding yeast Saccharomyces cerevisiae, the fruit fly
Drosophila melanogaster and the nematode worm Cae-
norhabditis elegans have just one tRNase ZL.
An intriguing question is why species have evolved to

have more than one tRNase Z. One explanation is that
additional tRNase Zs are targeted to organelles such as
mitochondria and chloroplasts in which organelle-
encoded pre-tRNAs must also be processed. Indeed, one
of two S. pombe tRNase ZLs is targeted to the mito-
chondria, and has been suggested to play a role in mito-
chondrial-encoded pre-tRNA processing [14]. In A.
thaliana, three of four tRNase ZLs are targeted to orga-
nelles [13]. However, it appears that the majority of
tRNase ZLs identified thus far are imported both into
the nucleus and mitochondria. Another explanation is
that additional tRNase Zs may provide a back-up
mechanism for nuclear tRNA 3’-end processing. The
third explanation is that additional tRNase Zs may have
different functions.
Recently, tRNase ZL itself has been either demon-

strated or suggested to have additional functions other
than tRNA 3’-end processing. For example, human
tRNase ZL has been shown to play a role in generation
of non-tRNA noncoding RNAs [15,16] and viral micro-
RNAs (miRNAs) [17]. Moreover, human tRNase ZL has

been proposed to cleave a subset of miRNAs in the
cytoplasm [18]. In S. cerevisiae, tRNase ZL has been sug-
gested to have additional functions including rRNA bio-
genesis, mRNA splicing and mitochondrial maintenance
[19]. Similarly, our previous study also suggested that
the nuclear-localized tRNase ZL in S. pombe may play a
role beyond tRNA 3’-end processing [14].
Our current understanding of tRNase Z evolution is

limited since there has been only one comprehensive
survey on tRNase ZSs from prokaryotes [3]. Of eukar-
yotes, the Fungi is a large and diverse kingdom encom-
passing roughly 1.5 million species and spanning one
billion years of evolution [20]. Sequence-based phyloge-
nies show that the Chytridiomycota is the most basal
phylum (group) among the Fungi, followed by the Zygo-
mycota, with the Ascomycota and Basidiomycota as two
largest phyla that together comprise the subkingdom
Dikarya (also referred to as the “Higher Fungi”) [21-24].
The Ascomycota (also known as sac fungi, yeasts or
ascomycetes) is the largest and most diverse phylum in
the Fungi, accounting for approximately 75% of all
known fungi. Many popular model organisms such as S.
cerevisiae, S. pombe, Neurospora crassa, Aspergillus
nidulans and Candida albicans are classified in this
phylum. This phylum is further divided into three major
monophyletic subphyla (subgroups): Pezizomycotina,
Saccharomycotina and Taphrinomycotina [25]. The
Pezizomycotina (also known as euascomyces) is the lar-
gest subphyla and contains over 90% of total Ascomy-
cota species. They are multicellular filamentous fungi
and grow by hyphal extension and branching. In con-
trast, the Saccharomycotina (also known as true yeasts)
comprises the majority of unicellular species. The Taph-
rinomycotina is thought to be the earliest diverging
group sister to the Saccharomycotina and Pezizomyco-
tina. It constitutes a diverse group of organisms includ-
ing unicellular yeast (for example, Schizosaccharomyces),
multicellular filamentous fungi, and dimorphic fungi
that can switch between yeast and hyphal growth forms.
Like the Pezizomycotina, the Basidiomycota consists of
primarily filamentous fungi.
Currently, most of eukaryotic species with sequenced

genomes belong to the kingdom Fungi. The public fun-
gal genome databases cover a broad range of fungal
taxonomic groups with the majority coming from the
Ascomycota and Basidiomycota. The availability of a
large number of fungal genome sequences, together
with the vast diversity of fungal morphology and life-
style, provides an opportunity to identify tRNase Zs in
the kingdom Fungi and to study evolution of eukaryotic
tRNase Z.
In the present study, we performed a comprehensive

survey of candidate tRNase Zs from 84 publicly available
fungal genomes. To explore the evolutionary
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relationship among fungal tRNase Zs, we conducted a
phylogenetic analysis of predicted fungal tRNase Zs.
Finally, we examined their domain architectures. Our
results support the view that tRNase ZL comes from
tRNase ZS.

Results
Identification of putative fungal tRNase Zs
As part of our efforts to better understand functional
and structural diversity of tRNase Zs, we conducted
extensive BLAST and PSI-BLAST homology searches
against the publicly available fungal genome databases.
Currently, the majority of sequenced species belong to
the Dikarya, with a much higher proportion of Ascomy-
cota species. Since other fungal phyla are poorly repre-
sented in public databases (three Zygomycota, three
Microspordia, and three Chytridiomycota species), it is
difficult to assess the true diversity of tRNase Z in these
basal groups of fungi.
The initial candidates from the BLAST and PSI-

BLAST were verified by multiple sequence alignment
and reciprocal searches against the GenBank. Protein
sequence alignment revealed a number of incorrectly
predicted candidates, most likely due to misprediction
of exon/intron boundaries or existence of gaps in the
genome sequence. For example, the sequence (Broad
accession no. CC1G_14814.2) annotated as the candi-
date Basidiomycete Coprinopsis cinerea tRNase Z in the
fungal genome database at the Broad Institute has mis-
predicted exon/intron junctions. This 946-aa-long candi-
date is devoid of a histidine motif, which is a signature
motif for the MBL superfamily, indicating that the exon
encoding the histidine motif was likely mispredicted.
After re-evaluating intron splicing pattern of the gene
sequence, we were able to predict the exon encoding
the histidine motif. The correctly predicted protein has
967 aa, and has the histidine motif. The sequence anno-
tated as the candidate Pezizomycotina Botrytis cinerea
(also named Botryotinia fuckeliana) tRNase Z (Broad
accession no. BC1G_03733.1) is an example of mispre-
diction due to the presence of sequence gaps in the gen-
ome. This sequence has 444 aa. However, examination
of the genomic sequence revealed that its 5’-coding
sequence contains gaps. Thus, this sequence was
excluded. In back-searches, no candidate that shows
homology to metallo-b-lactamase was found, but a lim-
ited number of candidates were found to show homol-
ogy to the yeast homolog of CPSF-73 (Ysh1). Such
candidates were also excluded from our final list. How-
ever, we cannot rule out the possibility that certain can-
didates may not be correctly predicted despite our
efforts devoted to verification of these candidates.
We identified a total of 90 candidate tRNase ZLs and

19 candidate tRNase ZSs proteins from 84 fungal species

including 67 Ascomycota, 14 Basidiomycota and 3 Chy-
tridiomycota (Additional file 1). Candidate tRNase Zs
from two taxonomic groups, the Zygomycota and
Microspordia, were not listed since their full-length pro-
tein sequences could not be correctly predicted. Of the
proteins identified here, only tRNase ZLs from S. cerevi-
siae and S. pombe have been experimentally character-
ized [14,19,25-27].
All species of the Ascomycota we have examined lack

tRNase ZS. The Pezizomycotina and Saccharomycotina
species have a single tRNase ZL. Surprisingly, in contrast
to the Pezizomycotina and Saccharomycotina species, all
four sequenced Schizosaccharomyces species (S. pombe,
Schizosaccharomyces octosporus, Schizosaccharomyces
japonicus and a recently described Schizosaccharomyces
cryophobus) in the Taphrinomycotina have two tRNase
ZLs, which we term tRNase ZL1 and tRNase ZL2, respec-
tively. tRNase ZL1s and tRNase ZL2s have been either
shown or predicted to localize to the nucleus and mito-
chondria, respectively (Additional file 2 and data not
shown) [28]. Since in the current databases, all
sequenced Taphrinomycotina species come from only
Schizosaccharomyces, it would be interesting to see
whether species in other genera also contain two tRNase
ZLs.
Like Ascomycota species, all sequenced Basidiomycota

species (except for Agaricus bisporus) have a single
tRNase ZL. However, unlike the situation in the Asco-
mycota, tRNase ZS was found in all sequenced Basidio-
mycota species. While the majority of Basidiomycota
species have a single tRNase ZS, four Basidiomycota spe-
cies (A. bisporus, C. cinerea, Laccaria bicolor and Postia
placenta) have two tRNase ZSs. Among the Basidiomy-
cota species examined, A. bisporus has the largest num-
ber of tRNase Zs (two tRNase ZLs and two tRNase ZSs).
The number of tRNase Z seems to be variable in the
three sequenced chytrid species. Allomyces macrogynus
and Spizellomyces punctatus have two tRNase ZLs
whereas Batrachochytrium dendrobatidis appears to
have one tRNase ZL. Moreover, tRNase ZS was only
identified in S. punctatus. Although we could not cor-
rectly predict the full-length tRNase Zs in three
sequenced Zygomycota species (Rhizopus oryzae, Mucor
circinellodes and Phycomyces blakesleeanus) and in three
sequenced Microspordian species (Encephalitozoon cuni-
culi, Enterocytozoon bieneusi and Nosema ceranae), it is
important to note that tRNase ZS appears to exist in all
sequenced Zygomycota fungi but not in sequenced
Microspordian fungi known for extreme genome reduc-
tion and compaction [29].

Phylogenetic analysis
To explore evolutionary relationships among fungal
tRNase Zs, we performed a phylogenetic analysis of the
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amino acid sequences of all tRNase Zs predicted from
the fungal genome databases. Figure 1 shows the phylo-
genetic tree for 109 fungal tRNase Zs. In addition to the
fungi species, tRNase ZSs from B. subtilis and E. coli
were included as reference. It is seen that tRNase Zs are

clearly separated into a small cluster containing both
fungal and bacterial tRNase ZSs and a large cluster con-
taining fungal tRNase ZLs. Moreover, within the tRNase
ZL cluster, tRNase ZLs can be grouped according to
their taxonomic classification (Figure 1), although some

Figure 1 A phylogenetic tree inferred using Bayesian analysis of fungal tRNase Zs. Markov chain Monte Carlo (MCMC) algorithm was used
to assess the reliability of nodes in the phylogeny. Numbers above or below branches represent posterior probabilities for each node which
were generated by using Bayesian MCMC sampling. Only Bayesian posterior probability values less than 1.00 are indicated. The scale bar
indicates 0.4 nucleotide substitutions per site. The accession number for fungal tRNase Zs can be found in Additional file 1. Taxonomic
designations are indicated on the right side of the tree.
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Bayesian posterior probability values for grouping are
not strong. It appears that the phylogenetic relationships
among fungal tRNase ZLs is basically congruent with
the currently accepted fungi phylogenies based on cla-
distic analyses of RNA and/or protein sequences
[21-24]. Notably, tRNase ZL2s from four fission yeasts
together form a group sister to a group formed by
tRNase ZL1s from the same fission yeasts, albeit with a
posterior probability of only 0.77. Likewise, the two
tRNase ZLs in the Basidiomycete Agaricus bisporus
(AbiTrz1 and AbiTrz2) are sister to each other with a
posterior probability value of 1.

Analysis of fungal tRNase ZLs
The sizes of predicted tRNase ZLs vary considerably
among fungal species, ranging from 648 to 1140 aa with
an average size of ~924 aa. The variation in protein size
is due to a high degree of length and sequence variation
of N-terminal and C-terminal extensions and many
insertions and/or deletions. Remarkably, tRNase ZLs in
Sordaria macrospora and three Neurospora species (N.
crassa, Neurospora discreta and Neurospora discreta)
have a very long N-terminal extension (~200 residues).
This feature appears to be family-specific since all these
species belong to the family Sordariaceae.
A number of fungal tRNase ZLs have a variable length

N-terminal extension predicted to contain a canonical
MTS (Additional file 2). In addition, tRNase ZL2s from
four Schizosaccharomyces species we have examined also
contain a putative MTS in their N-terminal extensions.
The N-terminal extensions found in fungal tRNase ZLs
may serve as transit sequences for directing the proteins
to the mitochondria. It is interesting to note that tRNase
ZLs from D. melanogaster and humans also contain a
canonical MTS.
To assess the extent of sequence and structural con-

servation among fungal tRNase ZLs, we aligned sixteen
tRNase ZL protein sequences from fifteen taxonomically
diverse fungal species including eleven species of the
Ascomycota, three species of the Basidiomycota, and
one species of the Chytridiomycota (Table 1). Since the
amino acid sequence of tRNase ZL can be divided into
an N-terminal half, which contains a substrate binding
site, and a C-terminal half, which contains a catalytic
center and most of the conserved motifs, we aligned the
N- and C-terminal halves of tRNase ZLs separately, and
first examined the C-terminal half. For comparison, we
also included non-fungal eukaryotic tRNase ZLs from D.
melanogaster, A. thaliana and humans. Figures 2 and 3
show sequence comparison of representative fungal and
non-fungal eukaryotic tRNase ZLs (For a full list of all
aligned fungal tRNase ZLs, see Additional file 3).
Although tRNase ZLs from closely related species

share the high degree of sequence similarity, the

sequence similarity among fungal tRNase ZLs is low.
Overall, sequence conservation of fungal tRNase ZLs is
largely confined to highly conserved Motifs I-V (Motif II
is also called the histidine motif) and the PxKxRN,
HEAT and HST loop motifs at the C-terminal halves of
the proteins (Figure 2). Except for the PxKxRN loop and
Motif I, which were found to play a role in pre-tRNA
acceptor stem binding and CCA anti-determination
[30], all other motifs are involved in zinc binding and
catalysis [31-33]. Motifs I-V contain invariant histidine
and/or aspartate residues essential for the tRNase Z
activity. In particular, the histidine and aspartate resi-
dues in the histidine motif, together with the histidine
residues in Motifs III and V and the aspartate residue in
Motif IV are involved in the coordination of the two
zinc ions at the catalytic center [1,3,4].
All characterized tRNase Zs contain a characteristic

domain of 30~50 aa residues, termed a flexible arm (or
an exosite), which is important for substrate binding
[34,35]. Based on sequence comparison, three types of
flexible arms, termed the zinc-dependent phosphodies-
terase (ZiPD)-, ELAC2- and Thermotoga maritima
(TM)-type flexible arms, have been found in tRNase Zs.
The ZiPD- and ELAC2-type flexible arms were typical
for bacterial tRNase ZSs and eukaryotic tRNase ZLs,
respectively, whereas the TM-type flexible arm is an aty-
pical one found only in tRNase ZSs from T. maritima
and A. thaliana. Interestingly, tRNase ZS in T. maritima
itself is an atypical enzyme as it cleaves CCA-containing
pre-tRNAs after CCA. Although having sequence and
length variations, both ZiPD- and ELAC2-type flexible
arms comprise a GP motif rich in glycine and proline
residues [35], followed by a Walker A-like motif [9].
However, unlike the ZiPD- and ELAC2-type flexible
arms, the TM-type flexible arm is short and lacks the
GP motif. Instead it contains a short stretch of mainly
basic amino acids [35].
As anticipated, ELAC2-type flexible arm containing

both the GP and Walker A-like motifs was found in the
majority of the N-terminal halves of fungal tRNase ZLs
(Figure 3 and Additional file 3). Unexpectedly, a subset
of fungal tRNase ZLs appear to have an atypical ELAC2-
type flexible arm which either lacks or contains an
incomplete GP-motif (Figure 4). Moreover, unlike the
TM-type flexible arm, this atypical flexible arm does not
encompass a short cluster of basic amino acids.
Besides the flexible arm, the conserved domain search

against the NCBI Conserved Domain Database (CDD)
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
combined with manual evaluation revealed regions of
sequences that match the Motifs I-IV and the PxKxRN
loop in the N-terminal halves of tRNase ZLs. However,
they appear to be nonfunctional as they differ from their
original patterns in many positions including the key
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residues critical for tRNase Z functions. We collectively
termed these sequences pseudo-motifs. Figure 5 shows
pseudo-motifs in representative candidate fungal tRNase
ZLs. For comparison, we also include four metazoan
tRNase ZLs from C. elegans, D. melanogaster, A. thali-
ana and humans. Since the pseudo-PxKxRN loops of C.
elegans and human tRNase ZLs are indiscernible from
their protein sequences, they are not included. Except
for the pseudo-histidine motif [36], these pseudo-motifs
have not been reported previously, which may reflect
the difficulty in identifying these sequences. It appears
that only the pseudo-histidine motif is widespread; the
distributions of other pseudo-motifs are highly variable
among fungal tRNase ZLs. Moreover, pseudo-Motif V
could not be identified. It is likely that some of pseudo-
motifs may have diverged too far and thus are no longer
similar enough to the conserved motifs for homology to
be detected by the NCBI conserved domain search. It is
also notable that these pseudo-motifs were in the same

relative order as their original motifs in tRNase ZSs and
in the C-terminal halves of tRNase ZLs.

Analysis of fungal tRNase ZSs
Like fungal tRNase ZLs, the lengths of predicted fungal
tRNase ZSs are variable, ranging from 376 to 554 aa
with an average size of ~442 aa. Sequence alignment of
15 selected representatives of fungal and non-fungal
tRNase ZSs is presented in Figure 6. A list of all aligned
fungal tRNase ZSs is provided in Additional file 4.
Alignment revealed that like B. subtilis and human
tRNase ZSs, fungal tRNase ZSs contain Motifs I-V and
the PxKxRN, HEAT and HST loops (Figure 6). How-
ever, they display flexible arm diversity. A candidate
flexible arm was also found in most of fungal tRNase
ZSs. However, they exhibit considerable variation in
amino acid sequence. Fungal tRNase ZSs can be grouped
according to the presence or absence and the nature of
sequences of the flexible arm. One group containing

Table 1 Representatives of candidate fungal tRNase Zs used in sequence alignment

Species# Taxonomy Protein name Form Accession Number Database No. aa+

Ashbya gossypii (Ago) Ascomycota AgoTrz1 tRNase ZL NP_984308 NCBI 821

Aspergillus nidulans (Ani) Ascomycota AniTrz1 tRNase ZL ANID_11892.1 Broad 1083

Candida albicans (Cal) Ascomycota CalTrz1 tRNase ZL XP_717703 NCBI 857

Coccidioides immitis (Cim) Ascomycota CimTrz1 tRNase ZL CIHG_00067.1 Broad 962*

Fusarium graminearum (Fgr) Ascomycota FgrTrz1 tRNase ZL FGSG_06635.3 Broad 840

Neurospora crassa (Ncr) Ascomycota NcrTrz1 tRNase ZL NCU00232.4 Broad 1099

Pyrenophora tritici-repentis (Ptr) Ascomycota PtrTrz1 tRNase ZL XP_001940780 NCBI 988*

Saccharomyces cerevisiae (Sce) Ascomycota SceTrz1 tRNase ZL NP_013005 NCBI 838

Schizosaccharomyces pombe (Spo) Ascomycota SpoTrz1 tRNase ZL1 SPAC1D4.10 Broad 809

Schizosaccharomyces pombe (Spo) Ascomycota SpoTrz2 tRNase ZL2 SPBC3D6.03C Broad 678

Sclerotinia sclerotiorum (Ssc) Ascomycota SscTrz1 tRNase ZL XP_001586541 NCBI 832

Yarrowia lipolytica (Yli) Ascomycota YliTrz1 tRNase ZL XP_500027 NCBI 815

Cryptococcus neoformans (Cne) Basidiomycota CneTrz1 tRNase ZL CNBG_1589.2 Broad 1035

Malassezia globosa (Mgl) Basidiomycota MglTrz1 tRNase ZL XP_001729151 NCBI 1109

Puccinia graminis (Pgr) Basidiomycota PgrTrz1 tRNase ZL PGTG_11198.2 Broad 854

Spizellomyces punctatus (Spu) Chytridiomycota SpuTrz2 tRNase ZL SPPG_00513.2 Broad 799*

Agaricus bisporus (Abi) Basidiomycota AbiTrz3 tRNase ZS 106812 JGI 376

Agaricus bisporus (Abi) Basidiomycota AbiTrz4 tRNase ZS 123256 JGI 469

Coprinopsis cinerea (Cci) Basidiomycota CciTrz2 tRNase ZS CC1G_14603.2 Broad 390

Coprinopsis cinerea (Cci) Basidiomycota CciTrz3 tRNase ZS CC1G_03806.2 Broad 544

Laccaria bicolor (Lbi) Basidiomycota LbiTrz2 tRNase ZS XP_001876619 NCBI 406

Laccaria bicolor (Lbi) Basidiomycota LbiTrz3 tRNase ZS XP_001874963 NCBI 476

Malassezia globosa (Mgl) Basidiomycota MglTrz2 tRNase ZS EDP42443 NCBI 484*

Melampsora laricis-populina (Mla) Basidiomycota MlaTrz2 tRNase ZS 111950 JGI 473*

Postia placenta (Ppl) Basidiomycota PplTrz2 tRNase ZS 94043 JGI 386

Postia placenta (Ppl) Basidiomycota PplTrz3 tRNase ZS 92595 JGI 483*

Puccinia graminis (Pgr) Basidiomycota PgrTrz2 tRNase ZS PGTG_13150.2 Broad 498

Spizellomyces punctatus (Spu) Chytridiomycota SpuTrz3 tRNase ZS SPPG_06028.2 Broad 395
#Species abbreviations used in this study are shown in parentheses.
+ The number of amino acids in fungal tRNase Zs

* Indicates that mispredicted sequences obtained from the databases have been corrected.
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Figure 2 Sequence conservation between the C-terminal halves of fungal and non-fungal eukaryotic tRNase ZLs. Multiple sequence
alignment of the C-terminal halves of representative fungal and non-fungal eukaryotic tRNase ZLs. Fungal tRNase ZLs are from A. gossypii
(AgoTrz1), S. cerevisiae (SceTrz1) [19], C. albicans (CalTrz1), Yarrowia lipolytica (YliTrz1), A. nidulans (AniTrz1), Coccidioides immitis (CimTrz1),
Sclerotinia sclerotiorum (SscTrz1), Pyrenophora tritici-repentis (Ptrtrz1), N. crassa (NcrTrz1), Fusarium graminearum (FgrTrz1), S. pombe (SpoTrz1 and
SpoTrz2) [14], Cryptococcus neoformans (CneTrz1), M. globosa (MglTrz1), Puccinia graminis (Pgr Trz1) and S. punctatus (SpuTrz1). Non-fungal tRNase
ZLs are from A. thaliana (AthTrz4) [13], D. melanogaster (DmeTrz1) [54] and Homo sapiens (HsaTrz2) [9]. Protein accession numbers are described
in Table 1. The alignment was constructed using the program Clustal W [49]. Identical residues are on a black background and conserved
residues shaded in gray. Also indicated above the sequence alignment are the conserved motifs involved in substrate binding and catalysis. The
conserved motifs are labeled according to references [30,31,44]. Numbers in parentheses are the positions of the amino acid sequences. The
numbers in brackets indicate the length of the region in tRNase Z, which are species-specific and could not be correctly aligned. Hyphens
represent gaps introduced into sequences for maximum alignment. The positions of amino acid residues of the D. melanogaster tRNase ZL

critical for catalytic efficiency [30,31] are indicated by asterisk.
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candidates from Basidiomycota species A. bisporus
(AbiTrz4), C. cinerea (CciTrz3), L. bicolor (LbiTrz3) and
P. placenta (PplTrz3) does not seem to contain the flex-
ible arm, which is located between Motif III and Motif
IV. Interestingly, all these species have two tRNase ZSs.

The second group including candidates from Basidiomy-
cota species Agaricus bisporus (AbiTrz3), Coprinopsis
cinerea (CciTrz2), Postia placenta (PplTrz2) and Lac-
caria bicolor (LbiTrz2) lacks a recognizable GP motif
but retain the Walker A-like motif. The third group

Figure 3 Sequence conservation between the N-terminal halves of fungal and non-fungal eukaryotic tRNase ZLs. Multiple sequence
alignment of the N-terminal halves of representative fungal and non-fungal eukaryotic tRNase ZLs according to the same legend as in Figure 2.
The positions of amino acid residues of the D. melanogaster tRNase ZL that contribute to substrate binding are marked with an asterisk [44].
Open circle denotes the residue in the D. Melanogaster tRNase ZL that makes the largest contribution to substrate binding [44].
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including Basidiomycota species Malassezia globosa
(MglTrz2), Melampsora laricis-populina (MlaTrz2) and
Puccinia graminis (PgrTrz2), and chytrid species Spizel-
lomyces punctatus (SpuTrz3) lacks both recognizable GP
and Walker A-like motifs and is considerably longer
than those of the second group. Moreover, the sequence
similarity between the flexible arms of fungal tRNase
ZSs and the ZiPD-type flexible arm is mostly confined
to their C-terminal sequences.

Discussion
The phylogenetic distribution of tRNase Z in fungi
tRNase ZL is widespread in fungi and the majority of
fungal species appear to have a single tRNase ZL. This
latter finding is somewhat unexpected given striking dif-
ferences in the genome size, life cycle and morphology
of species of fungi. The Pezizomycotina and Saccharo-
mycotina belong to later diverging fungi. Their genomes
vary considerably in size due to gene gain and loss
events including tandem gene duplication, whole-

genome duplication and extensive gene loss [37,38]. The
Saccharomycotina genome sizes vary from ~9 (Pichia
pastoris) to ~24 Mb (Candida parapsilosis), whereas the
genome sizes of the Pezizomycotina fungi range from 23
(Microsporum canis) to 43 Mb (N. crassa). Furthermore,
Pezizomycotina and Saccharomycotina fungi range in
complexity from unicellular yeasts to filamentous molds.
However, despite their remarkable differences in gen-
ome size, life cycle and morphology, the Pezizomycotina
and Saccharomycotina fungi tend to contain only one
tRNase ZL. These results indicate that the diversity of
tRNase Z in fungi is not directly proportional to either
the difference in genome size or the complexity of the
life cycle and the morphology.
In contrast to tRNase ZL, tRNase ZS has a limited

phylogenetic distribution. The apparent lack of the
tRNase ZS gene in the genomes of Ascomycota species
suggests that it has been deleted from the genomes of
Ascomycota fungi. It is possible that tRNase ZS existed
before the divergence of the Ascomycota from the

Figure 4 Amino acid alignments of putative atypical flexible arms in fungal tRNase ZLs. The top panel alignment shows putative atypical
flexible arms found in certain fungal tRNase ZLs from Chaetomium globosum (CglTrz1), Myceliophthora thermophila (MthTrz1), Thielavia terrestris
(TteTrz1), Y. lipolytica (YliTrz1), Microsporum canis (McaTrz1), Microsporum gypseum (MgyTrz1), Trichophyton rubrum (TruTrz1), Magnaporthe grisea
(MgrTrz1), F. graminearum (FgrTrz1), Fusarium oxysporum (FoxTrz1), Fusarium verticillioides (FveTrz1), Nectria haematococca (NhaTrz1), Trichoderma
atroviride (TatTrz1), Trichoderma virens (TviTrz1), Trichoderma reesei (TreTrz1), N. crassa (NcrTrz1), N. tetrasperma (NteTrz1), N. discreta (NdiTrz1),
Podospora anserina (PanTrz1). The bottom panel alignment shows typical flexible arms found in tRNase Zs from B. subtilis (BsuTrz1) [55], S.
cerevisiae (SceTrz1) [19], S. pombe (SpoTrz1) [14], D. melanogaster (DmeTrz1) [54] and H. sapiens (HsaTrz2) [9]. The predicted tRNase ZLs are
defined in Additional file 1. The GP and Walker A-like motifs are indicated. Invariant and conserved amino acids are highlighted in Black and
gray, respectively. The Asterisk indicates key residues in the D. Melanogaster tRNase ZL that contribute to substrate binding [44]. The open circle
denotes the residue in the D. Melanogaster tRNase ZL that makes the largest contribution to substrate binding. Inverted triangles indicate the
conserved glycine and proline residues in the GP motif, which are no longer conserved in certain fungal tRNase ZLs. Dark shading indicates
identical residues, and gray shading designates conserved residues. Secondary structure assignment is based on the structure of the B. subtilis
tRNase ZS [34]. The secondary structures for a-helices, b-strands and 310-helix are indicated with Greek letters. Asterisks indicate key residues in
the D. Melanogaster tRNase ZL that contribute to substrate binding [44].
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Figure 5 Pseudo-motifs in representative candidate fungal tRNase ZLs. The top panel shows alignment for pseudo substrate recognition
and catalytic motifs found in tRNase ZLs from S. cerevisiae (SceTrz1) [19], A. gossypii (AgoTrz1), C. albicans (CalTrz1), A. nidulans (AniTrz1), C.
immitis (CimTrz1), S. sclerotiorum (SscTrz1), P. tritici-repentis (PtrTrz1), N. crassa (NcrTrz1), F. graminearum (FgrTrz1), C. elegans (CelTrz1)[56], D.
melanogaster (DmeTrz1) [54], A. thaliana (AthTrz4) [13] and humans (HsaTrz2) [9]. The bottom panel shows alignment for the corresponding
conserved motifs in tRNase Zs from B. subtilis (BsuTrz1) [55], Archaeoglobus fulgidus (ArcTrz1; accession no. NP_069772), Halobacterium salinarum
(HalTrz1; accession no. NP_280881), Methanosarcina acetivorans (MacTrz1; accession no. NP_617924), Enterococcus faecalis (EfaTrz1; accession no.
NP_815399), Lactococcus lactis subsp (LlaTrz1; accession no. NP_266786), Nanoarchaeum equitans (NeqTrz1; accession no. NP_963358),
Methanococcus maripaludis (MmaTrz1; accession no. NP_988026) and Pyrococcus abyssi (PabTrz1; accession no. NP_126781). The pseudo-PxKxRN
loops of C. elegans and human tRNase ZLs are not included since they are indiscernible. The candidate fungal tRNase ZLs are defined in
Additional file 1. GenBank accession numbers that are not listed in Additional file 1 are indicated. The alignment was extended to include
surrounding regions to illustrate the further homology revealed by searching the Conserved Domain database (CDD), which could aid in the
identification of pseudo-motifs. Similar or identical amino acid residues are shaded as described in the legend to Figure 2. The positions of
amino acid residues of the D. melanogaster tRNase ZL critical for catalytic efficiency [30,31] are indicated by asterisk.
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Figure 6 Multiple alignment fungal and non-fungal eukaryotic tRNase ZSs. tRNase ZSs are from A. bisporus (AbiTrz3 and AbiTrz4), C. cinerea
(CciTrz2 and CciTrz3), P. placenta (PplTrz2 and PplTrz3), L. bicolor (LbiTrz2 and LbiTrz3), S. punctatus (SpuTrz3), M. globosa (MglTrz2), Melampsora
laricis-populina (MlaTrz2) and P. graminis (PgrTrz2), as well as in H. sapiens (HsaTrz1) [9], B. subtilis (BsuTrz1) [55] and E. coli (EcoTrz1) [57]. See
Table 1 for protein description. Alignment of eukaryotic tRNase ZSs is as described in the legend to Figure 2.
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Basidiomycota, and was subsequently lost after the
appearance of a novel structure (tRNase ZL). This is
supported by the finding that tRNase ZS is retained in
the genomes of Basidiomycota, Chytridiomycota and
Zygomycota fungi.
Most of Basidiomycota species examined contain one

tRNase ZS. The fungal tRNase ZSs appear to be unique
among all known tRNase ZSs in either lacking the flex-
ible arm or having an atypical flexible arm (see discus-
sion below). One explanation of existence of tRNase ZS

genes in Basidiomycota species is that these genes may
represent pseudo-tRNase ZS genes. Another explanation,
which we favor, is that fungal tRNase ZS, at least some
of them, may play a back-up or different role. Support
for this hypothesis comes from recent studies of tRNase
ZS in A. thaliana and humans. In A. thaliana, one
tRNase ZS may represent a back-up for the nuclear
tRNA 3’-end processing in case of dysfunction of
nuclear-localized tRNase ZL, whereas the other plays a
role in chloroplasts [13]. In human cells, tRNase ZS is
located in the cytosol and likely have substrates other
than pre-tRNA [39].

The flexible arms of candidate fungi tRNase Zs display
remarkable diversity
An unexpected and striking result of this analysis is the
diversity of the flexible arms within candidate fungal
tRNase Zs, particularly tRNase ZSs. The most character-
istic features of the typical flexible arm found in tRNase
Zs are the GP- and Walker-A like motifs. A subset of
fungal tRNase ZLs and all fungal tRNase ZSs appear to
lack the GP-motif, and some fungal tRNase ZSs do not
seem to have the Walker A-like motif. In the most
extreme case, the flexible arm is missing in fungal
tRNase ZSs. It is not yet understood why the flexible
arms of fungal tRNase Zs display diversity in the pri-
mary sequence.
It is interesting to note that four Basidiomycota spe-

cies contain two candidate tRNase ZSs, one of which
lacks the flexible arm. It is likely that these two tRNase
ZSs form heterodimers that would look like tRNase ZL,
where only the N-terminal half has a flexible arm.
The apparent lack of the GP-motif in some fungal

tRNase ZLs and all fungal tRNase ZSs that we have
examined raises the question of whether this motif is
absolutely required for substrate binding. Structural and
biochemical evidence suggests that the GP-motif may
not be essential for pre-tRNA binding. To date, the
three-dimensional structures of tRNase ZSs from B. sub-
tilis, E. coli and T. maritima have been solved by X-ray
crystallography [34,40-43]. Remarkably, the flexible arms
of T. maritima tRNase ZS lacking the GP motif and the
other two tRNase ZSs harboring the GP motif have very
similar structures, composed of a compact globular

domain and an extended two-stranded stalk, which
extrude from the tRNase ZS core. However, they have
different lengths and globular domains. The globular
domains at the end of the flexible arms of B. subtilis
and E. coli tRNase ZSs are composed of two a-helices,
two b-strands and one 310-helix, whereas the counter-
part in T. maritima tRNase ZS consists of one very
short a-helix, one long helix and one 310-helix. The
conserved GP-motif, particularly the proline residues,
appears to add rigidity to two flexible arm helices since
it is localized between them [42]. It would be interesting
to know how the flexible arm lacking the GP-motif par-
ticipates in substrate binding.
Recent biochemical studies have also suggested that

the GP-motif may not be essential for substrate binding.
Single alanine substitutions across the GP motif in D.
melanogaster tRNase ZL only moderately affect substrate
binding. In contrast, substitution of a conserved leucine
residue at the boundary of the globular domain and
stalk with alanine almost completely abolishes substrate
binding as the globular domain deletion [44]. Similarly,
deletion of the GP motif in B. subtilis tRNase ZS does
not eliminate pre-tRNA binding but alters the cleavage
specificity of the enzyme [45]. These results suggest that
the GP motif may be important but not essential for
substrate binding.

The evolutionary relationship between tRNase ZS and
tRNase ZL

In eukaryotes, tRNase ZL appears to take over tRNase
ZS in endonucleolytic 3’-end processing of pre-tRNAs,
which raises the question of how it evolves. The protein
sequence of tRNase ZS is much more similar to the C-
terminal half of tRNase ZL than to the N-terminal half
of tRNase ZL. Furthermore, the C-terminal half of
tRNase ZL retains all conserved motifs for proper cataly-
tic function but has lost the flexible arm involved in
substrate binding, whereas the N-terminal half has lost
all active motifs but contains the flexible arm. These
observations led to the proposal that tRNase ZL has
evolved from tRNase ZS by gene duplication and subse-
quent sequence divergence [9]. To assess whether phylo-
genetic evidence exists that is consistent with this
notion, we estimated phylogenetic relationships among
fungal tRNase Zs by using a Bayesian phylogenetic
method. The clustering of all fungal tRNase ZSs with
representative bacterial tRNase ZSs support the notion
that tRNase ZL comes to eukaryotes through duplication
of tRNase ZS gene. Further evidence that the N-terminal
half of tRNase ZL is derived from an ancient tRNase ZS

comes from our findings that the N-terminal half of
fungal tRNase ZL contains candidate pseudo-motifs and
that these pseudo-motifs are present in the same relative
order as their original motifs appeared in tRNase ZS.
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These pseudo-motifs likely represent relics of original
tRNase ZS motifs that were inactivated during diversifi-
cation of the eukaryotic tRNase ZL gene.
The reason for the adoption of tRNase ZL over tRNase

ZS in eukaryotes is unknown. One possibility is that eukar-
yotic cells may require more efficient tRNase Z enzymes.
Support for this proposal comes from biochemical charac-
terization of human tRNase Zs. In vitro characterization of
recombinant human tRNase Zs have shown that tRNase
ZL cleaves pre-tRNA significantly more efficiently com-
pared to tRNase ZS [46]. Although strong structural evi-
dence to support that tRNase ZL evolved into a more
efficient enzyme than tRNase ZS is still lacking, it is inter-
esting to note that tRNase ZS and tRNase ZL may have dif-
ferent processing center numbers which would make
much difference in the efficiency of pre-tRNA 3’-end pro-
cessing. Three-dimensional structures of three bacterial
tRNase ZSs have revealed that the proteins form homodi-
mers [34,40-43]. In particular, the crystal structure of B.
subtilis tRNase ZS in complex with tRNA shows that the
dimer has two identical processing centers with two sub-
strate binding and catalytic sites. In contrast, a molecular
modeling study has suggested that both the N-terminal
and C-terminal halves of human tRNase ZL can fold into
two distinct MBL domains with one domain containing a
fully functionally catalytic site and the other containing a
candidate substrate binding domain [3].

Schizosaccharomyces fission yeasts have two tRNase ZLs,
most likely targeted to the nucleus and mitochondria,
respectively
Schizosaccharomyces fission yeasts including S. pombe
appear to be unique among the Ascomycota in having two
tRNase ZLs (tRNase ZL1 and tRNase ZL2) that appear to
be localized to the nucleus and mitochondria, respectively,
as suggested in our previous study of tRNase ZL in S.
pombe [28]. Our fungal tRNase Z phylogeny shows that
the two tRNase ZLs in fission yeasts may have arisen
through gene duplication (Figure 1). Although the whole
genome duplication found in the Saccharomycotina yeasts
does not seem to occur in fission yeasts such as S. pombe
[47], the tRNase ZL gene could be duplicated by other
mechanisms such as tandem and segmental gene duplica-
tion. The two tRNase ZLs in each Schizosaccharomyces
species all have very limited homology with each other
(20-23% identity and 31-33% similarity, see Additional file
5), indicating that these two proteins have diverged con-
siderably from each other since their duplication. It is
interesting to note that the tRNase ZL gene could also be
duplicated in non-fungal eukaryotic species A. thaliana.
However, the two plant tRNase ZLs are highly related to
each other (69% identity and 72% similarity).
Why do Schizosaccharomyces fission yeasts have two

tRNase ZLs? In our previous study, it was found that the

nuclear-targeted tRNase ZL1 (SpoTrz1) is involved in
nuclear pre-tRNA 3’-end processing in S. pombe [14].
Furthermore, its function can be compensated by either
S. cerevisiae or human tRNase ZL. Although the role of
mitochondrial-targeted tRNase ZL2 (SpoTrz2) remains
to be determined, it is likely that this protein plays an
essential role in mitochondrial RNA processing [14].
Based on these results, it is possibly that the presence of
two tRNase ZLs reflects that the nuclear and mitochon-
drial tRNA processing activities are associated with two
different tRNase ZLs in Schizosaccharomyces fission
yeasts. This may also hold true for wheat and potato
since in these plants, enzymes involved in nuclear and
mitochondrial tRNA 3’-end processing appear to be dif-
ferent [48]. However, it is important to note that the
nuclear and organelle tRNase Z activities in the majority
of organisms described to date seem to reside in the
same enzyme.

Conclusions
A survey of fungal databases shows that tRNase ZL

appears to be universally present in fungi, whereas the
presence of tRNase ZS is restricted to certain fungal
phyla, indicative of the fundamental role of tRNase ZL

in eukaryotic tRNA biogenesis. The apparent lack of
tRNase ZS in the Ascomycota suggests that tRNase ZS

may have lost before divergence of the Ascomycota and
the Basidiomycota. A striking aspect of the tRNase ZL

distribution is that there are two different tRNase ZLs in
Schizosaccharomyces fission yeasts. These two tRNase
ZLs are likely present in different cellular compartments,
suggesting functional partitioning between these two
proteins. Phylogenetic analysis suggests that tRNase ZS

is ancestral to tRNase ZL and that tRNase ZL gene
duplications may have occurred in certain fungal taxa,
including Schizosaccharomyces fission yeasts. Sequence
analysis reveals that the domain architecture of tRNase
ZLs is highly conserved among fungi and metazoa. A
surprising result of sequence analysis is the sequence
diversity in the putative flexible arm of candidate fungal
tRNase Zs. Our analysis also reveals pseudo-motifs at
the N-terminal halves of tRNase ZLs. These findings
support the view that tRNase ZL evolved through dupli-
cation and divergence of the tRNase ZS gene.

Methods
Fungal genome database search and protein sequence
analysis
To identify candidate tRNase Zs, we conducted BLAST
and PSI-BLAST searches using the known tRNase Z
protein sequences as queries against fungal genomes
databases including the National Center for Biotechnol-
ogy Information (NCBI; http://www.ncbi.nlm.nih.gov/
sutils/genom_table.cgi?organism=fungi), the Broad
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Institute http://www.broadinstitute.org/science/data, the
Joint Genome Institute http://genome.jgi-psf.org/pages/
fungi/home.jsf, the Genome Center at Washington Uni-
versity http://genome.wustl.edu/ and the Universal Pro-
tein Resource http://www.uniprot.org. All candidate
sequences were obtained by using the cut-off E-value of
0.01. All candidate proteins were subjected to validation,
which was carried out by using a variety tests that evalu-
ate the likelihood of annotation errors and the amino
acid sequence conservation within and among taxo-
nomic groups. First, confirmation of true candidate
tRNase Zs was done by back-searching individual candi-
date protein sequence against the GenBank database.
Second, the gene sequences for the predicted tRNase Zs
were manually checked for possible sequence gaps.
Third, multiple protein sequence alignment was used to
identify candidate proteins that were discordant due to
possible genomic sequencing errors and/or intron mis-
prediction. In most cases, we changed the splicing pat-
tern of candidate tRNase Z either using gene prediction
programs Fgenesh http://linux1.softberry.com/berry.
phtml?topic=fgenesh&group=programs&subgroup=gfind
and Geneid http://genome.crg.es/geneid.html or manu-
ally to restore the high degree of sequence conservation.
Multiple sequence alignment was performed by using
Clustal W [49], and the resulting alignment was further
manually examined and adjusted to improve the detec-
tion of conserved regions. The putative subcellular loca-
lization signals of tRNase Zs were predicted by using
the programs MitoProt http://ihg2.helmholtz-muenchen.
de/ihg/mitoprot.html and PSORT II http://psort.hgc.jp/.

Phylogenetic analysis of fungal tRNase Zs
Full-length amino acid sequences of tRNase Zs from
fungi and two bacteria, B. subtilis and E. coli were
aligned by using Clustal W implemented in Mega 4.0
[50]. Conserved regions were selected and ambiguous
aligned regions were removed by using the program
Gblocks 0.91b [51]. tRNase ZSs from B. subtilis and E.
coli were chosen as reference. The phylogenies were
estimated by Bayesian inference with MrBayes 3.1.2 [52]
using a mixture of the fixed amino acid models and the
gamma distribution. Statistical confidence was assessed
by using Markov Chain Monte Carlo (MCMC) sampling
approaches. Four simultaneous Markov chains were run
for one million generations sampling every 1,000 gen-
eration in two replicate runs. The first 250 trees were
discarded as burn-in and the convergence of the chains
was evaluated using AWTY implemented in MrBayes
3.1.2 [53].

List of abbreviations
pre-tRNA: tRNA precursor; tRNase Z: tRNA 3’ endonu-
clease; tRNase ZS: the short form of tRNase Z; tRNase

ZL: the long form of tRNase Z; aa: amino acid; MBL:
metallo-b-lactamase; NLS: nuclear localization signal;
MTS: mitochondrial targeting signal; no: number; kDa:
kiloDaltons

Additional material

Additional file 1: Distribution of candidate fungal tRNase Zs.
aAbbreviations for species names are indicated in the parentheses. bThe
number of amino acids in fungal tRNase Zs. calso known as Histoplasma
capsulatum. dalso known as Blastomyces dermatitidis. ealso known as
Gibberella zeae falso known as Sporotrichum thermophile galso known as
Fusarium solani halso known as Stagonospora nodorum ialso known as
Filobasidiella neoformans ND denotes the sequence could not be
predicted correctly likely due to sequencing errors. *Indicates that
mispredicted sequences obtained from the databases have been
corrected.

Additional file 2: Putative N-terminal mitochondrial targeting
signals in candidate fungal tRNase Zs. The accession numbers for the
proteins are listed in Additional file 1. The numbers refer to amino acid
position starting from the N-terminus. #SpoTrz2 (SPBC3D6.03C) is
localized to the mitochondria [28].

Additional file 3: Alignment of candidate fungal tRNase ZLs. Similar
or identical amino acid residues are shaded as described in the legend
to Figure 2. The conserved motifs are labeled according to references
[30,31,44].

Additional file 4: Alignment of candidate fungal tRNase ZSs. Similar
or identical amino acid residues are shaded as described in the legend
to Figure 2. The conserved motifs are labeled according to references
[30,31,44].

Additional file 5: Pairwise sequence comparisons of tRNase ZLs
from Schizosaccharomyces species. The accession numbers for proteins
are listed in Additional file 1. The pairwise percent identity (I) and
percent similarity (S) between tRNase ZLs from Schizosaccharomyces
species were calculated using the Clustal W program [49].
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