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Increasing melanism along a latitudinal gradient
in a widespread amphibian: local adaptation,
ontogenic or environmental plasticity?
Jussi S Alho1*, Gábor Herczeg1, Fredrik Söderman2, Anssi Laurila2, K Ingemar Jönsson3,4, Juha Merilä1

Abstract

Background: The thermal benefits of melanism in ectothermic animals are widely recognized, but relatively little is
known about population differentiation in the degree of melanism along thermal gradients, and the relative
contributions of genetic vs. environmental components into the level of melanism expressed. We investigated
variation in the degree of melanism in the common frog (Rana temporaria; an active heliotherm thermoregulator)
by comparing the degree of melanism (i) among twelve populations spanning over 1500 km long latitudinal
gradient across the Scandinavian Peninsula and (ii) between two populations from latitudinal extremes subjected
to larval temperature treatments in a common garden experiment.

Results: We found that the degree of melanism increased steeply in the wild as a function of latitude. Comparison
of the degree of population differentiation in melanism (PST) and neutral marker loci (FST) revealed that the PST
>FST, indicating that the differences cannot be explained by random genetic drift alone. However, the latitudinal
trend observed in the wild was not present in the common garden data, suggesting that the cline in nature is not
attributable to direct genetic differences.

Conclusions: As straightforward local adaptation can be ruled out, the observed trend is likely to result from
environment-driven phenotypic plasticity or ontogenetic plasticity coupled with population differences in age
structure. In general, our results provide an example how phenotypic plasticity or even plain ontogeny can drive
latitudinal clines and result in patterns perfectly matching the genetic differences expected under adaptive
hypotheses.

Background
Melanins and carotenoids are two classes of pigment
compounds that are responsible for much of the varia-
tion in animal coloration [1]. Melanins have been shown
or suggested to be involved in a wide range of vital
adaptive functions in animals, including signaling [2,3],
crypsis [4,5], thermoregulation [6-10], protection from
ultraviolet radiation [11,12] and immune function [13].
Whether melanism has a significant role in ectotherm
thermoregulation has been subject to a lot of research
over many decades [14], and the thermoregulatory
explanation has been typically favored over other
hypotheses. However, while the hypothesis about the

thermally adaptive value of melanism has a lot of intui-
tive appeal because of its simplicity, the relationship
between phenotype and genotype is complex [15-17],
and other adaptive and non-adaptive causes should also
be considered. Further, even if melanism in some cir-
cumstances is thermally adaptive, the question of
whether it is a purely genetic or environmentally driven
plastic trait is important, especially in light of the recent
rapid anthropogenic changes in the environment [16].
Namely, changes in degree of melanism in a population
could be driven by direct environmental induction (i.e.
plastic response) as well as by selection acting on herita-
ble genetic variation (i.e. adaptation).
Intraspecific variation in melanism, when present, can

express itself as distinct color morphs including comple-
tely dark, or melanistic, individuals [6,18,19], or as a
continuum of animals with different amounts of dark
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pigmentation [20,21]. The possible genetic basis of this
variation has received considerable attention in litera-
ture. Several researchers have found significant family
effects in common garden experiments, raising the pos-
sibility of genetic variation in the degree of melanization
[14,22]. There are also numerous molecular genetic stu-
dies that have investigated the association between mel-
anism and sequence variation e.g. in the melanocortin-1
receptor gene [23-27] and its antagonist, the agouti sig-
naling protein (agouti) [28,29]. These molecular analyses
have often, although not always, found a correspondence
between certain genotypes and phenotypes. However,
few studies have attempted to establish an adaptive basis
for variation in melanization by linking the genetic var-
iation to pigmentation clines observed in nature (but see
e.g. [25,30-33]).
Since melanism is genetically based in numerous taxa

[5,23,24,26] and has been shown to confer thermally
adaptive advantage [6,8-10], one would expect to
observe intraspecific pigmentation clines along latitudi-
nal or altitudinal gradients in the wild, as these gradients
typically correspond to ambient temperature. However,
such clines have been rarely reported in other taxa than
insects [14] and the genetic basis, and thus the adaptive
nature, of melanism clines remain little explored. To
show that melanism can be thermally adaptive, one
needs to simultaneously demonstrate both the existence
and the genetic basis of a melanism cline along an
environmental gradient. A failure to find genetic basis
for an observed trend would indicate that the cline is
caused either by environmentally induced plasticity
(which can itself be either adaptive or non-adaptive), or
by ontogenetic plasticity coupled with geographical dif-
ferences in age or longevity. For instance, given that the
degree of melanism in at least some anuran amphibians
increases with age [20], and average age of individuals in
a given population tends to increase with increasing lati-
tude and altitude [34,35], changes in population age
structure could also be driving clines in the degree of
dark pigmentation.
Here, we studied the existence and possible genetic

basis of a latitudinal cline in the degree of melanization
in the common frog (Rana temporaria). Amphibians are
a particularly well-suited group of organisms to study
the genetic basis of pigmentation due to the large color
variation they exhibit within and between species
[22,36]. The common frog makes an especially interest-
ing model since (i) it has one of the widest distribution
ranges among amphibians including both high altitudes
and latitudes [37], (ii) it is an active heliotherm thermo-
regulator [10], (iii) exhibits variation in the level of mel-
anization [10,27], and (iv) the degree of melanization in
the species has been indicated to correlate positively
with heating rate [10]. Furthermore, many traits in this

species have previously been shown to have undergone
adaptive divergence along a latitudinal gradient [38-41].
The aims of our study were twofold. First, we investi-

gated the presence of a latitudinal trend in the degree of
melanization in wild-caught adult common frogs. Sec-
ond, we used a common garden experiment to test
whether the observed cline in melanism was genetically
based, or reflected either plastic response to environ-
mental heterogeneity or ontogenetic plasticity with geo-
graphical differences in age structure. To these ends, we
compared the level of dorsal melanism in twelve popula-
tions along over 1500 km latitudinal gradient across the
Scandinavian Peninsula, and conducted a common gar-
den study applying larval thermal treatments using two
latitudinally extreme populations. We hypothesized that
a latitudinally ordered thermal adaptation might have
occurred in Rana temporaria favouring elevated heating
rates towards higher latitudes. Based on this hypothesis
we predicted that the level of melanism would increase
towards north and that the pattern would at least par-
tially be genetically based and independent of rearing
environment.

Methods
Study species
The common frog is the most widely distributed anuran
amphibian in Europe: it can be encountered from Spain
to the Ural Mountains in Russia, from sea level to alti-
tudes above 2000 m [37]. In the north it reaches the
North Cape in Norway. The coloration of the adult
frogs varies from reddish brown to olive green, and
many individuals have varying degree of distinct black
markings on their dorsal surface (Figure 1) [27,42]. The
visible color has two components: the underlying ‘base’
color that the frogs can alter relatively quickly, and the
color caused by the dark melanistic spots which were
the focus of this study [27]. Studies of intrapopulation
variation in this species have revealed that the amount
of black on dorsal surface can be highly variable within
a single population [10], and the trait shows ontogenetic
variability [20]. Since the degree of melanistic patterning
influences heating rates, it has been hypothesized that
the amount of black dorsal pigmentation could have
adaptive value allowing more efficient thermoregulation
in a cold climate [10]. Collection of adult frogs and eggs
was done with the permissions from national and regio-
nal authorities and the common garden experiment was
conducted with the permission C194/6 from the Ethical
Committee for Animal Experiments in Uppsala County
in accordance with national and international guidelines.

Data from the wild
Data on wild adults was collected during the breeding
seasons of 1998-1999 as part of other studies
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[38,40,41,43] from twelve localities (Figure 2, Table 1).
In short, a total of 111 adult female and 113 male com-
mon frogs were collected during the early breeding sea-
son, right after emergence from hibernation (April-June,
depending on latitude). Live frogs were transported to
laboratories in Uppsala or Lund where they were
anesthetized and killed with an overdose of MS-222 (tri-
caine methanesulfonate). Each individual was sexed on
the basis of gonadal inspection. Snout-vent length was
measured with dial calipers to the nearest millimeter.
Frog carcasses were frozen in -20°C until scored for the
degree of melanism (see below).

Common garden data
A common garden experiment was conducted for two
populations along the latitudinal gradient across the
Scandinavian Peninsula (Figure 2, Table 1). In the case
of the southern population adult frogs were collected
from spawning sites and kept in 4 °C until used in artifi-
cial fertilizations. Crosses were performed following
North Carolina type I design [44]. Briefly, the experi-
ment utilized twenty females and ten males from the
southern population, and each male was crossed with
two females. This resulted in twenty full-sib and ten
paternal half-sib families. Artificial fertilization was per-
formed following [45] with some modifications. Males
were first injected with hormone, the cloaca was rinsed
with Ringer’s solution and the sperm solution was sepa-
rated into two containers. The eggs were squeezed out
from females’ cloaca to the sperm solution with the help
of blunt forceps. In the case of the northern population
we collected eggs from the wild. These naturally laid
eggs were subsequently handled in similar manner to
those from artificial crosses after fertilization.
The eggs and hatchlings from each full-sib family

were raised in two 3 L vials (ca. 200 eggs in each) until

Gosner stage 25 [46]. Temperature in the laboratory
room was 18 °C and the light rhythm 18L:6D. After
reaching stage 25, ten tadpoles from each cross were
raised individually in 1 L vials at two temperature treat-
ments, 18 °C (high) and 14 °C (low), in two separate cli-
mate-controlled rooms with 18L:6D light rhythm. There
were thus five tadpoles per cross per treatment. During
this time the tadpoles were fed slightly boiled spinach
ad libitum. To assure homogenous water quality, the
animals were reared throughout the aquatic stage in
reconstituted soft water (RSW) [47] renewed every third
day. After metamorphosis, the tadpoles were moved to
1 L boxes with the bottom covered with moss and with
a dripping system maintaining moisture in a climate
room maintained at 16 °C. At this stage, the juvenile
frogs were fed with unlimited amount of Drosophila
flies and small crickets. In late November, the juveniles
were moved to another climate chamber where the con-
ditions were gradually changed to resemble wintering
conditions (0L:24D, 4 °C). They were allowed to over-
winter until late February, when the conditions were
gradually changed to correspond to the summer condi-
tions again. The juveniles were then maintained under
similar conditions as above. Nine months after meta-
morphosis, all juveniles were photographed for the esti-
mation of the degree of melanism (note that this date
varies between individuals due to the difference in phe-
nology between the populations and in development
rate between the larval temperature treatments). Snout-
vent length of the juveniles was measured from the digi-
tal photographs.
Mortality limited the available data in the southern-

most population mostly to full-sib families. Since also
the data on the northernmost population came from
full-sib families, we restricted our analysis below to
family effects, and did not attempt to estimate sire and
dam effects.

Estimation of level of melanism
Estimation of the relative area covered by the permanent
melanistic spots was done similarly with the wild-caught
and common garden samples. The individuals’ (thawed
carcasses in the wild-caught and live specimens in the
common garden sample) dorsal sides were gently
pressed against a transparent plexiglass panel to obtain
a nearly flat surface for photographing. Digital photo-
graphs were taken under similar circumstances (different
sets for wild-caught and common garden samples). A
ruler or millimeter paper was placed in every photo-
graph for scaling. Color calibration was not employed,
but melanistic and non-melanistic areas were clearly dis-
tinguishable in the images, as shown by the relatively
high repeatability estimate for the degree of melanism
(see Results).

Figure 1 Representative photographs of light (a) and
melanistic (b) wild adult common frogs. The images illustrate the
variation in the degree of melanism, and the red outline the dorsal
area from which the proportion of melanistic area was measured.
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The digital photographs were processed with Image
Pro Plus 4.5 software (Media Cybernetics Inc., Bethesda,
USA). We first defined the area (the dorsal torso with-
out head and appendages; Figure 1b) and then the color
of the spots of interest. Then, with the aid of the scale
on each photograph, the software automatically calcu-
lated the area of each spot and the remaining area. The
degree of melanism was defined as the proportion of
dorsal surface area covered by pigmentation spots larger
than 1 mm2. 24 images were measured twice in order to
estimate the repeatability for length and the degree of
melanism.

Statistical analyses
Since the degree of melanism was a proportion, it was
arcsine transformed for the statistical analyses, i.e. we
calculated the arcsine of the square root of the propor-
tion. Back-transformation, when needed, was done by
taking the square of the sine of the value.
We calculated the repeatability of snout-vent length

and the degree of melanism for the juveniles reared in
the common garden following [48]. In short, one-way

analysis of variance using the functions lm and anova in
R [49] was used and the repeatability was derived as:
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where MSA was the among individuals mean squares,
MSW the within individuals means squares, and n the
number of measurements per individual, i.e. two. 95%
confidence intervals for the repeatability estimates were
obtained by non-parametric bootstrap, resampling the
data 5000 times.
Latitudinal trends in the degree of melanism in adults

caught from the wild were tested by fitting a linear
mixed model using the lmer function of the lme4 pack-
age in R. The lmer function used restricted maximum
likelihood (REML) approach. Sex, latitude, snout-vent
length (used as a rough proxy for age), the interaction
of sex and latitude, and the interaction of sex and
snout-vent length were included as fixed effects, and
population as a random effect. The model was fitted to

Figure 2 Map showing the locations of the study populations
in Sweden and Finland. Data from the wild originated from the
populations marked by red circles, and populations used in the
common garden experiment are marked with larger, black circles.

Table 1 The locations of the study populations and
sample sizes (N) in the analyses

Wild data

N

Population Coordinates Females Males

Börringe, Svartesjöhus 55° 30’ N, 13° 25’ E 7 13

Revinge, Tvedöra 55° 42’ N, 13° 26’ E 10 9

Blekinge, Hemsjö 56° 19’ N, 14° 42’ E 10 10

Karlstad, Lindrågen 59° 28’ N, 13° 31’ E 11 8

Järlåsa, Häggedal 59° 51’ N, 17° 14’ E 9 9

Tärnsjö, Gullsmyra 60° 07’ N, 16° 56’ E 9 9

Söderhamn 61° 16’ N, 17° 11’ E 10 9

Härnösand 62° 37’ N, 17° 59’ E 10 10

Umeå, Grytan 63° 49’ N, 20° 14’ E 8 10

Ammarnäs 65° 54’ N, 16° 18’ E 10 10

Kiruna, Esrange 67° 51’ N, 21° 02’ E 10 10

Kilpisjärvi, Malla 69° 03’ N, 20° 47’ E 7 6

Total 111 113

Common garden data

N

Population Coordinates Families Offspring

Revinge, Tvedöra 55° 42’ N, 13° 26’ E 15 32

Abisko, Björkliden 68° 24’ N, 18° 40’ E 20 139

Total 35 171
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the arcsine transformed data and predictions of the
effect of latitude and snout-vent length were back-trans-
formed for purposes of visualization. 95% highest pos-
terior density intervals (HPDI) obtained with the
functions mcmcsamp and HPDinterval of the lme4
package were used as a confidence measure. We also
calculated the degree of phenotypic divergence (PST)
[50] between the populations as:

P
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+
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where  GB
2 was the variance between populations,

 GW
2 the variance within populations, and h2 the herit-

ability. PST was estimated for two scenarios, with herit-
ability values h2 = 1 and h2 = 0.5. The variance
components were estimated using the lmer function.
We fitted a linear mixed model with sex and snout-vent
length as fixed effects and population as a random
effect. 95% confidence intervals for the PST estimates
were obtained by non-parametric bootstrap, resampling
data 5000 times.
An estimate of FST - describing the degree of neutral

genetic divergence [51,52] - calculated based on six of
our twelve study populations was available from a pre-
vious study [39]. We calculated PST separately both for
the six populations and for all twelve populations.
We investigated the population (i.e. among population

additive genetic) effects in the degree of melanism in
metamorphosed juveniles reared in the common garden
setting. We again fitted a linear mixed model in R using
the lmer function of the lme4 package. Population,
snout-vent length, larval temperature treatment, and the
interaction of population and larval temperature treat-
ment were included as fixed effects and family as a ran-
dom effect. The model was fitted to the arcsine
transformed data. 95% highest posterior density intervals
were again used as a confidence measure. The inclusion
of family effect to the model corrected for the non-inde-
pendence of full-sib measurements, and allowed us to
estimate the upper limit for heritability h2 [44] for the
extremity length as:
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where  F
2 was the family variance and  R

2 residual

variance. Family and residual variances were assumed to
be equal between the two populations. 95% confidence
interval for the heritability estimate was obtained by
non-parametric bootstrap, resampling family data 5000
times.

Results
The repeatability for the juveniles reared in common
garden was 1.00 (F23,24 = 427.26; 95% CI: 0.98-1.00) for
snout-vent length and 0.81 (F23,24 = 9.35; 95% CI: 0.25-
1.00) for the degree of melanism. The snout-vent length
was 16.9-27.1 mm in the common garden juveniles and
53.3-90.6 mm in the adults from the wild.
We found an increasing latitudinal trend in the degree

of melanism in the adults caught from the wild, with
suggestive sex differences so that melanism in females
increased more steeply with latitude than in males (Fig-
ure 3a, Table 2). The snout-vent length had a weak
positive effect on the degree of melanism, but there was
no significant interaction effect of sex and snout-vent
length (Figure 3b, Table 2). The degree of phenotypic
divergence, PST, for all twelve wild populations was 0.36
(95% CI: 0.26-0.45) assuming h2 = 1, and 0.53 (95% CI:
0.43-0.63) assuming h2 = 0.5. PST for the six populations
for which the degree of neutral marker divergence, FST,
was available, was 0.42 (95% CI: 0.32-0.52) for h2 = 1,
and 0.59 (95% CI: 0.48-0.69) for h2 = 0.5. FST published
in [39] for these populations was 0.24 (95% HPDI: 0.18-
0.30).
Snout-vent length did not have a significant effect on

the degree of melanism in juveniles reared in common
garden (Table 3). There was a significant population dif-
ference in melanism suggesting additive genetic varia-
tion among populations (Figure 4, Table 3), but it was
in the opposite direction than the latitudinal trend in
the wild. The difference back-transformed from the
effect estimates (Table 3) to difference in the degree of
melanism between northern and southern population in
the high larval temperature treatment corresponded to
9.8 percentage points. Cold larval temperature treatment
increased the degree of melanism among the juveniles
originating from the northern population (Figure 4,
Table 3). In these, the difference in the degree of melan-
ism between temperature treatments corresponded to
4.8 percentage points. The estimated upper bound for
the heritability of melanism was 0.21, but the confidence
intervals were wide (95% CI: 0.00-0.53).

Discussion
The thermoregulation hypothesis, stating that dark indi-
viduals have a fitness advantage in low temperatures as
compared to light individuals due to their ability to heat
up faster [14], is perhaps the most prominent adaptive
explanation for melanism in ectotherms. However, few
studies have tested whether the pigmentation clines
observed in nature and explained as thermal adaptations
are genetically based as assumed by the adaptive
hypothesis (but see e.g. [30,32,33]). Here we detected an
increasing latitudinal trend across the Scandinavian
Peninsula in the degree of melanism in common frogs,
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but found no evidence of corresponding genetic differ-
entiation in a common garden experiment with different
larval temperature treatments. In fact, the observed
genetic differences between populations were in the
opposite direction of the latitudinal trend observed in
the wild. As the evidence thus points against direct local
adaptation as an explanation for the patterns we found
in the wild, it seems plausible that environmental plasti-
city and/or ontogenetic plasticity together with geo-
graphic differences in age structure are responsible for
the observed latitudinal trend. Interestingly, the trend
persisted even after correcting for differences in snout-
vent length - a rough proxy for age [53] - suggesting
that the cline in nature could be more than a simple
reflection of differences in age structure. This interpreta-
tion was supported by a significant environmental effect
in the common garden experiment, with the juveniles
originating from the northern population exhibiting
higher degree of melanism in the colder larval rearing
environment (Table 3). While previous studies on
amphibians have found that both larval and adult col-
oration is affected by temperature and developmental
stage [54-56], this is, to our knowledge, the first to sug-
gest that the effects of larval environment on coloration

can be carried over to the terrestrial stage. In light of
these results, it is not necessarily surprising that an ear-
lier study [27] did not find an association between
MC1R sequence variation and variation in the degree of
melanism in our study species.
Comparison of quantitative and neutral marker differ-

entiation, as measured by QST and FST, respectively, is
often used to infer the relative roles of natural selection
and random drift in among-population divergence
[51,52]. The argument is that when QST exceeds FST
there is evidence of divergent selection, when the
reverse is true there is support for stabilizing selection,
and when QST and FST are not significantly different,
random genetic drift as the only cause of phenotypic
divergence cannot be excluded [51]. When QST esti-
mates have not been available, PST values calculated
from purely phenotypic data have been used as surro-
gates [50,57]. In our study, the degree of phenotypic
divergence, measured as PST, was significantly higher
than the FST estimate published in [39] for our popula-
tions, when the more realistic PST value estimated
assuming h2 = 0.5 was used. Hence, looking naïvely at
the phenotypic trend and divergence, without a further
genetic analysis or study of population demography, the

Figure 3 The effects of latitude and body length on the degree of melanism. The figure shows the relationship between a) latitude and
the degree of melanism and b) snout-vent length and the degree of melanism in adult common frogs caught from the wild. The degree of
melanism is defined as the proportion of dorsal surface area covered by pigmentation spots large than 1 mm2. In figure (a) the circles represent
means and vertical bars standard errors of the means. In figure (b) the circles represent partial residuals after correcting for population effects
and latitude (fixed at the mean of the data, 61°16’N). The curves in both figures describe the predicted degree of melanism. The prediction
curves and partial residuals are based on a linear mixed model incorporating sex, latitude, snout-vent length, the interaction of sex and latitude,
and the interaction of sex and snout-vent length as fixed effects, and population as a random effect. The model was fitted to arcsine
transformed data. The curves are back-transformed predictions and hence not linear.
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results suggest that the populations might have diverged
under natural selection consistent with thermal adapta-
tion hypothesis of melanism. However, when looking at
the genetic population effects, not only do we find that
there is no direct genetic basis for the latitudinal trend,
but also that the observed population effects are to the
opposite direction of the cline. Our results are thus in
line with the criticism of the use of PST in studies of
wild populations [58].
The problem of disentangling genetic and environ-

mental effects in studies of geographic or temporal phe-
notypic variation is a general one [16,59,60]. The
relevance of this issue is likely to increase with ongoing
rapid anthropogenic changes in the environment and
the increasing integration of evolutionary biology to nat-
ure conservation in predicting the long-term effects of
these changes [16]. Our study cautions once again
against interpreting phenotypic trends - even if making
perfect evolutionary sense - as evidence of local adapta-
tion without explicit genetic analyses. In other words,
environmental plasticity or even plain ontogeny can pro-
duce patterns that conform precisely to those expected
under adaptive hypotheses (see also e.g. [59,61,62]).
Environmental plasticity itself can be either adaptive

or non-adaptive [63]. Although somewhat speculative

with only two populations, it is interesting to note that
while larval rearing temperature had a significant effect
on the degree of melanism in the common garden juve-
niles in the northern population (Table 3), there was
also a significant interaction between population and
temperature, with the southern population predicted to
reverse the pattern observed in the north. This differ-
ence suggests that if melanism serves a thermoregula-
tory function in the north, natural selection might have
acted on environmental plasticity, causing the indivi-
duals in the north to respond to cold temperature with
increased melanistic coloration. However, the limited
number of populations and the lack of accurate age data
from the wild prevent any firm conclusions. The
observed pattern in the wild might also reflect plain age
differences or adaptive environmental plasticity serving
other functions, such as protection from ultraviolet
radiation [12], crypsis [4,5], disease resistance [13], or
multiple simultaneous functions [14]. Finally, the pattern
might arise from a correlation with an adaptive trait, or
from entirely non-adaptive environmental plasticity [63].
Without measuring age and selection, the adaptive sig-
nificance of the degree of melanism in the common frog
is, however, speculative and the realm of future studies.

Table 2 Fixed effect estimates for the degree of
melanism in wild-caught adult common frogs

95% HPDI

Effect Estimate SE Lower Upper

Intercept -1.875 0.387 -2.587 -1.161

Sex 0.325 0.291 -0.250 0.900

Latitude 0.030 0.007 0.018 0.042

Latitude × Sex -0.009 0.005 -0.018 0.001

Snout-vent length 0.004 0.002 -0.000 0.009

Snout-vent length × Sex 0.002 0.003 -0.004 0.008

The data was arcsine transformed. The model was a linear mixed model
incorporating population as a random effect. Females were used as the
reference sex. SE = standard error, 95% HPDI = highest posterior density
interval.

Table 3 Fixed effect estimates for degree of melanism in
juvenile common frogs reared in common garden

95% HPDI

Effect Estimate SE Lower Upper

Intercept 0.230 0.177 -0.136 0.569

Snout-vent length -0.005 0.008 -0.021 0.013

Population 0.167 0.066 0.041 0.298

Temperature 0.092 0.030 0.027 0.146

Population × Temperature -0.128 0.030 -0.275 -0.001

The data was arcsine transformed. The model was a linear mixed model
incorporating family as a random effect. There were two temperature
treatments, ‘Warm’ (used as a reference) and ‘Cold’, and two populations,
‘North’ = Björkliden (68°24’N; used as a reference) and ‘South’ = Tvedöra (55°
42’N). SE = standard error, 95% HPDI = highest posterior density interval.
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Figure 4 Degree of melanism in juvenile common frogs.
Boxplot of the raw data from two populations (’North’ = Björkliden,
68° 24’ N; and ‘South’ = Tvedöra, 55° 42’ N) reared in common
garden. The degree of melanism is defined as the proportion of
dorsal surface area covered by pigmentation spots large than 1
mm2. The boxes extend from 25th to 75th percentile, and the
horizontal bands within the boxes are the medians. The whiskers
represent the lowest and highest observation within 1.5 times the
interquartile range from the lower and higher quartile, respectively.
Labels ‘High’ and ‘Low’ describe temperature treatments.
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Our study comes with a number of caveats. The sam-
ple size in the common garden data was small in terms
of populations, families and offspring. This was reflected
e.g. in the fact that the confidence interval for the upper
limit for heritability was very wide and prohibited any
firm conclusions on heritability. However, the small
sample size is taken into account in the confidence
intervals and highest posterior density intervals, and
hence the results are robust e.g. as to finding that in the
common garden there was no population difference
similar to that observed in the wild. The low number of
offspring in the common garden analysis resulted partly
from low survival in the southern population, but
although mortality was thus high, there is no reason to
suspect that it would have influenced the results. It is
also true that the age structure of the wild and common
garden data did not overlap, a fact reflected in the dif-
ference between the ranges of snout-vent lengths (see
Results). Finally, while environmental conditions can be
controlled in the laboratory, this also often unavoidably
distorts them from natural conditions. For example,
while we had two larval temperature treatments, neither
of them arguably fully corresponded to the normal tem-
perature conditions common frogs experience in the
wild - while temperatures in the experiment were con-
stant, in the wild they fluctuate daily and seasonally and
vary spatially. In addition, the temperature treatments
were limited to larval stage, ending after metamorphosis.
Although these issues should be kept in mind when
interpreting our results, the conclusions we have drawn
should be justified in the light of the available evidence
and information.

Conclusions
Latitudinal and altitudinal clines in the degree of melan-
ism provide an opportunity to study both the evolution
of coloration and evolutionary processes in general. A
genetic basis is necessary for any adaptive explanation
for such a cline to be applicable. While we observed a
positive correlation between latitude and the degree of
melanistic pigmentation in the common frog, there was
no straightforward genetic foundation for it. This
emphasizes the potential role of environment in the
degree of melanism, while leaving population demo-
graphic explanations and the possible genetic basis of
environmental plasticity to be addressed in future
studies.
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