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On Hill et al’s conjecture for calculating the
subtree prune and regraft distance between
phylogenies
Simone Linz

Abstract

Background: Recently, Hill et al. [1] implemented a new software package–called SPRIT–which aims at calculating
the minimum number of horizontal gene transfer events that is needed to simultaneously explain the evolution of
two rooted binary phylogenetic trees on the same set of taxa. To this end, SPRIT computes the closely related so-
called rooted subtree prune and regraft distance between two phylogenies. However, calculating this distance is
an NP-hard problem and exact algorithms are often only applicable to small- or medium-sized problem instances.
Trying to overcome this problem, Hill et al. propose a divide-and-conquer approach to speed up their algorithm
and conjecture that this approach can be used to compute the rooted subtree prune and regraft distance exactly.

Results: In this note, we present a counterexample to Hill et al’s conjecture and subsequently show that a
modified version of their conjecture holds.

Conclusion: While Hill et al’s conjecture may result in an overestimate of the rooted subtree prune and regraft
distance, a slightly more restricted version of their approach gives the desired outcome and can be applied to
speed up the exact calculation of this distance between two phylogenies.

Background
In recent years, one of the main research foci in the
development of theoretical frameworks that aim at
approaching questions in evolutionary biology turns
from the reconstruction of phylogenetic trees towards
the reconstruction of phylogenetic networks. This has
partly been triggered by the exponentially growing
amount of available sequence data arising from whole
genome sequencing projects and a successive detection
of genes whose sequences are chimeras of distinct
ancestral gene sequences, and hence, are likely to be the
result of reticulation (e.g. horizontal gene transfer or
hybridization). Although evolutionary biologists are now
mostly acknowledging the existence of species arising
from reticulation within certain groups of organisms,
the extent to which such events have influenced the
evolutionary history for a set of present-day species
remains controversially discussed until today. To shed
light on this question, Hill et al. [1] recently published a

study that is centered around the identification and
quantification of horizontal gene transfer. The authors
have implemented a new software package–called
SPRIT–consisting of a heuristic as well as an exact algo-
rithm, applied it to several data sets of variable size, and
compared their results and running times with those
obtained from other algorithms that have previously
been developed to analyze reticulate evolution.
Algorithmically, SPRIT draws on ideas that are bor-

rowed from work that has been done in the context of
the graph-theoretic operation of rooted subtree prune
and regraft (rSPR) which is a popular tool to quantify
the dissimilarity between two trees. Loosely speaking, an
rSPR operation cuts (prunes) a subtree and reattaches
(regrafts) it to another part of the tree. A lower bound
on the number of reticulation events that is needed to
simultaneously explain two phylogenies is the minimum
number of rSPR operations that transform one phylo-
geny into the other [2,3]. This minimum number, which
is computed by SPRIT, is referred to as the rSPR dis-
tance. However, since the task of calculating this
distance is an NP-hard optimization problem, the
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application of exact algorithms is often restricted to
medium-sized data sets.
In trying to overcome this obstacle, thus to speed up

SPRIT, Hill et al. propose a divide-and-conquer-type
reduction that breaks the problem into several smaller
and more tractable subproblems before calculating the
rSPR distance for each subproblem separately. Briefly,
the authors conjecture that the sum of rSPR distances
over all smaller subproblems is equal to the rSPR dis-
tance of the original unreduced trees. In this note, we
give a counterexample to their conjecture. Nevertheless,
we subsequently show that a slightly more restricted
version of their conjecture holds and can be used to
exactly calculate the rSPR distance between two phylo-
genies by breaking the problem into smaller
subproblems.
The remainder of this paper is organized as follows.

The next section contains some mathematical prelimin-
aries that are needed to formally state Hill at al’s conjec-
ture. This conjecture is then given in the subsequent
section which also contains the aforementioned counter-
example. We then show that a modified version of the
conjecture holds in the following section. We end this
note with a brief conclusion.

Preliminaries
In this section, we give some preliminary definitions that
are used throughout this paper. Unless otherwise stated,
the notation and terminology follows [4].

Phylogenetic Trees
A rooted binary phylogenetic X-tree  is a rooted tree
whose root has degree two while all other interior ver-
tices have degree three and whose leaf set is X . The set
X is the label set of  and is frequently denoted by
 ( ) . Furthermore, let X′ be a subset of X. The mini-
mal rooted subtree of  that connects all the leaves in
X′ is denoted by  (X′) while the restriction of  to X′,
denoted by  |X′, is the rooted binary phylogenetic
X′-tree obtained from  (X′) by contracting all degree-
two vertices apart from the root.

Rooted Subtree Prune and Regraft
Let  be a rooted binary phylogenetic X-trees. For the
purposes of the upcoming definition, we view the root
of  as a vertex r adjoined to the original root by a
pendant edge. Now, let e = {u, v} be any edge of  that
is not incident with r such that u is the vertex on the
path from r to v . Let ′ be the rooted binary phyloge-
netic X-tree obtained from  by deleting e and reat-
taching the resulting subtree with root v via a new edge,
say f , as follows. Subdivide an edge of the component
that contains r with a new vertex u′, join u′ and v with
f, and contract u. Then ′ has been obtained from 

by a rooted subtree prune and regraft (rSPR) operation.
The rSPR distance between two rooted binary phyloge-
netic X-trees  and ′ is the minimum number of
rSPR operations that transform  into ′ . We denote
this distance by drSPR( , )  ′ .

Agreement Forests
Let  and ′ be two rooted binary phylogenetic
X-trees. Again, to make the following work, regard the
roots of  and ′ as a vertex r adjoined to the origi-
nal root by a pendant edge. An agreement forest
    = { , , ,..., }p k1 2 for  and ′ is a partition of
X ∪{ } such that  ∈ and the following properties
are satisfied:

(i) for all i Î {r, 1, ..., k}, we have    | i i≅ ′| ,

and
(ii) the trees in { ( ) : { , ,..., }} i i k∈  1 and
{ ( ) : { , ,..., }}′ ∈ i i k 1 are vertex-disjoint subtrees
of  and ′ , respectively.

Throughout the remainder of this note, we will inter-
changeably refer to { | , | , | ,..., | }        1 2 k

and { , ,..., }   1 k as an agreement forest for  and
′ . A maximum-agreement forest for  and ′ is an

agreement forest for  and ′ with the smallest num-
ber of elements over all agreement forests for  and

′ . Note that a maximum-agreement forest for  and
′ is not necessarily unique.
Bordewich and Semple [5] established the following

characterization which directly relates the rSPR distance
to the number of elements in a maximum-agreement
forest and is crucial to many algorithms that exactly
compute the rSPR distance between two rooted binary
phylogenetic trees.
Theorem 1. Let  and ′ be two rooted binary phy-

logenetic X-trees, and let { , , ,..., }    1 2 k be a maxi-
mum-agreement forest for  and ′ . Then

d krSPR( , ) .  ′ =

Clusters
Let  be a rooted binary phylogenetic X-tree, and let A
be a subset of X with |A| ≥ 2. We say that A is a cluster
of  if there is a vertex v in  whose set of descen-
dants is precisely A. We denote this cluster by  ( )v .
We next consider several different types of clusters that

will play an important role in the remainder of this paper.
Let  and ′ be two rooted binary phylogenetic X-
trees, and let A be a cluster that is common to  and

′ ; that is there exists a vertex v in  and a vertex ′v
in ′ such that   ( ) ( )v v= ′′ . Furthermore, let u
(resp. u′) be the parent vertex of v (resp. ′v ) in  (resp.
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w v≠ ), and let w (resp. w′) be the child vertex of u (resp.
u′) with w v≠ (resp. ′ ≠ ′w v ). If no proper subset of A is
a common cluster of  and ′ , we refer to A as a mini-
mal cluster. Moreover, A is a solvable cluster if A is mini-
mal and   ( ) ( )u u= ′′ . Lastly, we say that A is a
subtree-like cluster if A is a solvable cluster and
    | |( ) ( )w w≅ ′ ′′ . Roughly speaking, the condition
    | |( ) ( )w w≅ ′ ′′ is satisfied if the subtree with root
w in  is identical to the subtree with root w′ in ′ .
We refer to  | ( )w as the common subtree associated
with A and note that it can exclusively consist of an iso-
lated vertex. For example, A = {1, 2, ..., 6} is a solvable
cluster of the two rooted binary phylogenetic X-trees 
and ′ that are shown in Figure 1 since   ( ) ( )u u= ′′
= {1, 2, ..., 12}. However, as
 |( , , , ) |( , , , )7 8 12 7 8 12… /≅ ′ … , it follows that A is
not a subtree-like cluster of  and ′ .
Now, let Θ Î {minimal, solvable, subtree-like}. We

next describe algorithmically how to obtain a sequence
of tree pairs–which is important to mathematically state
Hill et al’s conjecture–by decomposing two rooted bin-
ary phylogenetic X-trees  and ′ into smaller sub-
trees. As previously, view the roots of  and ′ as a
vertex r adjoined to the original root by a pendant edge,
and regard r as part of the label set; that is
 ( ) { }= ∪X  . Setting i to be 1, let Ai be a common
Θ cluster of  and ′ with | ( ) | | |  − >Ai 1 . Let  i
denote the rooted binary phylogenetic tree  | Ai
(viewing the root of  i as a vertex ri adjoined to the
original root by a pendant edge) and reset  to be the
tree obtained from  by replacing  ( )Ai with a new
vertex ai . Analogously, let ′ i denote the rooted binary
phylogenetic tree ′ | Ai (viewing the root of ′ i as a
vertex ri adjoined to the original root by a pendant
edge) and reset ′ to be the tree obtained from ′ by
replacing ′ ( )Ai with a new vertex ai . If  and ′

contain a Θ cluster Ai+1 with | ( ) | | |  − >+Ai 1 1 , stop
or increment i by 1 and repeat this process; otherwise,
stop. Eventually, we obtain a sequence

( , ),...,( , ),( , )     1 ′ ′ ′1 t t  

of pairs of rooted binary phylogenetic trees, where  
and ′  denote the two trees after the replacement of
 ( )At and ′ ( )At with a vertex at. We call this
sequence a cluster sequence of  and ′ with respect
to a specific cluster type Θ. An example of a cluster
sequence with respect to Θ = solvable for the two
rooted binary phylogenetic trees depicted in Figure 1 is
shown in Figure 2.

Hill et al’s Conjecture and a Counterexample
We begin this section by formally stating Hill et al’s
conjecture which was introduced in [1].
Conjecture 2. Let  and ′ be two rooted binary

phylogenetic X-trees. Let ( , ),...,( , ),( , )     1 ′ ′ ′1 t t   be
a cluster sequence for  and ′ with respect to Θ = sol-
vable. Then

d d d
i

t

i irSPR rSPR rSPR( , ) ( , ) ( , ).     ′ = ′ + ′
=
∑

1

  (1)

Next, we detail a counterexample to the above conjec-
ture which is based on the two rooted binary phyloge-
netic X-trees  and ′ that are shown in Figure 1. A
maximum-agreement forest  for  and ′ contains
5 elements and is shown in the top of Figure 3. By The-
orem 1, this implies that drSPR( ),  ′ = 4 . Now, con-
sider the cluster sequence with respect to Θ = solvable
for  and ′ that contains three tree pairs and is
depicted in Figure 2. The first tree pair (  1 1, ′ ) consists

Figure 1 Two rooted binary phylogenetic X-trees  and ′ . Note that  and ′ have an additional vertex r adjoined to the original
root by a pendant edge.
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of the restricted subtrees of  and ′ whose leaf set is
the solvable cluster A1 = {1, 2, ..., 6} of  and ′ ; thus
 1 1 1= ∪|( { })A  and ′ = ′ ∪ 1 1 1|( { })A  . Simi-
larly, the second tree pair (  2 2, ′ ) consists of the
restricted subtrees of the two trees that have been

obtained from  and ′ by replacing  ( )A1 and
′ ( )A1 , respectively, with a single leaf a1 whose leaf set

is the solvable cluster A2 = {7, 8, ..., 12}. Lastly, the third
tree pair (   , ′ ) can be regarded as being obtained
from  and ′ by replacing  ( )A1 and ′ ( )A1 with

Figure 2 A cluster sequence with respect to Θ = solvable for the two rooted binary phylogenetic X-trees  and ′ shown in
Figure 1. Details on how the tree pairs have been obtained are given in the text.

Figure 3 Maximum-agreement forests. Top: A maximum-agreement forest  for  and ′ depicted in Figure 1. Bottom: A maximum-
agreement forest i for each tree pair  i and ′ i shown in Figure 2.
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a leaf a1 and replacing  ( )A2 and ′ ( )A2 with a leaf
a2. For each tree pair (  i i, ′ ) of the cluster sequence
shown in Figure 2, a maximum-agreement forest i
with i Î {1, 2, r} is depicted in the bottom part of Fig-
ure 3. Note that each forest i is the unique maxi-
mum-agreement forest for  i and ′ i Now, by
Equation 1, we have

d d drSPR rSPR rSPR 2 2 5( , ) ( , ) ( , )     1 2 1′ + ′ + ′ = + + =1 2  

which is strictly greater than drSPR( , )  ′ ; thus show-

ing that Conjecture 2 does not hold.

Using Subtree-Like Clusters to Prove Hill et al’s
Conjecture
In this section, we show that Conjecture 2 holds, if we
consider a subtree-like cluster instead of a solvable clus-
ter in each iteration of computing a cluster sequence for
two rooted binary phylogenetic trees. We first prove the
result for a cluster sequence of size two and then see that
this result generalizes to cluster sequences of greater size.
Lemma 3. Let  and ′ be two rooted binary phyloge-

netic X-trees. Let (  1 1, ′ ), (   , ′ ) be a cluster sequence
for  and ′ with respect to Θ = subtree-like. Then

d d drSPR rSPR rSPR     , , ( , ).′( ) = ′( ) + ′1 1  

Proof. Let A1 be the subtree-like cluster  ( ) { }1 1− 
of  and ′ . We start by making an observation that
is crucial for what follows. By the definition of a sub-
tree-like cluster, there exists a common subtree, say  ,
that is associated with A1 in  and ′ . Clearly,  is
also a common subtree of   and ′  . Furthermore, as
  has been obtained from  by replacing  ( )A1
with a single vertex a1 and as ′  has been obtained
from ′ by replacing ′ ( )A1 with a single vertex a1, it
is easily checked that  |(  ( ) { }∪ a1 ) is a common
subtree of   and ′  .
We now show that

d d drSPR rSPR rSPR     , , ( , ).′( ) ≤ ′( ) + ′1   (2)

Let 1 be a maximum-agreement forest for 1 and

′1 , and let  be a maximum-agreement forest for
  and ′  . By the observation prior to this paragraph,
it follows from Proposition 3.2 of [5] that  ( ) { }∪ a1
is a subset of an element, say a1 , in  . Furthermore,
let 1 be the label set of 1 with r1 Î 1 . As 1 is
an agreement forest for 1 and ′1 and as  is such
a forest for   and ′  , it follows that

      = ∪ − ∪ − ∪ −( { , }) {( { }) ( { })}1 1 11 1 1 1   a a a

is an agreement forest for  and ′ . As a1 - {a1}

always contains an element, note that
( ) ( ){ } { }  

1 11 1− −∪ a a is never the empty set.
Thus | | | | | |  = + −1 1 and, by Theorem 1, we have

d d drSPR rSPR rSPR( , ) ( , ) | | | | | | ( , )        1 1 1 1 1 1+ ′ = − + − = − ≥ ′   ..

This establishes Equation 2.
We now turn to the second part of this proof and

show that

d d drSPR rSPR rSPR( , ) ( , ) ( , ).     ′ ≥ ′ + ′1 1 ρ  (3)

Let  be a maximum-agreement forest for 
and ′ . The remainder of this part splits into
two cases. First, assume that there exists an element
in  , say m , such that m A∩ ≠ ∅1 and
m X A∩ − ∪ ≠ ∅( ) { }1  . Note that m is the only
label set with the described properties, as otherwise, 
is not an agreement forest for  and ′ .
Let  ′ = ∩ ∪m m A( ) { }1 1 , and let
 m m X A a’’ ( (( ) { })) { }= ∩ − ∪ ∪1 1 . Since  is an
agreement forest for  and ′ ,

    1 1= ∈ ⊆ ∪ ′{ : } { }A m

is such a forest for 1 and ′1 and

     = ∈ ⊆ − ∪ ∪{ : (( ) { })} { }’’X A m1

is an agreement forest for   and ′  . Second, assume

that no such element m exists. Hence, every element 
in  is either a subset of A1 or a subset of
( ) { }X A− ∪1  . Furthermore, as A1 is a subtree-like clus-
ter of  and ′ whose associated common subtree is
 , it again follows from Proposition 3.2 of [5], that  ( )
is a subset of an element, say  , in  . Now, as  is an
agreement forest for  and ′ , it follows that

   1 1 1= ∈ ⊆ ∪{ : } {{ }}A 

is an agreement forest for 1 and ′1 and

      = ∈ ⊆ − ∪ − ∪ ∪({ : (( ) { })} { }) { { }}X A aS S1 1

is such a forest for   and ′  . Regardless of

whether or not m exists, we have
| | | | | |  = + −1 1 , and therefore,

d d drSPR rSPR rSPR( , ) | | | | | | ( , ) ( , ).        ′ = − = + − ≥ ′ + ′1 21 1 1  
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This establishes Equation 3, and combining Equations
2 and 3 completes the proof of this lemma.■
The next theorem directly follows from repeated

applications of Lemma 3.
Theorem 4. Let  and ′ be two rooted binary phyloge-

netic X-trees. Let ( , ),...,( , ),( , )     1 ′ ′ ′1 t t   be a cluster

sequence for  and ′ with respect to Θ = subtree-like. Then

d d d
i

t

i irSPR rSPR rSPR( , ) ( , ) ( , ).     ′ = ′ + ′
=
∑

1

 

Conclusion
In this paper, we have shown that Hill et al’s conjecture [1]
and the underlying divide-and-conquer approach cannot
be used to calculate the rSPR distance between two phylo-
genies exactly. To provide some intuition why this conjec-
ture fails, consider the following. Let

( , ),...,( , ),( , )     1 ′ ′ ′1 t t   be a cluster sequence with

respect to Θ = solvable for two rooted binary phylogenetic
trees  and ′ . Calculating a maximum-agreement for-

est for each tree pair (  i i, ′ ), taking their union, and, for

each i Î; {1, 2, ..., t}, joining the element containing ai with
the element containing ri can potentially result in a set,
say  , which contains an element that is a subset of {a1,

a2, ..., at , r1, r2, ..., rt}. In the case of our counterexample,

 = {{ , , },{ , , },{ , , },{ , , },{ , , , },{ , ,1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 a a  1 2, }}

contains one such element. Trivially, this element is not
part of any agreement forest for  and ′ while  -

{{a1, a2, r1, r2}} is precisely a maximum-agreement forest
for  and ′ . Consequently, a divide-and-conquer

approach that exactly calculates drSPR( , )  ′ needs to

take into account the number of elements in  that are
subsets of {a1, a2, ..., at , r1, r2, ..., rt}; otherwise, the
result may be an overestimate of the exact solution.
Alternatively, one can approach the problem by finding a
strategy which guarantees that no element in  is a sub-
set of {a1, a2, ..., at , r1, r2, ..., rt }. This is the underlying
idea of Theorem 4 which uses a slightly more restricted
version of Hill et al’s conjecture and finally gives the
desired outcome. Hence, decomposing  and ′ into a
cluster sequence with respect to Θ = subtree-like can be

used to speed up the exact calculation of drSPR( , )  ′ .

However, for practical problem instances, it may be
unlikely to find many subtree-like clusters. For example,
the two phylogenies shown in Figure 1 do not have any
common subtree-like cluster. This is due to the
restricted definition of such a cluster which requires

that a vertex whose set of descendants is a common
cluster of two rooted binary phylogenetic X-trees 
and ′ has the same parent vertex than a common

subtree of  and ′ . To lessen this problem, an alter-
native approach–that has recently been published by
Linz and Semple [6]–can be applied. This paper
describes a more general divide-and-conquer approach
that exactly computes the rSPR distance between 
and ′ for when a cluster sequence

( , ),...,( , ),( , )     1 ′ ′ ′1 t t   with respect to Θ = mini-

mal for  and ′ is given. Loosely speaking, the
authors calculate a so-called minimum-weight partition

 of X ∪ {r} ∪ {a1, a2, ..., at , r1, r2, ..., rt} such that 
contains an agreement forest (not necessarily a maxi-

mum-agreement forest) for each tree pair (  i i, ′ ). To

compute  , it has been shown that applying a ‘bottom-

up’ approach which locally works on subtrees of each

tree pair (  i i, ′ ) guarantees that the number of ele-

ments in  that are subsets of {a1, a2, ..., at , r1, r2, ...,
rt} is maximized while | | is minimized.
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The new version supports both the old incorrect conjecture as well as the
new correct one to allow for comparisons to be made.”
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