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Abstract

Background: Chaperonin proteins are well known for the critical role they play in protein folding and in disease.
However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl
and McKusick-Kaufman Syndromes (BBS and MKKS, respectively) indicates that the eukaryotic chaperonin-gene
family is larger and more differentiated than previously thought. The availability of complete genome sequences
makes possible a definitive characterization of the complete set of chaperonin sequences in human and other
species.

Results: We identified fifty-four chaperonin-like sequences in the human genome and similar numbers in the
genomes of the model organisms mouse and rat. In mammal genomes we identified, besides the well-known CCT
chaperonin genes and the three genes associated with the MKKS and BBS pathological conditions, a newly-defined
class of chaperonin genes named CCT8L, represented in human by the two sequences CCT8L1 and CCT8L2.
Comparative analyses from several vertebrate genomes established the monophyletic origin of chaperonin-like
MKKS and BBS genes from the CCT8 lineage. The CCT8L gene originated from a later duplication also in the CCT8
lineage at the onset of mammal evolution and duplicated in primate genomes. The functionality of CCT8L genes
in different species was confirmed by evolutionary analyses and in human by expression data. Detailed sequence
analysis and structural predictions of MKKS, BBS and CCT8L proteins strongly suggested that they conserve a
typical chaperonin-like core structure but that they are unlikely to form a CCT-like oligomeric complex. The
characterization of many newly-discovered chaperonin pseudogenes uncovered the intense duplication activity of
eukaryotic chaperonin genes.

Conclusions: In vertebrates, chaperonin genes, driven by intense duplication processes, have diversified into
multiple classes and functionalities that extend beyond their well-known protein-folding role as part of the typical
oligomeric chaperonin complex, emphasizing previous observations on the involvement of individual CCT
monomers in microtubule elongation. The functional characterization of newly identified chaperonin genes will be
a challenge for future experimental analyses.

Background
Hsp60-like chaperonin proteins are well known for their
role in assisting protein folding and in protecting cells
from the deleterious effects of stress [1-5]. The eukaryo-
tic cell expresses representatives of two distinct groups
of chaperonin genes that are otherwise typical of

bacteria (Group I) or archaea (Group II). In eukaryotes,
Group I chaperonins are mostly expressed in mitochon-
dria and chloroplasts, and Group II chaperonins are
found in the eukaryotic cytosol [1,6-10]. Chaperonin
proteins form typical multi-subunit double-ringed struc-
tures collectively called “chaperonins” [9-13]. The Group
I chaperonins are typically formed by the products of a
single gene (groEL in bacteria; hsp60/cpn60 in mito-
chondria) assembled into a 14-subunit double-ringed
structure in bacteria and into a double or single-ringed
structure in mitochondria [14]. Eukaryotic Group II
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chaperonin proteins assemble in a similar double-ringed
oligomeric structure, called TRiC or CCT complex [15],
composed of 16 subunits that in human are encoded by
nine distinct genes (tcp1/cct1, cct2-5, cct6A-B, cct7-8)
[8-10]. The CCT complex is mostly known for its role
in folding the cytoskeleton proteins actin and tubulin
[7,16] and mutations in individual CCT subunits lead to
defects in the functioning of the cytoskeleton and mito-
sis arrest [17].
As for other chaperones, the malfunctioning of cha-

peronin proteins has been associated with various
human pathological conditions, the chaperonopathies
[18-20]. In this respect, besides the canonical cct and
cpn60 genes described above, three divergent hsp60-like
genes have been more recently identified [21-23] in
association with pathological conditions. One gene,
MKKS [21], was named for its association with the
developmental disease McKusick-Kaufman Syndrome
and was soon after also identified as BBS6 [24] for its
association with the Bardet-Biedl Syndrome (BBS),
another developmental condition involving cilium-
related dysfunction [25]. More recently two other
hsp60-like BBS genes, named BBS10 [22] and BBS12
[23], have been identified among fourteen genes (BBS1
to BBS14) so far associated with BBS. The protein pro-
ducts of MKKS/BBS6, BBS10 and BBS12 localize to the
basal body of cilia and to the centrosome [26-28]. We
will hereafter refer to the MKKS/BBS6 gene as MKKS,
and collectively to the three hsp60-like BBS genes as the
“BBS genes”. The identification of these genes provides
new perspectives on the spectrum of functionalities of
Hsp60-like proteins in eukaryotes and on their role in
development.
The recognition of chaperonopathies has increased the

importance of elucidating the entire set of chaperone
genes present in the human genome [19]. The work
reported here was conceived to: a) identify all Hsp60-
like sequences encoded in the human and other gen-
omes including all diverged chaperonin genes; b) recon-
struct the evolutionary origins and relations of diverged
chaperonin genes; c) distinguish with bioinformatics
methods functional genes from pseudogenes; d) charac-
terize structural properties of the corresponding pro-
teins. We mostly devoted our attention to the
characterization of the evolutionary history and struc-
tural properties of newly or recently identified
sequences, referring the reader to the vast amount of
published literature for information on functional/struc-
tural properties and the evolutionary history of mito-
chondrial Cpn60 or CCT-complex proteins.
Exhaustive searches of hsp60-like sequences were car-

ried out in human and other genomes following and
extending our “chaperonomics” methodological protocol
[29]. The extensive analysis of the genomes of human

and other vertebrate species lead to the identification
and characterization of many previously unknown
sequences and to the discovery of a new, mammal-spe-
cific class of chaperonin proteins. Classification, evolu-
tionary analysis and structural characterization of
diverged chaperonin-like sequences should provide valu-
able information for future studies on the functional
roles of these proteins.

Results
Chaperonin sequences in the human genome
To identify all human hsp60-like sequences we queried
the human genome using the nine human CCT subunit
and mitochondrial Cpn60 sequences. Analogous exten-
sive searches were performed in the mouse and rat gen-
omes using corresponding queries. In the human
genome, we found a total of 54 sequences with signifi-
cant similarity to Hsp60 proteins (Tables 1 and 2). Fif-
teen sequences had a NCBI Entrez [30] gene descriptor
assigned. Nine of these corresponded to the canonical
CCT-subunit sequences and one, HSPD1, encoded the
mitochondrial Cpn60 protein. Three sequences corre-
sponded to the BBS genes MKKS, BBS10 and BBS12.
We recovered two additional uncharacterized sequences
designated in the NCBI Entrez Gene database as
CCT8L1 and CCT8L2. Besides these complete Hsp60-
like sequences, a sequence domain conserved across
eukaryote species with highest similarity to the apical
domain of the CCT3 protein has also been reported in
PIKFYVE [31], a kinase belonging to the Fab1p protein
family involved in corneal pathological conditions [32].
In addition, we identified 39 other human hsp60
sequences that did not correspond to a gene descriptor
in the NCBI Entrez Gene database (Table 2). All of
these sequences contained in-frame stop codons or
frame-shifts, suggesting that they were most likely pseu-
dogenes. Thirty-five of these had not been described in
the Pseudogene.org pseudogene database [33] and 33
were not listed in the Ensembl database [34], and are
here annotated and classified for the first time. In analo-
gous searches of the complete genomes of mouse and
rat, we identified in each genome 14 chaperonin genes
(nine for the canonical CCT monomers, one for the
mitochondrial Cpn60, three BBS genes and one CCT8L
gene), 38 pseudogenes in mouse and 61 pseudogenes in
rat (see additional file 1: Table S1, for mouse sequences,
and additional file 2: Table S2, for rat sequences).

Evolutionary origins of human BBS and CCT8L genes
A maximum-likelihood (ML) phylogenetic tree of
human chaperonin-like proteins (Figure 1a) indicated
that Hsp60-like BBS proteins are monophyletic (boot-
strap support 86%) and that their common ancestor
derived from a duplication event in the CCT8 lineage
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(bootstrap support 88%). The tree also showed that the
unique ancestor of the two closely related genes
CCT8L1 and CCT8L2 also originated in the CCT8 line-
age from a more recent duplication event (bootstrap
support 75%). The relation of BBS and CCT8L proteins
with the CCT8 chaperonin subunit was confirmed with
strong conditional probability support (0.99) by Bayesian
tree construction (Figure 1b).
Although the association of BBS and CCT8L proteins

with the CCT lineage was robustly supported, the high
divergence of these sequences could produce clustering
in the trees due to long-branch attraction. To address
this concern, we built independent ML trees for each
BBS or CCT8L sequence adding them separately to the
tree of CCT subunits. All individual trees confirmed
with strong bootstrap support the association of each
BBS or CCT8L lineage with the CCT8 lineage (see addi-
tional file 3: Figure S1, additional file 4: Figure S2, addi-
tional file 5: Figure S3 and additional file 6: Figure S4).
A ML evolutionary tree including hsp60-gene homologs
found in the genomes of eighteen other vertebrate spe-
cies, including representatives of several mammals,
chicken, frogs, and fish, also confirmed the origin of
BBS and CCT8L genes from the CCT8 lineage (see
additional file 7: Figure S5).
We did not find CCT8L genes in the genomes of

chicken, Xenopus laevis, or Danio rerio, representatives
respectively of the reptile/bird, amphibian and fish
lineages. However, among mammals we identified

orthologs of CCT8L genes in genomes not only of placen-
tal mammals (Eutheria), but also of the marsupial opos-
sum (Metatheria) and of the egg-laying platypus
(Prototheria), suggesting that the CCT8L gene class origi-
nated at the onset of mammal evolution. All CCT8L gene
orthologs were intron-less, indicating that their ancestor
originated from a retro-transposition event. Two copies of
CCT8L sequences were found in human and chimp and
one CCT8L gene in all other genomes examined, includ-
ing those from the other primate rhesus monkey (Macaca
mulatta) and gray mouse lemur (Microcebus murinus)
(Figure 2), suggesting that a duplication of the CCT8L
gene occurred in Hominoidea after their separation from
old world monkeys. However, the lone gene copy of
CCT8L identified in rhesus monkey clustered with
CCT8L1 in evolutionary trees (Figure 2), suggesting an
earlier duplication of the gene and successive loss of the
CCT8L2 copy from the genome of rhesus monkey. Close
inspection of protein alignments revealed that the rhesus
monkey CCT8L sequence included an anomalously
diverged segment of about 50 amino acids of uncertain
alignment. Excluding this segment from the analysis we
obtained a different and more robustly supported tree
topology (75% vs. 20% bootstrap value, see additional file
8: Figure S6, panels a and b), consistent with a later dupli-
cation of the CCT8L gene in Hominoidea. The tree also
indicated that the removed segment was alone responsible
for the overall higher evolutionary rate predicted for this
sequence (see additional file 8: Figure S6).

Table 1 The human hsp60 genes

Name1 Alternative names Start2 End3 Str4 Chr5 Loc6 IF7 Exons8 aa9

CCT110 TCP1, CCTa, CCTa TCP-1-a 160,119,520 160,130,731 - 6 q25.3 2 12, 7 556, 401

CCT2 CCT b, TCP-1-b 68,266,317 68,280,052 + 12 q15 1 14 535

CCT3 CCT g, TCP-1-g 154,545,617 154,572,307 - 1 q23.1 3 13, 13, 12 545,544, 507

CCT4 CCT δ, TCPD, TCP-1-δ 61,950,076 61,969,146 - 2 p15 1 13 539

CCT5 CCT ε, TCP1E, TCP-1-ε 10,303,453 10,317,892 + 5 p15.2 1 11 541

CCT6A CCT ζ, CCT ζ-1, TCP-1-ζ, CCT6, Cctz, HTR3,
TCP20, TCPZ, TTCP20

56,087,036 56,098,269 + 7 p11.2 2 14, 13 531,486

CCT6B CCT ζ-2, TCP-1-ζ-2, Cctz2, TSA303, Tcp20 30,279,183 30,312,525 - 17 q12 1 14 530

CCT7 CCT h, TCP-1-h, Ccth, NIP7-1 73,320,279 73,333,494 + 2 p13.2 2 12, 7 543,339

CCT8 CCT θ, TCP-1-θ, Cctq 29,350,670 29,367,782 - 21 q21.3 1 15 548

CCT8L1 LOC155100 151,773,495 151,775,165 + 7 q36.1 1 1 557

CCT8L2 GROL, CESK1 15,451,770 15,453,440 - 22 q11.1 1 1 557

MKKS BBS6 10,333,898 10,342,162 - 20 p12.2 2 4, 4 570,570

BBS10 C12orf58, FLJ23560 75,263,727 75,266,269 - 12 q21.2 1 2 723

BBS12 C4orf24, FLJ35630, FLJ41559 123,882,498 123,884,627 + 4 q27 1 1 710

HSPD1 GROEL, HSP60, SPG13, CPN60, HuCHA60 198,060,018 198,071,817 - 2 q33.1 2 11, 11 573,573

(PIKFYVE)11 CFD, FAB1, PIP5K, PIP5K3 209,182,591 209,190,094 + 2 q34 1 5 224
1Official NCBI Entrez gene database name; 2Start and 3End of coding region; 4Strand “+” indicates sequenced strand. “-” indicates complementary strand;
5Chromosome; 6Chromosome location; 7Number of isoforms; 8Number of exons. Multiple numbers indicate the number of exons in each isoform; 9Total amino
acids; 10The official Entrez name is TCP1. CCT1 improves consistency with other subunit gene names. 11Fab1_TCP sequence domain of PIKFYVE kinase, most
similar to the apical domain of CCT3. Features refer to the domain portion of the gene/protein.
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Table 2 The human hsp60 pseudogenes

Name1 Start2 End3 Str4 Chr5 Loc6 Ex7 P/D8 Ka/Ks9 LRT10 FS11 SC12 aa13

CCT1-1P 19,986,638 19,987,216 + 12 p12.2 1 P 0.75 0.16 5 2 190

CCT1-2P 41,621,756 41,623,646 - 5 p13.1 2? D 1.21 0.15 7 5 512

CCT1-3P14 42,801,030 42,802,033 + 7 p14.1 3 D 0.68 2.10 1 1 367

CCT3-1P 16,177,578 16,178,178 + 8 p22 1 P 1.02 0.0 2 2 159

CCT4-1P 64,177,578 64,409,590 + X q12 3 D 0.65 1.76 0 3 512

CCT4-2P 140,344,301 140,345,787 - 7 q34 4 D 0.82 1.24 2 10 278

CCT5-1P14,15 78,382,086 78,382,680 + 13 q31.1 1 P 0.81 0.20 3 4 549

CCT5-2P15 78,382,866 78,382,967 - 13 q31.1 1 ? - - - 1 34

CCT5-3P 114,876,388 114,877,290 + 5 q22.3 1 P 0.25 2.12 6 3 201

CCT6-1P 14,692,965 14,693,954 - 5 p15.2 1 P 1.00 0.0 2 2 330

CCT6-2P 109,013,584 109,014,117 - 11 q22.3 1 P 0.90 0.0 0 2 178

CCT6-3P16 64,162,812 64,171,325 + 7 q11.21 8 D 0.43 3.06 5 4 289

CCT6-4P 191,915,332 191,916,879 + 3 q28 1 P 0.57 6.90** 9 4 292

CCT6-5P14,16 64,853,564 64,865,440 + 7 q11.21 10 D 0.84 0.34 12 6 399

CCT7-1P14 92,251,627 92,307,366 - 5 q15 1 P 0.45 1.88 3 5 145

CCT7-2P 150,242,815 150,243,240 + 6 q25.1 1 P 0.87 0.10 3 4 552

CCT8-1P14 145,141,482 145,143,137 - 1 q21.1 1 P 1.14 0.10 2 3 561

HSPD1-1P14 135,744,902 135,745,039 - 5 q31.1 1 P 1.46 0.27 0 0 48

HSPD1-2P14,17 21,919,402 21,920,175 - 5 p14.3 1 P 0.90 0.10 1 1 264

HSPD1-3P 43,602,029 43,602,280 - 20 q13.12 4 D - - 0 1 84

HSPD1-4P 88,065,673 88,066,269 + 6 q15 1 P 0.55 1.08 4 5 199

HSPD1-5P14 55,191,053 55,192,769 + 12 q13.2 1 P 0.56 3.08 2 1 499

HSPD1-6P14 36,783,612 36,785,195 - 3 P22.3 1 P 0.59 2.46 2 2 443

HSPD1-7P18 7,263,938 7,265,475 + 8 p23.1 1 P 1.12 0.18 5 4 396

HSPD1-8P 145,986,418 145,987,946 + 4 q31.21 1 P 0.63 2.32 4 3 458

HSPD1-9P18 7,785,932 7,787,502 - 8 p23.1 1 P 0.91 0.08 5 3 416

HSPD1-10P 8,058,884 8,082,857 + 12 p13.31 2? D 0.78 0.94 1 1 307

HSPD1-11P 95,130,459 95,132,169 + 5 q15 5 D 0.74 2.44 6 6 375

HSPD1-12P 78,321,372 78,323,341 + 13 q31.1 1 P 0.62 4.98* 5 4 410

HSPD1-13P 153,068,626 153,068,943 + 6 q25.2 1 P 0.54 2.84 1 2 108

HSPD1-14P14 37,465,288 37,466,827 - 13 q13.3 4 D 0.68 3.3 6 3 361

HSPD1-15P 19,269,394 19,270,353 + 5 p14.3 4 D 0.74 1.24 4 4 241

HSPD1-16P 105,082,802 105,083,755 + 11 q22.3 2? D 0.51 6.24* 5 4 199

HSPD1-17P 34,077,070 34,078,293 + 1 p35.1 3 D 0.74 1.48 2 2 217

HSPD1-18P 56,105,684 56,108,736 + 20 q13.32 5 D 0.48 10.84** 3 2 299

HSPD1-19P 50,318,868 50,319,008 + 10 q11.23 1 ? 2.42 0.72 0 0 47

HSPD1-20P 78,924,341 78,924,478 - 12 q21.31 1 ? 0.40 3.08 0 0 46

HSPD1-21P 60,994,430 60,994,876 - 5 q12.1 6 D - - 0 6 155

HSPD1-22P 29,181,851 29,183,334 - 21 q21.3 2? D 0.69 1.4 3 4 344
1Pseudogene names follow the HUGO nomenclature. They are composed of the name of the parental gene followed by a unique number identifier and the
suffix “P” (Pseudogene); 2Start and 3 End positions of the pseudogene on the chromosome; 4Strand; 5Chromosome; 6Location on the chromosome; 7Number of
exons. A question mark indicates gene fragments with uncertain numbers of exons; 8Processed (P), duplicated (D) or undetermined (?); 9Ratio of non-
synonymous vs. synonymous substitution rates; 10Likelihood Ratio Test (LRT) values. Values different from 1.0 with probability p < 0.01 (**) or p < 0.05 (*) are
shown in bold-face; 11Number of Frame-Shifts recognized in the coding region of the pseudogene; 12Number of in-frame Stop Codons recognized in the coding
region of the pseudogene; 13Length in amino acids of pseudo-translation of the recognized pseudogene sequence; 14Ten pseudogenes previously reported in
the Ensembl (roman), Pseudogene.org (italics) or NCBI (bold) databases: CCT1-3P = OTTHUMG00000033751; CCT5-1P = Human.chr13.mb78; CCT6-5P =
ENSP00000275603, Human.chr7.mb64; CCT7-1P = ENST00000399032; CCT8-1P = Human.chr1.mb145; HSPD1-1P = ENSG00000162241, Human.chr5.mb135; HSPD1-
2P = ENSP00000328369; HSPD1-5P = LOC644745; HSPD1-6P = LOC645548; HSPD1-14P = OTTHUMG00000016753; 15,16,18Tandemly duplicated;17Previously
identified as Hsp60s2 (Hsp60 short form 2).
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Differentiation rate of BBS and CCT8L proteins
The branch lengths of the trees shown in Figure 1 indi-
cate that BBS and CCT8L proteins have differentiated at
much higher rates than CCT subunits. We applied a
newly-developed, unbiased measure of differentiation
called “B-index” (see Methods) to calculate differentia-
tion of MKKS, BBS10 and BBS12 proteins from their
respective last ancestor common to Actinopterygii (ray-
finned fishes) and Sarcopterygii (including tetrapods),
determined by rooting the trees with CCT8 proteins
from corresponding fish and tetrapod species. Similarly,
we calculated differentiation of CCT8L proteins from a
eutherial ancestor rooting their tree with corresponding
sets of CCT8 proteins (see footnotes of Table 3 and
legend for Figure 2 for species represented in each tree).
We estimated for the MKKS family an average evolu-
tionary distance from their root of almost 0.7 substitu-
tions per site, corresponding to a 6-fold higher rate of
differentiation compared to the number of substitutions
estimated in CCT8 proteins over the same period of
time. For BBS10 and BBS12, we calculated a distance of

about 1.0-1.2 substitutions per site, corresponding to a
substitution rate about 8-10 times higher than in CCT8.
Finally, for the mammal-specific family of CCT8L pro-
teins, we estimated an evolutionary distance from their
mammal root of about 0.3 substitutions per site. The
smaller divergence of CCT8L proteins compared to BBS
proteins reflects the more recent origin of the CCT8L
gene. However, when scaled to the evolution of CCT8
sequences over the same periods of time, the substitu-
tion rate of CCT8L proteins was about 14-15 times
higher than in CCT8 and 1.4-2.3 times higher than in
BBS proteins.

Functional constraints in the evolution of CCT8L genes
We tested functionality of CCT8L genes from several
species estimating ratios of non-synonymous and synon-
ymous substitution rates (Ka/Ks) along their respective
lineages (see Methods). The results of this analysis are
shown in Table 4, which indicates the gene(s) analyzed
(foreground), the two genes used to identify foreground
and background branches, the estimated Ka/Ks values

Figure 1 Evolutionary trees of CCT proteins. (a) Maximum-likelihood evolutionary tree of all human chaperonin-like proteins, including CCT
monomers, MKKS, BBS10, BBS12 and the two members, CCT8L1 and CCT8L2, of the newly defined CCT8L class. Numbers associated with each
branch indicate bootstrap support from 100 replicates. Tree rooted by the archaeal thermosome alpha subunit of Sulfolobus solfataricus
(Ss_ThsA). (b) Bayesian evolutionary tree of the same sequences shown in (a). The numbers assigned to each branch indicate posterior
probabilities. Tree rooted by the thermosome alpha subunit of Thermoplasma acidophilum (Ta_ThsA). The scale bars represent the indicated
number of substitutions per position for a unit branch length.

Mukherjee et al. BMC Evolutionary Biology 2010, 10:64
http://www.biomedcentral.com/1471-2148/10/64

Page 5 of 19



and their significance. The evolutionary lineages for
which Ka/Ks values were evaluated correspond to the
branch numbers identified in the overall tree topology
shown in Figure 3. In this tree are represented the
“molecular tree” of mammal phylogenetic relations [35],
the gene duplication event involving the CCT8L gene

family in primates as inferred by this analysis, and the pre-
mammal separations of the CCT7, CCT8 and CCT8L
families of paralogs. This topology is in agreement with
the evolutionary tree of CCT8L genes (Figure 2) with the
only exception of the weakly supported position of the
CCT8L sequence from rhesus monkey (see above). The
highly significant constraints in non-synonymous substitu-
tion rates (Ka/Ks < 1.0) estimated in the overall evolution
of the CCT8L family (Table 4, foreground genes: “All
CCT8L1/2”) indicated that the CCT8L sequences are
genes generally expressing functional proteins. In evaluat-
ing Ka/Ks ratios for individual CCT8L gene lineages
(Table 4), significantly constrained evolution (Ka/Ks < 1.0)
was detected for branches leading to most sequences,
including those of murids, lemur, cow, dog, elephant, mar-
supial, and to the human CCT8L1 and CCT8L2 group
along the hominoid lineage. Constrained evolution was
also estimated for the CCT8L genes of armadillo and rhe-
sus monkey, and for human CCT8L1 and human and
chimp CCT8L2 after divergence of human and chimp,
although in these cases Ka/Ks values did not reach signifi-
cance. In the cases of the human and chimp CCT8L1 and

Figure 2 Evolutionary tree of CCT8L sequences. ML tree of
CCT8L sequences from various mammal genomes. The homolog of
human CCT8L1 in chimp (Ptr) is characterized as pseudogene and is
shown in bold-italics font. Species abbreviations: Bt, Bos taurus
(cow); Cf, Canis lupus familiaris (dog); Dn, Dasypus novemcinctus
(nine-banded armadillo); Dr, Danio rerio (zebrafish); Ec, Equus
caballus (horse); Ga, Gasterosteus aculeatus (stickleback, fish); Gg,
Gallus gallus domesticus (chicken); Hs, Homo sapiens (human); La,
Loxodonta africana (african bush elephant); Md, Monodelphis
domestica (south american gray short-tailed opossum, marsupial);
Mm, Mus musculus (mouse); Mmu, Macaca mulatta (rhesus monkey);
Mmur, Microcebus murinus (gray mouse lemur); Oa, Ornithorhynchus
anatinus (platypus); Ol, Oryzias latipes (the medaka or japanese
killifish); Pp, Pongo pygmaeus (northwest bornean orangutan); Ptr,
Pan troglodytes (chimpanzee); Rn, Rattus norvegicus (rat); Tn,
Tetraodon nigroviridis (spotted green pufferfish); Tr, Takifugu rubripes
(japanese pufferfish); Xl, Xenopus laevis (african clawed frog,
amphibian); Xt, Xenopus tropicalis (western clawed frog, amphibian).
The scale bar represents the indicated number of substitutions per
position for a unit branch length.

Table 3 Divergence of BBS and CCT8L proteins relative to
CCT8 proteins

MKKS BBS10 BBS12 CCT8L1

No. species2 14 11 11 5

Size (WB)
3 5.7770 4.6020 5.8949 3.3859

B-index (BB)
4 0.6976 1.1079 1.0284 0.3196

Unbiased pair-wise distance (BB × 2) 1.3952 2.2159 2.0568 0.6393

LB (BB × WB)
5 4.0300 5.0987 6.0623 1.0822

Average Dij (DB)
6 2.0951 2.9660 3.2858 0.8017

CCT87

Size (WC) 5.5202 4.5503 4.3647 3.1100

B-index (BC) 0.1146 0.1373 0.0992 0.0227

Unbiased pair-wise distance (BC × 2) 0.2291 0.2747 0.1983 0.0454

LC (BC × WC) 0.6324 0.6250 0.4328 0.0706

Average Dij (DC) 0.3394 0.3687 0.2709 0.0545

BB/BC 6.0873 8.0692 10.3669 14.0793

LB/LC 6.3725 8.1579 14.0072 15.3286

DB/DC 6.1730 8.0445 12.1292 14.7101

WB/WC 1.0465 1.0114 1.3506 1.0887
1Only the human CCT8L2 branch was included in the tree. The CCT8L1 branch
had equivalent length; 2Chaperonin-BBS sequences used in the trees were
from the following species (see the legend for Figure 2 for a complete list of
abbreviations and species names). MKKS: Bt, Cf, Dr, Ec, Ga, Gg, Hs, Md, Mm,
Mmu, Ol, Rn, Tr, Xt; BBS10: Bt, Cf, Dr, Ec, Ga, Hs, Md, Mm, Ol, Rn, Tr; BBS12: Bt,
Cf, Dr, Ec, Ga, Gg, Hs, Mm, Ol, Rn, Tr, Xl; CCT8L: Bt, Cf, Hs, Mm, Rn. 3Size is the
average number of sequences contained in a cluster over evolutionary time
(see Methods); 4The B-index measures the average substitutions per site
(evolutionary distance) of the sequences within a cluster from their common
ancestor; 5L is the length of the tree (sum of the lengths of all branches);
6Average Dij is the average pair-wise evolutionary distance of the sequences;
7Estimates for CCT8 were computed over corresponding species represented
by the sets of MKKS, BBS10, BBS12 or CCT8L proteins (see footnote 2, above).
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Table 4 Ka/Ks substitution ratios in CCT8L genes evolution

Foreground genes1 Background genes1 Foreground Ka/Ks2 LRT (p)3 Foreground branches4

All CCT8L1/2 Human CCT8, Human CCT7 0.29 205.06
(<0.001)

1 to 25

Human CCT8L1 Chimp CCT8L1, Human CCT8L2 0.58 0.88 1

Chimp CCT8L1 Human CCT8L1, Human CCT8L2 1.02 0.00 2

Human CCT8L2 Chimp CCT8L2, Human CCT8L1 0.48 1.2 4

Chimp CCT8L2 Human CCT8L1, Human CCT8L2 0.39 1.8 5

Human CCT8L2 Human CCT8L1, Rhesus CCT8L 0.42 4.02
(<0.05)

4+6

Human CCT8L1 Human CCT8L2, Rhesus CCT8L 0.29 5.72
(<0.05)

1+3

Mouse and Rat CCT8L Cow CCT8L, Human CCT8L2 0.38 31.14
(<0.001)

12+13+14

Mouse CCT8L Rat CCT8L, Human CCT8L2 0.64 1.21 12

Rat CCT8L Mouse CCT8L, Human CCT8L2 0.49 5.91
(<0.05)

13

Rhesus CCT8L Lemur CCT8L, Human CCT8L2 0.73 (0.55)5 1.91 (1.22)5 8

Lemur CCT8L Human CCT8L2, Mouse CCT8L 0.29 36.82
(<0.001)

10

Dog CCT8L Cow CCT8L, Human CCT8L2 0.31 12.07
(<0.001)

16

Cow CCT8L Dog CCT8L, Human CCT8L2 0.13 113.78
(<0.001)

17

Armadillo CCT8L Elephant CCT8L, Human CCT8L2 0.36 0.57 20

Elephant CCT8L Marsupial CCT8L, Human CCT8L2 0.29 14.96
(<0.001)

21

Marsupial CCT8L Elephant CCT8L, Human CCT8L2 0.31 62.63
(<0.001)

23+24

1See text for the definition and meaning of Foreground and Background species; 2Ka/Ks is the estimated ratio of non-synonymous and synonymous substitution
rates; 3LRT, Likelihood Ratio Test results for estimated Ka/Ks vs. Ka/Ks = 1.0 (see Methods). Probabilities (p) not shown signify p > 0.05; 4Foreground-branch
numbers correspond to the numbering in the schematic tree shown in Figure 3. 5Values in parenthesis were obtained after removing an unusually diverged
region from rhesus CCT8L (see text).

Figure 3 Evolutionary relations of CCT8L genes. Schematic representation of evolutionary relations of CCT8L genes from different eukaryotic
species rooted by CCT8 and CCT7 sequences. The numbers associated with each branch identify the branches for which branch-specific Ka/Ks
values are evaluated (Table 4).
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CCT8L2 genes, the lack of significance can be related to
the loss of power of the test since few mutations accumu-
lated after separation of these sequences (see additional
file 9: Table S3). In the case of rhesus monkey CCT8L, we
found that its relatively high estimate of Ka/Ks (= 0.73)
was due to the previously mentioned 50-amino-acid
diverged region within this sequence. After removing this
region we estimated Ka/Ks = 0.55. Only for the lineage of
chimp CCT8L1 we estimated Ka/Ks ≅ 1, consistent with
differentiation of a non-functional sequence. Since this
sequence was also characterized by an internal stop codon
and a frame-shift, all evidence strongly suggests that
chimp CCT8L1 is a pseudogene.
To assess the functionality of human CCT8L sequences
we investigated their expression profiles in comparison to
those of human CCT monomers and BBS genes (see addi-
tional file 10: Table S4). Expression of CCT8L2 was con-
firmed by fifteen ESTs mostly identified from the testis,
whereas only one EST identified as a CCT8L1 transcript
has been so far reported (NCBI UniGene database,
November 20, 2009). Querying the NCBI GEO microarray
database, we found 542 expression-profile records identify-
ing expression of CCT8L2, and none identifying expres-
sion of CCT8L1 (as of November 20, 2009). It must be
noted, however, that CCT8L2 and CCT8L1 have similarity
of 97.3% at the DNA level. Similarly to CCT8L2, another
mammal-specific chaperonin gene, CCT6B, is also
expressed almost exclusively in the testis, from which 160
ESTs have been reported versus an average of 4.4 ESTs
(from 0 to 10 per tissue) found in all other tissues.

Pseudogenes
We identified in the human genome 39 sequences with
significant similarity to CCT or HSPD1 genes that either
were short fragments or were characterized by in-frame
stop codons or frame-shifts. Based on their corruption,
we classified these sequences as pseudogenes (Table 2).
Similarly, searching the mouse and rat genomes we
identified 38 and 61 pseudogenes, respectively (see addi-
tional file 1: Table S1 and additional file 2: Table S2).
Most of these sequences have not been previously
reported and are here systematically annotated and clas-
sified for the first time.
Based on phylogenetic-tree reconstructions (see addi-

tional file 11: Figure S7) or on similarity for the most cor-
rupted sequences, we identified the association of 17
pseudogenes from human, 16 from mouse and 29 from
rat with one of the nine CCT genes. None of the pseudo-
genes were related to MKKS, BBS10, BBS12 or CCT8L.
To estimate the time of origin of the pseudogenes, we
constructed trees using their translated sequences and
chaperonin subunits from various vertebrate species (see
additional file 12: Figures S8, and additional file 13: Fig-
ure S9). The trees indicated that all recognizable human

CCT pseudogenes originated in the mammal lineage after
separation from the reptile/bird lineage.
Of particular interest were the evolutionary relations

of CCT6 genes and pseudogenes. Two CCT6 gene
copies (CCT6A and CCT6B) were found, besides pla-
cental mammals, also in platypus and in opossum (see
additional file 11: Figure S7), suggesting that the dupli-
cation of the CCT6 gene occurred in mammal evolution
before separation of Theria (marsupial and placental
mammals) and Prototheria (monotremes). We con-
structed an evolutionary tree of mammal CCT6 genes
and pseudogenes (Figure 4) rooted by the corresponding
gene sequences from chicken and frog (the diverged
sequence Oa_con2651 from platypus was excluded from
this tree to avoid long-branch attraction). Surprisingly,
all recognizable human, mouse, and rat pseudogenes
belonging to the CCT6 class branched in the tree from
the CCT6A lineage after separation of the platypus,
marsupial and placental mammal lineages.
Twenty-two pseudogenes in human (Table 2), and 22

and 32 pseudogenes in mouse and rat, respectively (see
additional file 1: Table S1 and additional file 2: Table
S2), associated with the mitochondrial HSPD1 gene
(Group I cpn60). Evolutionary trees incorporating all
pseudogenes from different vertebrate species were
uninformative due to the presence among the pseudo-
genes of highly corrupted sequences, resulting in exten-
sive long-branch attraction (not shown). An ML tree
built using only translations of the most conserved pseu-
dogenes (Figure 5) showed weakly supported but consis-
tent association of the human pseudogenes with HSPD1
from primates, whereas pseudogenes from mouse and
rat all associated with murid Hspd1 sequences, also
indicating their relatively recent origin.

Ka/Ks ratio in the evolution of putative pseudogene
sequences
Our characterization of many hsp60 sequences as pseu-
dogenes was based on the presence of signs of corrup-
tion in the sequence (in-frame stop codons and frame-
shifts). However, in-frame stop codons and frame-shifts
may correspond to truncated proteins that are still func-
tional. For example, although human HSPD1-5P and
HSPD1-6P sequences contain signs of sequence corrup-
tion, EST data indicate that these sequences are
expressed and possibly functional (see additional file 14:
Table S5). To confirm our characterization, we esti-
mated Ka/Ks ratios in trees that identified the pseudo-
gene-sequence lineage (branch) including as out-group
its parental gene and the orthologous gene sequence
from chicken (see Methods). The results of these ana-
lyses (Table 2) showed in most cases Ka/Ks values not
significantly different from 1.0, as expected in the differ-
entiation of pseudogene sequences not constrained by

Mukherjee et al. BMC Evolutionary Biology 2010, 10:64
http://www.biomedcentral.com/1471-2148/10/64

Page 8 of 19



coding of functional amino acids. Significant differences
in mutation rate were estimated in the case of four
sequences. These sequences, however, contained multi-
ple in-frame stop codons and frame-shifts (Table 2).

Structural features of BBS and CCT8L proteins
Because of their high sequence divergence, it is unclear
whether BBS and CCT8L Hsp60-like proteins conserve

the typical fold of chaperonin subunits and their ability
to assemble into typical oligomeric chaperonin com-
plexes. Chaperonin monomers are characterized by
three structural domains (apical, intermediate and equa-
torial) with distinct functional roles and it was relevant
to investigate whether BBS and CCT8L proteins con-
serve each of the domains typical of chaperonins.
Experimental models of eukaryotic Group II

Figure 4 Evolutionary tree of vertebrate CCT6 proteins. ML tree of CCT6 proteins from mammals, chicken, and frog (in roman font) and
translated sequences of the related pseudogenes from human, mouse, and rat (in bold-italics font). Only one copy of CCT6 was found in
chicken and frog. Two copies, CCT6A and CCT6B, were found in all mammals examined, including marsupial (Md) and platypus (Oa). The CCT6
sequences from chicken (Gg) and from the two amphibians Xenopus laevis (Xl) and Xenopus tropicalis (Xt) were used to root the tree. All human,
mouse, and rat pseudogenes clustered with the CCT6A sequences. Numbers next to branches indicate percent bootstrap values. Only bootstrap
values > 30% are shown. For all species abbreviations see the legend for Figure 2. The scale bar represents the indicated number of
substitutions per position for a unit branch length.
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chaperonins are not available but their structural prop-
erties can be inferred by comparison with their closest
relative, the archaeal thermosome. To infer tertiary-
structure conservation in BBS and CCT8L proteins we
predicted the secondary structure for each family from
alignments of multiple sequences, excluding structure
and sequence information from other families. The
results of these predictions are schematically represented
in Figure 6a, in relation to the secondary structure

description of the PDB structure 1a6d chain A of the
thermosome subunit ThsA from Thermoplasma acido-
philum [36] (see additional file 15: Figure S10, additional
file 16: Figure S11, additional file 17: Figure S12, addi-
tional file 18: Figure S13, additional file 19: Figure S14,
and additional file 20: Figure S15 for detailed represen-
tations of multiple alignments, secondary structure pre-
dictions and alignments to the secondary-structure
elements of ThsA). In Figure 6a, the secondary structure

Figure 5 Evolutionary tree of vertebrate mitochondrial Cpn60. ML tree of mitochondrial Cpn60 proteins from mammals, chicken, and frog
(in roman font) and translated sequences of the related pseudogenes from human, mouse, and rat (in bold-italics font). Highly degraded
pseudogenes for which only fragments could be detected were not considered. Human pseudogenes clustered with primate Cpn60 sequences
whereas mouse and rat pseudogenes clustered with rodent counterparts, indicating independent evolution of these pseudogenes in these
species. For all species abbreviations see legend for Figure 2. The scale bar represents the indicated number of substitutions per position for a
unit branch length.
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Figure 6 Secondary structure predictions of chaperonin proteins. (a) Secondary structure predictions of Thermoplasma acidophilum
thermosome alpha subunit ThsA (line Ta_ThsA), human CCTs, mammal CCT8Ls and vertebrate BBSs (lines MKKS, BBS10 and BBS12) compared to
the secondary structure description of ThsA (top line 1a6d) determined from its crystal structure (PDB code 1a6d, chain A). Helices are
represented as red boxes, beta-strands as yellow boxes and loops as black lines. Secondary structure elements in 1a6d are labeled in succession
with numbers (strands) or letters (helices). The first 16 N-terminal residues of ThsA, predicted to contain a strand, are not included in the 1a6d
crystal structure (top line). Secondary structure elements in all proteins recognized as homologous to the thermosome chain elements by
sequence similarity and positional equivalence are vertically aligned. Blue circles indicate the position of sequence insertions in CCT8L and BBS
sequences. (b) The three-dimensional fold of the secondary structure elements in the thermosome structure 1a6d chain A. Red cylinders
represent helices and yellow arrows represent strands. Labels (i.e., letters and numbers) correspond to those in panel “a”. Elements not predicted
in some of the BBS and CCT8L sequences are labeled in gray. The positions of the ATP binding and hydrolysis sites are highlighted in green.
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description of ThsA is shown (line “1a6d“) in relation to
the position of the equatorial, intermediate, and apical
domains. The position of these elements in the tertiary
structure of ThsA is represented in Figure 6b. Results of
a blind test of the performance of the method on the
corresponding ThsA sequence are also shown (Figure
6a, line “Ta_ThsA”). In this test most strand and helix
elements (all “core” helices) described in the crystal
structure were correctly predicted by the method,
increasing our confidence in the reliability of other pre-
dictions. As expected, extensive conservation of pre-
dicted secondary-structure elements were also obtained
from the alignment of human CCT sequences (Figure
6a, line “CCT”) with only few discrepancies involving
mostly short beta strands (4, 5, 18, and 21) and one
short helix (P) exposed at the external surface of the
archaeal thermosome complex. Secondary-structure pre-
dictions for mammal CCT8L and for vertebrate MKKS,
BBS10 or BBS12 sequences were also largely consistent
with the secondary-structure description of thermosome
proteins. In the equatorial domain, CCT8L and BBS
structure predictions corresponded to the mostly alpha-
helical composition of this region. Variations were more
obvious in BBS12 and involved mostly terminal ele-
ments of helices (most notably helices P and Q) and
exposed beta-strands (strands 19-21). In the intermedi-
ate domain the core helical-bundle elements (helices F,
G, and K) as well as the extensive beta-sheet composi-
tion of this region were predicted in all BBS and CCT8L
proteins. Exceptions were, in all sequences, the two
short strands 5 and 6, which are part of an external
elongated loop in the thermosome structure, and, in
BBS12, the N-terminal part of helix K, which in the
thermosome protrudes towards the central cavity cover-
ing the ATP hydrolysis site (Figure 6b). The apical
domain is formed in the thermosome by a 4-strand
anti-parallel beta-sheet (strands 9, 10, 15, and 16) with
strand 10 extending into a second parallel beta-sheet
(strands 10, 12, 13, and 14). The two sheets are flanked
by a helix (J) and are surmounted by a structure com-
posed of two contacting helices (H and I) and an
extended loop including strand 11. All helices and most
strands of the apical domain were recognized in BBS
sequences. Most obvious differences were observed in
BBS12 proteins, where the long apical helix H was pre-
dicted to be shortened, and in CCT8L, where helix I
and strand 11 were not predicted.

Differentiation of monomer-monomer interaction regions
in BBS and CCT8L proteins
To investigate the potential of CCT8L and BBS proteins to
establish intra-ring and inter-ring monomer-monomer
contacts, we investigated the relative conservation of pre-
dicted contact positions in CCT, BBS and CCT8L

sequences. We identified potential contact positions in
these families based on homology to the positions involved
in inter-monomer contacts in the crystal structure of the
T. acidophilum thermosome complex (PDB code 1a6d).
After identifying all contact positions in CCT monomers,
we distinguished among them those that conserved similar
amino acid types across the nine monomers. We counted
how many amino acid types observed in all or in con-
served contact positions of CCT monomers were also
observed in the T. acidophilum Thsa sequence, in human
CCT8Ls or in human BBS sequences (Table 5). A com-
plete list of all and conserved positions considered and of
the residue types observed in these positions in all
sequences can be found in additional file 21: Table S6.
Thsa and CCT subunits conserve 89% similarity in mono-
mer-monomer contact positions, which is substantially
higher than the average similarity (62%-66%) of all homo-
logous positions between the two families. The higher
similarity of monomer-monomer contact regions is con-
sistent with functional conservation between the two
families of these positions. In contrast, the high rate of dif-
ferentiation in comparison to global average differentiation
shown in putative monomer-monomer contact positions
in BBS or CCT8L sequences (Table 5), suggests a loss of
capability to associate into a typical CCT-like oligomeric
complex. This result is consistent with the presence in
BBS proteins of inserted elements (Figure 6) that would
interfere with formation of the complex [22,23].

Conservation of ATP-binding and hydrolysis residues in
BBS and CCT8L proteins
We compared conservation in CCT, BBS and CCT8L
sequences of the ATP-binding and ATP-hydrolysis
motifs typical of chaperonins of Group II (Figure 7).

Table 5 Conservation of monomer-monomer contact
residues relative to CCT subunits1

Protein MM CMM RR Global2

ThsA 78 (83.9) 16 (94.1) 13 (86.7) 62.0-66.4

BBS12 37 (39.8) 7 (41.2) 6 (40.0) 35.5-38.0

BBS10 45 (48.4) 8 (47.1) 7 (46.7) 34.3-35.6

MKKS 42 (45.2) 8 (47.1) 7 (46.7) 48.8-51.6

CCT8L 54 (58.1) 8 (47.1) 7 (46.7) 53.4-61.1
1Conservation of archaeal ThsA and human BBS and CCT8L sequences relative
to human CCT monomers. Sequence-positions are considered conserved if
they are occupied by residue-types appearing in the homologous position in
any of the human CCT sequences. Ninety-three intra-ring contact positions
and 15 inter-ring contact positions were identified from the thermosome
structure (1ad6). Contact positions were defined by a distance of their side-
chain heavy atoms of at most 4.0Å from any heavy atom of the nearby
monomer in the thermosome structure. For each protein family, the table
indicates the number and percentage (in parenthesis) of positions conserved
among: all 93 intra-ring contact positions (MM); seventeen intra-ring contact-
positions conserved among human CCT monomers (CMM); all 15 inter-ring
contact positions, none of which were conserved among CCT monomers (RR).
2Global indicates the range of similarities (percent values) of each sequence
to human CCT-subunit proteins within all aligned positions.
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Although there is considerable variation among BBS and
CCT8L sequences at some of the ATP-binding posi-
tions, we observed complete conservation of the crucial
ATP-binding dipeptide Gly-Pro, suggesting that these
otherwise divergent proteins conserve ATP-binding abil-
ity. In the ATP-hydrolysis sites, substantial loss of con-
servation has been reported in MKKS [27] and in BBS12
[23]. In the CCT8L, MKKS and BBS10 families, unusual
substitutions are observed in phosphate-binding posi-
tions and within the catalytic triad, where only Asp is
conserved in MKKS. The effect that these mutations
may have on the hydrolytic activity in these protein
families is unclear. The high level of differentiation of
this region in BBS12 (where the ATP-hydrolysis motif is
not recognizable) strongly suggests that BBS12 has lost
hydrolytic activity.

Conservation of substrate-binding positions
Three positions crucial in determining substrate-specifi-
city of CCT monomers have been identified in the distal
region of helix I in the apical domain [37]. We analyzed
conservation at these positions across vertebrate species
in all Group II chaperonin families and in the
Fab1_TCP domain across vertebrate orthologs of the
PIKFYVE protein kinase (Table 6). These positions are
strikingly conserved within each CCT monomer type
(with the exception of CCT6B) across species and are
characteristically different between monomer types.
They are mostly conserved also in the Fab1_TCP
domain across vertebrate sequences. In contrast, in BBS
and, particularly, in CCT8L sequences, the homologous
positions are significantly more differentiated.

Discussion
We identified the full complement of chaperonin hsp60
genes and pseudogenes encoded in the human genome
and, for comparison, in the genomes of the model
organisms mouse and rat. We delimited the set of hsp60
genes encoded in the human genome to: a) nine canoni-
cal cct genes (CCT1 to CCT8 including CCT6A and
CCT6B) involved in formation of the CCT complex; b)
the cpn60 gene (HSPD1) of mitochondrial origin; c) the
three highly diverged hsp60-like BBS genes MKKS,
BBS10 and BBS12; and d) a newly characterized class of
genes, CCT8L, represented in human by CCT8L1 and
CCT8L2. We also identified a plethora of pseudogene
sequences, many of which had not been previously

Figure 7 Profile logos of ATP-binding and ATP-hydrolysis sites
in chaperonin proteins. Sequence profiles of ATP/ADP-binding
and ATP-hydrolysis sites for CCTs, CCT8L and BBS (MMKS, BBS10 and
BBS12) proteins from the multiple sequence alignments of
sequences obtained from the species listed in the legend for Figure
2. Letters indicate the amino acid types observed at each position.
The height of each stack of symbols in each position is proportional
to the information content at that position and the height of each
letter within the stack is proportional to the frequency of the
corresponding residue at that position. Residues involved in direct
contacts with base, ribose or phosphate groups, as determined by
homology to the known thermosome structures, are indicated.

Table 6 Conservation of potential substrate-binding
residue positions1

Family I2 i +12 i+42 Description

CCT1 K Y DE Lys/Tyr/Acidic

CCT2 Q L A (GQ)3 Gln/Leu/Ala

CCT3 H Y KR His/Tyr/Basic

CCT4 H F K His/Phe/Lys

CCT5 H L Q His/Leu/Gln

CCT6A D A K Asp/Ala/Lys

CCT6B DE AILMSV K (R) Acidic/Medium-Small/Lys

CCT7 Q Y D (Y) Gln/Tyr/Asp

CCT8 H Y K His/Tyr/Lys

CCT8L DILPT HLQR KNRY Variable/Variable/Polar-Basic

MKKS Q (H) FY (H) DEMQST Gln/Aromatic/Medium-
Small

BBS10 Y
(AFQS)

CLY
(W)

LMQV Tyr/Variable/Variable

BBS12 E (KLQ) KR (HQ) HNR
(ASD)

Glu/Basic/Polar-Basic

Fab1_TCP4 D (EN) I (LMV) Q Asp/Ile/Gln
1Conservation evaluated among sequences in vertebrate genomes. 2Potential
substrate binding positions, corresponding to yeast CCT1 positions 308, 309
and 312 (i = 308) [37]. 3Rare substitutions are listed in parenthesis. 4Fab1_TCP
domain of vertebrate PIKFYVE orthologs.
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reported. The comparative analyses of these families of
functional genes and of their pseudogenes revealed their
evolutionary history and relationships.
In contrast to the uncertainty of the duplication pat-

tern of canonical CCT subunits (our results and [38,39])
the origin of Hsp60-like BBS and CCT8L proteins was
unambiguously identified by phylogenetic tree recon-
structions. Our analyses indicated that hsp60-like BBS
genes originated monophyletically from a gene duplica-
tion event in the CCT8 gene lineage. In addition, we
determined that the CCT8L family also originated in the
CCT8 lineage, from a more recent retrotransposition
event. The presence of this gene family in placental
mammals, marsupials and monotremes but not in rep-
tiles/birds or other vertebrate species, indicates that this
family originated at the onset of mammal evolution,
before divergence of Theria and Prototheria. Presence
of two highly similar CCT8L genes (CCT8L1 and
CCT8L2) in the genomes of human and chimp and of a
single copy in other mammal genomes, including rhesus
monkey, suggests that the duplication of this gene
occurred in the ape lineage (Hominoidea) after its diver-
gence from the old-world monkeys (Cercopithecidae).
Multiple evidence gathered in this work indicates that
CCT8L sequences (and at least one of the two paralogs
in Hominoidea) encode for functional genes: (i) reduced
rates of non-synonymous mutation were estimated
along their lineages, as expected for functionally-con-
strained protein-coding genes; (ii) pseudogenes as
ancient or more recent than the CCT8L genes were
heavily degenerated and no pseudogenes pre-dating
mammal evolution could be identified. In contrast,
although CCT8L sequences originated early in mammal
evolution, they did not show signs of degeneration (with
the exception of the chimp CCT8L1 ortholog); (iii) mul-
tiple EST and microarray data have been collected for
CCT8L2, mostly from testis, and one EST for CCT8L1
has been reported from placental tissue (as per the Uni-
Gene EST and GEO expression data, November 23,
2009). These features taken together are strong evidence
that at least CCT8L2 in Hominoidea and the lone
CCT8L gene in other mammal lineages encode for func-
tional proteins. The sparse expression of CCT8L1 in
human and the presence of one in-frame stop codon
and one frame-shift in its orthologous sequence from
chimp raise doubts about the functionality of this
sequence.
Numerous sequences associated with cct or cpn60

genes found in the human, mouse or rat genomes were
classified as pseudogenes based on the presence of inter-
nal stop codons, frame-shifts and non-significant differ-
ence in synonymous and non-synonymous mutation
rates. Among them, the sequences HSPD1-5P and
HSPD1-6P appear to be expressed based on EST

analysis (see additional file 14: Table S5) and may repre-
sent instances of expressed pseudogenes [40]. A general
explosion of pseudogene generation in the human and
murid lineages after they separated from the carnivore
lineage has been reported [41]. Our analysis of chapero-
nin pseudogenes is consistent with this observation,
although their relatively high rate of degeneration sug-
gests that pseudogenes generated before the origin of
mammals may have degraded beyond recognition. The
intense duplication of chaperonin sequences witnessed
by the many pseudogenes identified in the human and
murid genomes, very likely provided opportunities for
multiple paralogy, resulting in the proliferation of cha-
peronin classes in the vertebrate and mammal lineages.
Although the Hsp60-like BBS and CCT8L protein

families have considerably differentiated from the cano-
nical CCT subunits and within themselves, our analyses
indicated that they still conserve the overall three-
domain structure typical of CCT proteins. Structure and
sequence variations predicted for their apical domains
may reflect distinctive substrate specificities. In particu-
lar, lack of conservation at positions crucial in providing
substrate-specificity to CCT monomers [37] suggests
that BBS and CCT8L proteins may interact with their
substrate(s) in different regions as compared with the
canonical CCT subunits. Sequence differentiation pat-
terns and acquisition of inserted elements in correspon-
dence to potential monomer-monomer contact regions
suggested that BBS and CCT8L proteins do not assem-
ble in a CCT-like complex. This prediction is supported
by experimental evidence showing that MKKS localizes
as a free monomer at the pericentriolar material of cen-
trosomes [27]. In this respect, it is also interesting to
observe that among BBS and CCT8L sequences the
ATP-hydrolysis motif “Gly-Asp-Gly-Thr”, remarkably
conserved among canonical chaperonins [42], has differ-
entiated in MKKS and in BBS12 [23,27]. This condition
may indicate that these families have lost the hydrolytic
activity necessary for the functionality of the chaperonin
complex [43-52]. It has been shown for the archaeal
thermosome complex that mutation of the ATP-hydro-
lysis-motif Asp residue prevents hydrolysis and produc-
tive protein folding [49] and that some CCT subunits,
among which CCT8, dissociate in vitro from the com-
plex in conditions that prevent hydrolysis of ATP [53].
Functionalities independent from formation of the

complex have also been reported for canonical CCT
subunits. TCP1 monomers not in complex confer
enhanced salt tolerance in plants [54]. Individual CCT
subunits have been reported to associate in vitro with
cytoskeleton structures, selectively binding to microtu-
bule filaments [55] or to actin polymerizing filaments
[56]. The localization of Hsp60-like BBS proteins at the
cilium basal body and at the centrosome [26-28]
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suggests that they may also interact and associate with,
for example, cytoskeleton structures in promoting the
correct development of cilia [28,57]. The multiple struc-
tural and experimental evidence that BBS and CCT8L
proteins do not form a canonical CCT-like complex
provides strong indication that eukaryotic Group II cha-
peronin-protein functionalities extend beyond those of
the typical oligomeric complex.

Conclusions
Chaperonin proteins are key players in ensuring and
preserving cell and organism functionality under normal
and stressful conditions and their biological and medical
importance is undeniable. The recent discovery of hsp60
genes directly implicated in specific pathological condi-
tions, the chaperonopathies, extends our understanding
of the roles of chaperonin proteins in cellular processes
and enhances awareness of their importance in pathol-
ogy [18-20]. Here, we have provided a comprehensive,
unifying framework encompassing all members of the
extended hsp60 family of genes and pseudogenes. This
unifying framework contributes to our understanding of
the evolutionary history of the extended hsp60 family
and widens our perspectives on the multiple roles that
chaperonin proteins have acquired in vertebrates. Our
findings highlight how differentiation of the chaperonin
protein family in mammals has been facilitated by
intense processes of gene duplication. The roles,
mechanisms of action, and involvement in pathogenesis
of individual chaperonin molecules beyond those typical
of their canonical oligomeric complexes constitute
aspects of chaperonin physiology particularly promising
for future experimental testing.

Methods
Identification of chaperonin genes in eukaryotic genomes
Searches of genes for Hsp60-like proteins were exhaus-
tively performed using TBLASTN [58] at Ensembl [34]
and BLAT [59] at UCSC [60] on the genome sequences
of human (NCBI Assembly 36, Genebuild Ensembl Dec
2006), mouse (NCBI Assembly m37, Genebuild Ensembl
Apr 2007) and rat (Assembly RGSC 3.4, Genebuild
Ensembl Feb 2006). We used the nine canonical human
CCT proteins and the Cpn60 protein (mitochondrial
Hsp60) as queries. We recursively queried the genomes
with the sequences recovered from previous searches
until no other Hsp60 sequences were detected. We used
both search engines also to recover the full list of anno-
tated hsp60-like genes in several other mammal gen-
omes and in chicken. Sequences from frog (Xenopus sp.)
were retrieved from the NCBI nr (non-redundant) data-
base using PSI-BLAST [61] with Cpn60 and the indivi-
dual CCT subunits as queries. To recover complete
hsp60 gene and pseudogene sequences, after the

TBLASTN searches the genomic sequences from
approximately 2,000 nt upstream to 2,000 nt down-
stream of the hit-regions were excised and the hsp60
sequences were extracted using the homology-based
gene prediction method implemented in FGENESH+
[62] at the Softberry web site [63]. For pseudogenes,
when FGENESH+ failed to recognize the complete
sequence due to in-frame stop codons or frame shifts in
the sequence, the coding region was manually recon-
structed, aligning the three-frame-translations of the
genomic sequence to the query sequence with the multi-
ple protein alignment program ITERALIGN [64]. The
Pseudogene.org [33,65] database and Ensembl [34],
Entrez [30] and HUGO [66] annotations were consulted
for the presence of annotated human pseudogenes, as
recorded in our tables of results.

Multiple sequence alignment and secondary structure
prediction
Multiple sequence alignments were obtained using
MUSCLE [67], which in previous analyses [68,69] per-
formed well when aligning divergent sequences. Align-
ments were manually adjusted as needed. Predictions of
secondary structure for each protein family were per-
formed from their multiple alignment using the Jnet
algorithm as implemented in the JPRED-3 secondary
structure prediction server [70,71].

Evolutionary tree reconstructions
To infer phylogenetic relationships, evolutionary trees
were obtained using the maximum-likelihood (ML) tree-
building procedure implemented in PHYML [72] using
the default JTT substitution model and 100 bootstrap
resampling replicates (each ML tree reconstruction
being quite time consuming). Selected trees were com-
pared with those obtained with the Bayesian approach
implemented in MrBayes 3.1 [73] using the WAG sub-
stitution model and 10,000 iterations for the MCMC
process. Conditional probabilities were estimated sam-
pling the MCMC process every 10 iterations after 2,500
burn-in iterations (sample size 750).

Estimates of evolutionary divergence of sequence families
We obtained rates of divergence among families of
sequences using a newly developed estimator, called “B-
index”. The B-index is an unbiased estimator of the
average divergence of a family of sequences from its last
common ancestor (root) that takes into consideration
the correlations among sequences determined by their
phylogenetic tree. Briefly, given a rooted tree, a terminal
branch of length di of the original tree is considered a
“cluster” of size wi = 1 and length d = di. Each fork-
structure comprising two terminal branches (clusters) of
lengths d1 and d2 and sizes w1 and w2 bifurcating from
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a stem-branch of length ds is considered in turn. The
average length d of each fork-structure is computed as
d = (d1 + d2)/2 + ds and the average size w of the struc-
ture is defined as w = [2(d1 + d2)/2 + 1ds]/[(d1 + d2)/2
+ ds] = (d1 + d2 + ds)/d. Each fork-structure is progres-
sively replaced by a corresponding cluster of length d
and size w. The procedure is repeated merging bifurcat-
ing clusters of lengths d1 and d2 and sizes w1 and w2

connected to a stem-branch of length ds into a larger
cluster of average length d = (w1d1 + w2d2)/(w1 + w2) +
ds and average size w = (d1w1 + d2w2 + ds)/d, until the
tree is reduced to two clusters connected to the root (ds
= 0). The global average differentiation D ("B-index”)
and size W can finally be computed as D = (w1d1 +
w2d2)/(w1 + w2) and W = w1 + w2. It can be shown that
DW = L is the length of the tree (sum of all branch
lengths). If two sequence families A and B are sampled
from the same set of species and WA = WB, then DB/DA

= LB/LA and the relative rate of differentiation of the
two families of sequences can be estimated by the ratio
of their tree lengths. The B-index has several advantages
compared to the most commonly used average pair-wise
sequence-similarity measure: (i) it takes into account the
correlation among sequences imposed by the topology
of the evolutionary tree; (ii) in contrast to average pair-
wise similarity, its expectations are invariant over the
number and phylogenetic relations of sequences
sampled from a cluster with the same common ancestor
and evolutionary model; and (iii) with the B-index, the
average differentiation rate of a protein family relative to
a reference family sharing the same evolutionary rela-
tions (e.g., sampled from the same set of species) is sim-
ply estimated by the ratio of the lengths of the
evolutionary trees of the two families.

Estimates of ratios of non-synonymous vs. synonymous
mutation rate (Ka/Ks)
Classification of hsp60 sequences as functional genes or
pseudogenes was supported by the absence or presence
of in-frame stop codons and frame-shifts, and by esti-
mating non-synonymous vs. synonymous mutation-rate
ratios (Ka/Ks) along relevant branches of evolutionary
trees. Estimates were obtained using the maximum-like-
lihood branch-specific model implemented in PAML4
[74]. In the case of pseudogenes, Ka/Ks values are
expected not to significantly differ from 1 (absence of
positive or negative selection at the protein level)
whereas protein-coding genes, whose evolution is domi-
nated by negative or positive selection, are expected to
be characterized, respectively, by Ka/Ks < 1 or Ka/Ks >
1. Briefly, we applied the PAML4 “branch-specific
model” creating an evolutionary tree including the
sequences whose evolutionary lineage was tested, the

appropriate sister sequence (in the case of pseudogenes,
the gene sequence from whose lineage the pseudogene
originated) and an out-group sequence. The tree branch
(es) to be tested are designated as “foreground” and
other branches as “background.” Using the branch-spe-
cific model the Ka/Ks ratio is estimated for the fore-
ground branch(es) and an analogous ratio is estimated
for the background branches. The likelihood L1 gener-
ated using this evolutionary model is compared to the
likelihood L0 of a null model where Ka/Ks for fore-
ground branches is fixed to 1.0. In the Log-likelihood
Ratio Test (LRT) the significance of the likelihood dif-
ferences between the model with free estimate of Ka/Ks
and the null model is estimated by the quantity 2•ln(L1/
L0), which approximates a c2 distribution.

Data availability
All relevant gene and pseudogene information, including
start and end positions, chromosomal location, strand,
number of exons, GenBank accession number for func-
tional genes, and Ensembl or Pseudogene.org ID for
pseudogenes, can be found in additional file 22: Table
S7. Newly annotated sequences have been approved and
deposited in the Human Genome Organization (HUGO)
database [66].
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