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Abstract

history of the Rhododendron pseudochrysanthum s. 1.

mountain ranges.

founder’s events.

Background: A complex of incipient species with different degrees of morphological or ecological differentiation
provides an ideal model for studying species divergence. We examined the phylogeography and the evolutionary

Results: Systematic inconsistency was detected between gene genealogies of the cpDNA and nrDNA. Rooted at
R. hyperythrum and R. formosana, both trees lacked reciprocal monophyly for all members of the complex. For

R. pseudochrysanthum s.l., the spatial distribution of the cpDNA had a noteworthy pattern showing high genetic
differentiation (Fst = 0.56-0.72) between populations in the Yushan Mountain Range and populations of the other

Conclusion: Both incomplete lineage sorting and interspecific hybridization/introgression may have contributed to
the lack of monophyly among R. hyperythrum, R. formosana and R. pseudochrysanthum s.. Independent
colonizations, plus low capabilities of seed dispersal in current environments, may have resulted in the genetic
differentiation between populations of different mountain ranges. At the population level, the populations of
Central, and Sheishan Mountains may have undergone postglacial demographic expansion, while populations of
the Yushan Mountain Range are likely to have remained stable ever since the colonization. In contrast, the single
population of the Alishan Mountain Range with a fixed cpDNA haplotype may have experienced bottleneck/

Background

The analysis of divergence patterns between species has
been a major focus in systematics and molecular ecology
[1-5]. Species descending from a common ancestor are
expected to differentiate from each other and eventually
attain reciprocal monophyly. Coalescence theory predicts
that sister species are likely to be polyphyletic/paraphy-
letic in their genetic composition during the early stages
after they split from their common ancestor [cf. [6]].
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As sufficient time goes by, they become reciprocally
monophyletic with the loss of complementary haplotypes.
In contrast, lack of monophyly can be a result of several
factors, such as incomplete lineage sorting, gene duplica-
tion, or hybridization [7-12]. Of them, hybridization lead-
ing to speciation has been known as one of the major
forces for the diversification in plants [13]. As many
hybridizing species remain morphologically discrete [14],
hybrids usually share traits with parental species, often
resulting in taxonomic difficulties. Interspecific gene flow
usually leads to a mixed genetic composition in hybrids,
but may have low impacts on parental species’ genomes
[cf. [15]]. Although molecular tools provide sufficient
power in detecting genetic variation, empirical data on
species delimitation are often difficult to interpret, since
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both gene introgression after speciation and shared
ancestral polymorphisms can result in species paraphyly
[15]. A complex of incipient species with different
degrees of morphological or ecological differentiation
provides an ideal model for studying species divergence.

Taiwan, an island of the island-arc system along the
western edge of the Pacific Ocean, first emerged from the
waters via collision between Eurasian and Pacific plates
about 9 million years before present (Proto-Taiwan
Stage), but attained its modern shape only 5-6 million
years ago (MYA) [16,17]. Its rugged topography is char-
acterized by hundreds of steep mountains, which in turn
provide diverse habitats along distinct vegetation zones,
including tropical, coastal evergreen forests, subalpine
shrubs and alpine tundra along the Central Mountain
Range [18]. Taiwan was connected to mainland SE Asia
by a land bridge during lower sea levels of the last glacial
maximum [19,20]; some species may have reached
Taiwan by this route and subsequently become endemic
[2,21].

Phylogeographical patterns and genetic characteristics
of populations/species are shaped by the interaction
between historical vicariance and recurrent genetic
exchanges. These evolutionary events would leave evolu-
tionary footprints in the genetic polymorphisms within
and between populations across the distributional range.
Of the geological events, regular historical glacial cycles
in the Eurasia Continent had prevalent influences on
survival and recolonization of populations/species [11].
Postglacial expansion of alpine species may follow the
phalanx model, which describes the effects of slower
expansions from refugia due to habitat constraints
[2,22,23]. That is, during interglacial periods, alpine spe-
cies moved upward to peaks and became fragmented. In
contrast, down-slope movement of alpine species during
glacial periods could connect populations that were pre-
viously isolated and allow for genetic exchange among
populations [24]. On Taiwan island, only the peaks of
high mountains over 3000 m in elevation were covered
by ice sheets during the glacial maxima.

Rhododendron, one of the largest and most widespread
woody plant genera, is distributed from the northern
temperate zone, throughout tropical Southeast Asia, to
northeastern Australia and consists of over 1000 species
[25]. Hymenanthes, one of eight subgenera comprising
Rhododendron, consists of 225 species, most of them
distributed in the Himalaya-Southwest China region
[25-28]. In Taiwan, 13 taxa occur within Rizododendron
[29]. The R. pseudochrysanthum complex consists of
R. pseudochrysanthum Hayata sensu stricto (s.s.),
R. morii Hayata, and R. rubropunctatum Hayata, all in
subgenus Hymenanthes subsection Maculifera, and all
are phylogenetically related based on molecular analyses
[30-32]. The remaining taxa of subsection Maculifera
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occur in west and central China, disjunctly from those
in Taiwan [27]. R. pseudochrysanthum s.s. is an alpine
species (3000-3900 m a.s.l.), while R. morii has a wider
range from 1650-3600 m a.s.l., with some overlap in dis-
tribution. In contrast, R. rubropunctatum is restricted to
elevations of 600-1200 m a.s.l. in northern Taiwan. The
three species of R. pseudochrysanthum complex, all dis-
tributed along the central mountain range (CMR) and
other mountain ranges west of the CMR, share morpho-
logical polymorphisms in leaf shape, petiole and flower
shape, thus making taxonomy difficult, despite the dif-
ferentiation of ecological distributions [33]. Possibly the
closest relative of this species complex is R. hyperythrum
Hayata, which is also endemic to Taiwan, occurring
1400-3700 m a.s.l. [25,28,29]. This species was pre-
viously placed in subsection Pontica [25,34], but phylo-
genetic work indicates that it is closely related to
R. pseudochrysanthum [28]. These two might be sister
species, but at present a phylogeny of subsection Macu-
lifera is lacking, so this hypothesis cannot yet be tested.
Rhododendron hyperythrum is also known to hybridise
with members of the R. pseudochrysanthum complex [33].
Closely related to R. hyperythrum, the three species of the
R. pseudochrysanthum complex with low morphological
differentiations may be recognized as a single species
(R pseudochrysanthum sensu lato [s.l.]) [25,28,29,35].

The power of molecular markers in elucidating plant
phylogeography has been detected in many studies
[2,36-41]. Comparative phylogenies between biparental
(nuclear) and uniparental (chloroplast and mitochon-
drial) markers are useful for resolving phylogeographic
patterns, origin of hybridization, and assessing the
migratory routes of species [40-42]. Because one or both
organelle genomes are often maternally inherited in
plants [43], they are particularly suitable for investigat-
ing processes associated with seed dispersal, such as
range expansions [44], contribution of seed movement
to total gene flow [44-47], refugial isolation [48,49], and
origin of maternal or paternal lineage [50].

Previous studies have investigated the phylogeography of
the R. pseudochrysanthum in Taiwan, revealing close rela-
tionships among these taxa [30,32,51] and a lack of geogra-
phical subdivision. However, little attention has been paid
to the demographic dynamics of R. pseudochrysanthum
across the mountain ranges. In contrast to previous studies,
sampling in this study covered vaster areas, with the aid of
the bureau of the Yushan National Park. The present study
analyzed genetic variation of the R. pseudochrysanthum s.l.
at atpB-rbcL intergenic spacer of cpDNA and the internal
transcribed spacer regions (ITS) of nrDNA. A phylogeogra-
phical approach was used to infer past evolutionary history
and processes and to examine species delimitation and
population structure of the species complex. The objectives
of this study were to investigate the following:
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1. Do the lineages of cpDNA correspond with those of
nrDNA?

2. Given geographical barriers, does significant genetic
differentiation exist among populations of different
mountain ranges?

3. Have the populations of different mountain ranges
of R. pseudochrysanthum s.l. experienced different
demographic dynamics?

Results

Genetic variability of copDNA and nrDNA and genetic
differentiation in the Rhododendron pseudochrysanthum s.|
The cpDNA atpB-rbcL intergenic spacer of R. formosa-
num, R. hyperythrum, and R. pseudochrysanthum s.. ran-
ged from 585 to 616 bp. The sequence of alignment of
R. pseudochrysanthum s.1. had 585 bp, including 41 poly-
morphic sites, of which 15 were parsimony-informative.
Most of these polymorphic sites were single-base and scat-
tered along a sequence. The nrDNA ITS sequences of
R. formosanum, R. hyperythrum, and R. pseudochry-
santhum s.l. were aligned with a consensus length of
628 bp. No large indels or rearrangements were detected.
The sequence alignment of R. pseudochrysanthum s.l. had
628 bp, including 133 polymorphic sites, of which 49 were
parsimony informative.

With regard to cpDNA, 36 haplotypes (PHO1-PH36;

accession numbers: HQ850658 - HQ850693) were identi-
fied among 70 samples of the R. pseudochrysanthum s.1.
(Figure 1, additional file 1: Table S1). Nucleotide diversity
() detected in R. pseudochrysanthum s.l. was 0.0109 with
high level of haplotype diversity (0.879) (Table 1). High
levels of nucleotide diversity (0.0079) and haplotype
diversity (0.900) were detected in the populations of the
Yushan Mountain Range, while the single population
sampled from the Alishan Mountain Range was fixed at a
single haplotype (Table 1). PHO1 was the most common
haplotype shared among the Alishan, Central, and
Sheishan Mountain Ranges. In addition, no haplotypes in
the Yushan Mountain Range (PH04-PH07, PH10-PH15,
PH23-PH26) were shared by other mountain ranges.
For nrDNA, 35 haplotypes (PRO1-PR35; accession num-
bers: HQ850623 - HQ850657) were identified among 70
samples of the R. pseudochrysanthum s.. (Figure 1, addi-
tional file 2: Table S2). Nucleotide diversity detected in
R. pseudochrysanthum s.l. was 0.0114 with a high level of
haplotype diversity (0.881). A high level of nucleotide
diversity (0.0174) with a high level of haplotype diversity
(0.906) were detected in the populations of the Yushan
Mountain Range, while the lowest level of nucleotide
diversity (0.0064) was detected in a single population of
the Alishan mountains (Table 1).

To investigate the genetic structure of R. pseudochry-
santhum s.l., a SAMOVA (Table 2) was applied to define
groups and to identify any locations of genetic uniqueness
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among the 14 populations. For cpDNA, an assumption
with two groups (K = 2) displayed the greatest value of
Fer and a maximal variance (Fet = 0.6167, P < 0.05). The
groups at K = 2 exactly matched those found in the phylo-
genetic and network analyses, with those from the Yushan
Mountain Range forming one group (YY, YP, YT) and
those from the other three mountain ranges forming the
other. Genetic structure was significant at three levels
based on the spatial apportionment of genetic variation,
i.e., among geographical groups (61.67%, P < 0.05), among
populations within groups (4.93%, P < 0.05), and within
populations (33.41%, P < 0.05).

The SAMOVA of nrDNA sequences also revealed the
greatest value of Fcr and a statistically maximal variance
between two groups (Fcr = 0.5889, P < 0.05) (Table 2).
Likewise, a large proportion of the genetic variability
was partitioned among groups, although nonsignificantly
(57.66%, P > 0.05). In contrast, when the three geogra-
phical groups of SL vs. SC vs. all others were compared,
structuring with significant variabilities distributed
among groups (54.78%, P < 0.05), among populations
within groups (2.81%, P < 0.05), and within populations
(42.41%, P < 0.05) was identified.

Significant genetic differentiation of cpDNA was detected
between R. pseudochrysanthum sl.- R. formosanum (Fst =
0.73) and R. pseudochrysanthum s.. - R. hyperythrum (Fgr
= 0.65). Within R. pseudochrysanthum s.l., significant
genetic differentiation existed between the populations of
the Yushan Mountain Range and the populations of the
other ranges (Fst = 0.56-0.72) (Table 3), whereas there was
only little differentiation among the populations of the
Alishan, Central and Sheishan Mountain Ranges (Fs =
0.00-0.09). In contrast, lower levels of genetic differentia-
tion of ntDNA were detected between R. pseudochry-
santhum s.. - R. formosanum (Fsy = 0.02) and R.
pseudochrysanthum s.. - R. hyperythrum (Fst = 0.04), and
the populations of different mountain ranges of R. pseudo-
chrysanthum s.. (Fst = 0.02-0.08).

Gene genealogies and phylogeographical analyses of the
Rhododendron pseudochrysanthum s. |

The ML tree of the cpDNA atpB-rbcL intergenic spacer
haplotypes (Figure 2), rooted at R. formosanum, identi-
fied two major clusters I and II. A minimum-spanning
network was also reconstructed based on the mutational
steps between haplotypes of cpDNA (Figure 3). Rhodo-
dendron pseudochrysanthum s.l. was identified with
eight mutational steps from R. formosanum. Two major
clusters I and II, corresponding to the ML tree, were
identified with two mutational steps apart.

A ML tree and a minimum-spanning network were
reconstructed of the ntDNA haplotypes, respectively
(Figures 4, 5). In total, clusters A-C were identified, none
of which corresponded to any member of species.
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Figure 1 Rhododendron pseudochrysanthum s.l. sample locations and distribution. Frequency of clusters of (A) copDNA and (B) nrDNA in
each population is indicated with pie diagrams: Symbols: Alishan Mountain Range (blank circle), Central Mountain Range (black circle), Sheishan
Mountain Range (blank square), and Yushan Mountain Range (black square). See Table 1 for the detailed information of populations.
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We also utilized the *BEAST program to analyze the
combined data of cp- and nrDNA sequences. A popula-
tion tree of R. pseudochrysanthum s.l., rooted at R. formo-
sanum (FH) and R. hyperythrum (HH), was reconstructed
(Figure 6). In contrast to the nuclear DNA tree, none
of the outgroup populations were nested within
R. pseudochrysanthum s.l.

Mismatch distribution analyses of cpDNA were per-
fomed to infer the long-term demographic history of
populations. For R. pseudochrysanthum s.., populations of
the Central and Sheishan Mountain Ranges had a unimo-
dal distribution (data not shown). Because the data used
to produce mismatch distributions are not independent
[52], Tajima’s D was then used to detect departure from
population equilibrium. Departures from the null model
can be caused by many factors, such as changes in popula-
tion size (e.g., expansion), which can lead to an excess of
low frequency variants and negative D values. In contrast,
processes such as population subdivision, or recent popu-
lation bottlenecks can cause an excess of intermediate fre-
quency variants leading to positive D values [53,54]. Most
values of Tajima’s D in R. pseudochrysanthum s.l. were
negative, except in YT (0.325) and YY (1.057) of the
Yushan Mountain Range (Table 1).

Using the program IM, we were able to refine six model
parameters estimated in MCMC simulations and test for
the isolation with migration model in R. pseudochry-
santhum s.1. All of our parameter estimates had unimodal
posterior distributions. The posterior distribution of O,¢er

mins (scaled effective population size of the Alishan, Central,
and Sheishan Mountain Ranges to neutral mutation rate:
95.43) was larger than that of Oy,ghan (scaled effective popu-
lation size of the Yushan Mountain Range: 30.81), whereas
the posterior distribution for 0, (scaled effective size of the
ancestral population) peaked at 24.80 (Figure 7A). Based on
these 0 values, the populations of the Alishan, Central and
Sheishan Mountain Ranges were likely to grow substantially
following divergence, whereas the populations of the
Yushan Mountain Range remained stable or slightly grew
relative to the ancestral population.

When the MLEs for the migration parameters were
transformed into population migration rates, 2N.m = m*
(6/2) was estimated among the populations of different
mountain ranges. Results from the IM revealed that the
number of migrants between the Yushan Mountain Range
and the other mountain ranges was effectively low. The
posterior distribution of m (scaled effective migration rate)
between the Yushan Mountain Range and the other moun-
tain ranges peaked at 0.005, i.e., both #yyshan to other mtns =
0.005 (90% HPD = 0.005-1.035) and #oher mins to Yushan =
0.005 (90% HPD = 0.005-0.195), which were much lower
than the m values among Alishan, Central, and Sheishan
Mountain Ranges (m = 0.25-13.45)(Figure 7). All of the
non-zero m values, nevertheless, implied the occurrence of
historical gene flow between populations (Figure 7B).

To elucidate the contribution of hybridization/introgres-
sion to the lack of species monophyly of R. formosanum,
R. hyperythrum and R. pseudochrysanthum s.l., we



Table 1 Location sampled within species and populations of Rhododendron pseudochrysanthum s.l.

Nucleotide diversity (m) Haplotype Haplotype diversity Tajima’s D
Species number Location Coordinate Symbol cpDNA nrDNA cpDNA nrDNA cpDNA nrDNA cpDNA nrDNA cpDNA  nrDNA
R. pseudochrysanthum s.l. 70 70 001092 + 0.00083 0.01135 + 0.00258 36 35 0879 + 0034 0881 +£0038 -1223  -2601**
Alishan Mountain Range 4 4 0.00000 + 0.00000 0.00638 + 0.00178 1 3 0.000 + 0.000 0.833 + 0222 - 0467
Alishan 23'31"N 12049E  AA 4 0.00000 £ 0.00000 0.00743 + 0.00218 1 3 0.000 + 0.000 1.000 = 0.272 - 0467
Central Mountain Range 30 30 0.0071 £ 000175  0.00721 £ 0.00327 13 17 0.821 £ 0062 0874 £ 0051 -2016* -2616**
Beidawushan 22'37"N 12045"E CB 4 4 0.00170 £ 0.00090 0.00159 + 0.00084 2 2 0.500 + 0.265 0.500 = 0.265 -0.710 -0.710
Kuanshanlingshan ~ 23'16"N 120'58"E  CK 4 4 001138 + 0.00500 0.00478 + 0.00207 4 3 1000 + 0711 0833 +£0222 -0605 -0.809
Hsiangyangshan 2317"N 12059"E CY 4 4 000171 £ 000091 0.00637 + 0.00129 2 5 0500 + 0265 1.000 £ 0.126  -0.710  -1.193
Sanchashan 23'18"N 121'01"E  CS 8 8 0.00672 £+ 0.00240 0.01606 + 0.00964 5 6 0.786 + 0.151 0893 = 0.111  -1.096 -1.766%
Nanhutashan 23'23"N 12126"E  CN 6 6 0.00617 £ 0.00193 0.00350 + 0.00079 7 6 0964 + 0.077 1.000 = 009 -1.11 -0.932
Hohuanshan 24'08'N121"16"E CH 4 4 0.00171 £ 0.00058 0.00399 + 0.00139 3 3 0833 £ 0222 0833 £ 0222 -0.710 -0.797
Sheishan Mountain Range 16 16 000193 + 000046 0.01286 + 0.00465 8 8 0700 + 0127 0752 £ 0.103  -2.149** -1.833*
Sheishan 24'23"N 121'14"E SS 4 4 0.00170 + 0.00058 0.00064 + 0.00380 3 2 0833 + 0222 0400 £ 0237 -0709 -0817
Lalashan 24'44"N 12126"E  SL 5 5 0.00274 £+ 0.00082 0.02690 + 0.00715 4 4 0900 + 0.161 0.800 + 0.172  -1.094  -0.237
Banpingshan 25'04"N 121'51"E SB 6 6 0.00171 £ 0.00051 0.00425 + 0.00109 4 3 0.800 + 0.172 0.8000 + 0.122 -1.233 1.219
Chisingshan 25'10"N 121'32"E  SC 1 1 - - - - - - - -
Yushan Mountain Range 20 20 0.00786 £ 0.00117 0.01735 £ 0.00307 14 9 0.900 + 0.056 0.906 + 0.038 -0.096 -0.776
Tataka 23'28"N 120'54"E YT 0.00939 + 000112 0.01800 + 0.00317 7 4 0917 + 0092 0857 +0.082 0325 1.152
Paiyuanshanchuang 23'28"N 120'57"E YY 0.00944 + 0.00282 0.01786 + 0.00487 6 3 1.000 + 0.096 0.800 + 0.122  -0.599 1.363
Patungkuan 23'28"N 120'59"E  YP 0.00450 £ 0.00101 0.00124 + 0.00563 5 4 1.000 + 0.126 0900 + 0.161  0.562 -1.068
outgroup
R. hyperythrum Nanhutashan 23'23"N 12126"E HH 8 0.00510 £ 0.00072 0.01549 + 0.00256 4 2 0857 £ 0.082 0571 £0.094 1.382 2484
8 0.00510 + 0.00072 0.01549 + 0.00256 4 2 0857 + 0082 0571 +£0.094 1382 2484
R. formosanum Heping 24'18"N 121'41"E FH 2 - 0.04306 + 0.02153 1 2 - 1.000 £ 05000 - -

Samples size, nucleotide diversity, haplotype number, haplotype diversity, and Tajima’s D are indicated. Significance values are given in asterisks (* P < 0.01; ** P < 0.05).
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Table 2 Fixation indices corresponding to groups of populations inferred by SAMOVA for Rhododendron

pseudochrysanthum s.l. populations in Taiwan tested for the cpDNA and nrDNA

Marker Group Population groupings FCT P

cpDNA 2 (YY, YP, YD)(AA, CB, CY, CK, CN, CS, CH, SS, SB, SC, SL) 0.61669 0.0039
3 (YY, YP, YD)(SO(AA, CB, CY, CK, CN, CS, CH, SS, SB, SL) 0.60668 0.0010
4 (YY, YI)(YP)(SO)I(AA, CB, CY, CK, CN, CS, CH, SS, SB, SL) 0.58933 < 0.0001
5 (YY)(YT)(YP)(SO(AA, CB, CY, CK, CN, CS, CH, SS, SB, SL) 0.56974 0.0010
6 (YVYT)(YP)(SO(CB)(AA, CY, CK, CN, CS, CH, SS, SB, SL) 0.53854 < 0.0001

nrDNA 2 (SDI(AA, CB, CH, CS, CY, CK, CN, YY, YP, YT, SB, SC, SS) 0.58892 0.0065
3 (SDI(SO)(AA, CB, CH, CS, CY, CK, CN, YY, YP, YT, SB, SS) 0.54781 0.0088
4 (SD(SO(CH)(AA, CB, CS, CY, CK, CN, YY, YP, YT, SB, SS) 044184 0.0049
5 (SDISO(CHYY)(AA, CB, CS, CY, CK, CN, YP, YT, SB, SS) 0.39814 0.0059
6 (SLSOCHYYTI(AA, CB, CS, CY, CK, CN, YP, SB, SS) 0.37744 0.0059

Alishan Mountain Range: AA; Central Mountain Range: CB, CK, CY, CS, CN, CH; Sheishan Mountain Range: SS, SL, SB, SC; Yushan Mountain Range: YT, YY, YP.

estimated the m values among these species. The posterior
distribution of 1 among these species peaked at non-zero
values (mpseudochrysanthum s. L. to formosanum = 1.35, 90% HPD
= 0.55-2.65; M formosanum to pseudochrysanthum s. 1. = 2.25, 90%
HPD = 0.75-4.25; Mpseudochrysanthum s. 1. to hyperythrum = 0.05,
90% HPD = 0.05-1.05; Mpyperythrum to pseudochrysanthum s. 1. =
0.15, 90% HPD = 0.05-1.85), suggesting possible interspe-
cific hybridization/introgression.

Molecular dating of Rhododendron pseudochrysanthum s.|
Bayesian estimates of the divergence time of clades of
the sequences of cpDNA and nrDNA were obtained
using BEAST v. 1.3. For cpDNA, the sequences

including R. formosanum, R. hyperythrum, and R. pseu-
dochrysanthum s.]. could be traced back to a common
ancestor ca. 2.897-8.724 MYA. All sequences of R.
hyperythrum and R. pseudochrysanthum s.l. coalesced at
ca. 2.896-8.722 MYA. All cpDNA sequences of R. pseu-
dochrysanthum s.]. coalesced at ca. 2.895-8.722 MYA,
while those of R. hyperythrum coalesced at ca. 0.654-
1.981 MYA. Likewise, the nrDNA sequences including
R. formosanum, R. hyperythrum, and R. pseudochry-
santhum s.l. could be traced back to a common ancestor
about 1.905-2.961 MYA. All nrDNA sequences of R.
pseudochrysanthum sl. and R. hyperythrum coalesced to
a common ancestor ca. 1.879-2.912 MYA. All nrDNA

Table 3 Pairwise Fs; among populations deduced from sequences of cpDNA (below the diagonal) and nrDNA (above

the diagonal) for Rhododendron pseudochrysanthum s.l.

Alishan Central Sheishan Yushan
Mountain Mountain Mountain Mountain
Range Range Range Range
cpDNA\nrDNA AA CB CK €Y CS CN CH SS SL SB SC YT YY YP
Alishan Mountain Range - 0.02 0.03 0.08
AA - 0 0 0 005 004 0O 0 009 0 - 0.12 0.03 001
Central Mountain Range  0.07 - 0.03 0.06
CB 05 - 0 0 006 008 0 0 011 0 - 014 004 002
CcK 0.05 0.07 - 0 0.01 0.08 0.05 0 009 0 - 0.09 0 0
Cy 0 0.29 005 - 0.04 005 0 0 01 0 - 0.1 0.01 002
cs 0 0.19 007 007 - 0.02 0.04 0.06 0.04 006 - 004 004 O
CN 0.15 03 007 009 008 - 0.05 0.1 012 007 - 0.1 0.02 001
CH 0 03 004 0 0 01 - 0 01 0 - 0.12 0.04 002
Sheishan Mountain Range 0 0.09 - 0.04
SS 0 033 004 0 0 011 0 - 011 0 - 015 004 002
SL 0 0.31 004 0 0 01 0 0 - 01 - 0.05 0.02 0.04
SB 0 0.38 004 0 0 012 0 0 0 - - 0.12 0.04 0.02
Yushan Mountain Range  0.72 0.56 0.69 -
YT 0.71 069 029 061 057 063 066 067 067 068 - 0.16 0.01
YY 092 0.88 056 084 057 083 087 0.88 087 0.89 0.12 - 0.05
YP 0.89 0.86 053 082 071 081 084 0.86 085 087 0.07 015 -
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Figure 2 Maximum-likelihood tree of cpDNA haplotypes of Rhododendron pseudochrysanthum s.l. Numbers at nodes indicate bootstrap
values (>50%). Cluster | and Il are indicated. Divergent times at nodes were estimated based on BEAST analyses. FH: R. formosanum. HH: R.
hyperythrum.PH: R. pseudochrysanthum s.. Symbols: Alishan Mountain Range (blank circle), Central Mountain Range (black circle), Sheishan
Mountain Range (blank square), and Yushan Mountain Range (black square).

sequences of R. pseudochrysanthum s.]. coalesced to a
common ancestor ca. 1.879-2.909 MYA, while those of
R. hyperythrum coalesced at ca. 1.669-2.620 MYA.

To elucidate the possible evolutionary forces for the lack
of species monophyly of R. formosanum, R. hyperythrum
and R. pseudochrysanthum s.1., we calculated the expected
time to coalescence at cpDNA [1.665 x 0/4U] and at
nrDNAJ[1.665 x 0/2U], where 0 is a population mutation
parameter obtained from IM, and U is the geometric mean
of mutation rates, and compared them with the divergence
times obtained from the BEAST analyses. According to the
IM estimates of O,her mtns = 95.43 and Oyyshan = 30.81, the
expected time to coalescence of R. pseudochrysanthum s.l.
ranged from 4.36 to 29.21 MYA based on cpDNA, and
from 8.72 to 58.42 MYA based on nrDNA.

Discussion

Systematic inconsistency between nuclear and chloroplast
DNAs in Rhododendron pseudochrysanthum s.|
Inconsistency in the cpDNA and nrDNA phylogenies
(Figure 2 & 3) was detected in R. formosanum. The
ML tree for the cpDNA agreed with the results of
Chamberlain et al. [25] and Goetsch et al. [28] that R.
formosanum is a monophyletic group relative to R.
pseudochrysanthum s.l. In contrast, the ML tree of

nrDNA revealed that one accession of R. formosanum
fell within cluster B with the ingroup species. Lack of
species monophyly may result from incomplete lineage
sorting, which occurs when populations or species
recently diverged, thus retaining ancestral genetic poly-
morphisms, or from genetic exchanges via hybridiza-
tion and introgression that introduce foreign alleles
into a species or population, resulting in a genetic
admixture [10]. For given species, the time for a locus
to acquire reciprocal monophyly is about 1.665 x 6/4U
at cpDNA or 1.665 x 0/2U at nrDNA. Willyard et al.
[55] suggest that ancestral polymorphisms would likely
be shared between species if the coalescence time of
the alleles exceeds the divergence time at one locus. In
this study, the expected time to coalescence of R. pseu-
dochrysanthum s.1. (4.36-29.21 MYA) overlapped the
estimates of divergence time (2.895-8.722 MYA) based
on cpDNA, in which monophyly was attained. In con-
trast, at the nrDNA, the expected time for coalescence
(8.72-58.42 MYA) predated the divergence time (1.879-
2.909 MYA). Accordingly, nuclear loci would less likely
be monophyletic in R. pseudochrysanthum s.1. Incom-
plete lineage sorting alone, apparently, cannot comple-
tely explain the paraphyly of R. pseudochrysanthum s.1.
Interspecific hybridization that disturbs the reciprocal
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Figure 3 Minimum-spanning network based on the mutational steps between haplotypes of cpDNA in the populations of
Rhododendron pseudochrysanthum s.l. Cluster | and Il are indicated. FH: R. formosanum. HH: R. hyperythrum. PH: R. pseudochrysanthum s.l.;
Symbols: Alishan Mountain Range (blank circle), Central Mountain Range (black circle), Sheishan Mountain Range (blank square), and Yushan
Mountain Range (black square). Branches represent single mutational changes, and black squares represent multiple changes (indicated by
adjacent numbers). Circle sizes are proportional to the haplotype’s frequency.

monophyly needs to be aroused based on the non-zero
m parameters between R. formosanum-R. pseudochry-
santhum s.l. (mpseudochrysanthum s. 1. to formosanum = 1.35,
90% HPD = 0.55-2.65; m formosanum to pseudochrysanthum
s. 1 = 2.25,90% HPD = 0.75-4.25) and R. hyperythrum-
R pseudochrysanthum s.l. (mpseudochrysanthum s. L. to hyper-
ythrum = 0.05, 90% HPD = 0.05-1.05; Mpyyperythrum to pseu-
dochrysanthum s. 1. = 0.15, 90% HPD = 0.05-1.85).
Furthermore, Milne et al. [56,57] revealed that natural
hybridization/introgression is not unusual in Rhodo-
dendron. Thus, interspecific hybridization/introgression
would cause the lack of monophyly and prolong the
duration of paraphyly, as frequently occurs in most
plants, e.g., Ixeris [58], Begonia [59], and Ilex [60].

Genetic diversity and population structure of R.
pseudochrysanthum s.|

In this study, we investigated genetic diversity at the
cpDNA and nrDNA loci of R. pseudochrysanthum s.1.

High levels of nucleotide diversity were detected at both
c¢pDNA and nrDNA loci, agreeing with a pattern found
in many East Asian plants, that is considered to have
been shaped by a common glaciation history [cf. [11]].
During the Quaternary glaciations, Taiwan, as a refuge,
provided shelters for species from a range of biomes
and thus harbored much plant biodiversity. Examples
include Cunninghamia konishii [21], Pinus luchuensis
ssp. taiwanensis [2], Cycas taitungensis [41], and Cycas
revoluta [1]. A potential refugium for R. pseudochry-
santhum s.]. in Taiwan was inferred to harbor the
genetic variations. Furthermore, highly diverse environ-
ments may also have created a wide spectrum of habi-
tats to accommodate mutations [38].

The populations of the Yushan Mountain Range had
the highest levels of genetic diversity (0.0079) in the
cpDNA. A similar pattern was found in Taiwan fir
(Abies kawakamii), a dominant species of subalpine for-
ests at 2500-3700 m a.s.l. [61]. This common result is
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likely to be attributable to a stable population size in the
Yushan Mountain Range. The habitat ranges of the
Yushan Mountain Range, with the highest peak at 3952
m, are wider than those of the other mountain ranges
(3886 m at most), providing diverse habitats for R. pseu-
dochrysanthum s.]. Given a stable, effective population
size under diverse habitats, the populations of the
Yushan Mountain Range fostered a great number of
genetic polymorphisms. In contrast, genetic diversity
can be lost by chance in fragmented populations, as
occurred in the population of the Alishan Mountain
Range. PHO1, the interior dominant haplotype, is shared
among the Alishan, Central, and Sheishan mountain
ranges. A single population of the Alishan Mountain
Range was fixed for the dominant haplotype PHO1, indi-
cating a possible genetic bottleneck due to a founder
effect and/or genetic drift during a period when popula-
tion sizes were small [62].

Genetic structure of R. pseudochrysanthum s.|

R. pseudochrysanthum s.l. inhabits mountaintops iso-
lated by surrounding low-elevation habitats, forming
small and fragmented patches. Genetic differentiation
would be detected between these isolated populations of

different mountain ranges. Nevertheless, genetic analysis
of the cpDNA variation revealed very weak genetic dif-
ferentiation among the populations within a mountain
range. The short time of isolation since the last glacial
retreat is seemingly not long enough for differentiating
these populations within a mountain range and thus
resulted in sharing ancestral genetic polymorphisms.
Specifically, spatial distribution of cpDNA revealed a
noteworthy pattern of high differentiation between
populations of the Yushan Mountain Range and the
other mountain ranges (Fst = 0.56-0.72) (Table 3). The
divergence time for R. pseudochrysanthum s.l. is about
2.895-8.722 MYA, and given that within R. pseudochry-
santhum s.l., the populations from different mountain
ranges are more differentiated than the species, then it
follows that this divergence time likely reflects an esti-
mated divergence time between mountain populations.
Molecular dating revealed that populations among dif-
ferent mountain ranges split some 2.895-8.722 MYA, a
time range approximating or predating the formation of
the Central Mountain Range of Taiwan [16]. Indepen-
dent colonizations via individuals with two different
subclusters, likely from adjacent mainland over Pleisto-
cene, may result in high genetic differentiation within
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Figure 5 Minimum-spanning network based on the mutational steps between haplotypes of nrDNA in the populations of
Rhododendron pseudochrysanthum s.l. Major clusters A, B and C are indicated. FR: R. formosanum. HR: R. hyperythrum. PR: R
pseudochrysanthum s.l.; Symbols: Alishan Mountain Range (blank circle), Central Mountain Range (black circle), Sheishan Mountain Range (blank
square), and Yushan Mountain Range (black square). Branches represent single mutational changes, and black squares represent multiple
changes (indicated by adjacent numbers). Circle sizes are proportional to the haplotype’s frequency.

Figure 6 Phylogeny of populations of Rhododendron
pseudochrysanthum s.l. rooted at R. formosanum, R. hyperythrum
based on BEAST analyses of cp- and nrDNAs. The numbers at
nodes represent the posterior probabilities (>0.5). Symbols: Alishan
Mountain Range (blank circle); Central Mountain Range (black circle);
Sheishan Mountain Range (blank square); Yushan Mountain Range
(black square). See Table 1 for the detailed information of populations.

R. pseudochrysanthum s.l. Unexpected genetic structur-
ing was detected with populations of the Yushan Moun-
tain Range highly differentiated from other mountain
ranges, despite this range lying between the Alishan and
the Central Mountain Ranges. The single population of
the Alishan Mountain Range was fixed at the dominant
haplotype PHO1, which was shared by the populations
of the Central and Sheishan Mountain Ranges. Some
other haplotypes may have been randomly lost from the
Alishan population due to possible bottleneck/founder’s
events. Despite the fact that the Alishan Mountain
Range is geographically distant to Central and Sheishan
Mountain Ranges, sharing the dominant PHO1 made
these populations clustered together and genetically
undifferentiated. Furthermore, subsequent glacial retreat
and mountain uplifting triggered the geographical isola-
tions and may have thereby enhanced the divergence of
populations among different mountain ranges.

Today, over an interglacial period, Rhododendron
populations of different mountain ranges represent
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some isolated patches. Given such geographical barriers,
seeds are less likely to disperse across mountain ranges.
Low capabilities of seed dispersal in current environ-
ments, plus possible independent colonization events
followed by limited historical gene flow (Figure 7), may
have together contributed to the high levels of genetic
differentiation between populations of the Yushan
Mountain Range and the other mountain ranges (Fst =
0.56-0.72). In contrast, low levels of genetic differentia-
tion at cpDNA detected among the populations of
Alishan, Central and Sheishan Mountain Ranges (Fst =
0.00-0.09) implied that there may exist historical gene
flow during the glacial maxima, as the alpine popula-
tions migrated downwards and became connected to
each other (Table 3).

Compared to the high genetic differentiation among
populations between Yushan Mountain Range and the
other mountain ranges based on cpDNA, nrDNA
revealed much less differentiation among populations of
different mountain ranges (Fgr = 0.02-0.08) (Tables 2,
3). Here, biparentally inherited nrDNA was used to esti-
mate the extent of pollen flow. In contrast to the limited
seed dispersal, pollen of Rhododendron species see-
mingly can move long distances [63,64]. Long-distance
pollen dispersal of R. pseudochrysanthum s.l. across the
discontinuity of mountain ranges reduced the genetic
differentiation.

Ancestral population size, gene flow, and population
dynamics of R. pseudochrysanthum s.|

Given their different inheritances, ntDNA and cpDNA
markers provide extensive aspects to the understanding
of the evolutionary forces shaping fates of R. pseudo-
chrysanthum s.]. Combining cpDNA and nrDNA data,
IM analysis was used to evaluate the ancestral popula-
tion size and gene flow. Populations of the Alishan,
Central, and Sheishan Mountain Ranges were character-
ized by a recent population expansion as Ou¢her mtns Was
approximately four times larger than ancestral 0, [65].
Star-like genealogies of cpDNA and negative Tajima’s D
of cpDNA and nrDNA (Table 1) also supported a sce-
nario of recent demographic expansion in populations
of the Central and Sheishan Mountain Ranges, a com-
mon pattern also occurring in Castanopsis carlesii [66],
Cunninghamia konishii [67], and Trema dielsiana [68].
In contrast, the value of By,han approximated ancestral
04, indicating that the effective population size of the
Yushan Mountain Range may have remained stable rela-
tive to the ancestral population.

Given low seed dispersal capabilities of Rhododendron
in today’s environments, non-zero migration rates
(2Nem) detected among populations (m = 0.05-13.45)
likely represented historical gene flow across mountain
ranges. Here, compared to the gene flow among popula-
tions of Alishan, Central, and Sheishan Mountain
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Ranges, with m = 0.25-13.45, much lower levels of
migration rates were detected between populations of
the Yushan Mountain Range and other mountain ranges
(mYushan to other mtns = 0.005, Mother mtns to Yushan =
0.005). Even so, higher levels of migration rates detected
from populations of the Yushan Mountain Range to
those of the Alishan (m = 1.275) and Sheishan (m =
0.750) Mountain Range further indicated asymmetric
gene flow among them. In contrast, historical dispersal
may have occurred freely among other populations.
That is, during glacial maxima, there may exist corridors
among the mountain ranges. These corridors allowed
frequent gene flow among populations of Alishan, Cen-
tral, and Sheishan Mountain Ranges, and occasional
gene flow between populations of the Yushan Mountain
Range and the other mountain ranges. Altogether, popu-
lations of these mountain ranges may have been
mediated with different levels of historical gene flow
during the glacial maxima.

Conclusions

In this study, inconsistent gene genealogies of cpDNA and
nrDNA were detected. In the cpDNA tree, agreeing with
Chamberlain et al. [25], R. pseudochrysanthum s.l. is phy-
logenetically more closely related to R. hyperythrum than
to R. formosanum. In contrast, nrDNA failed to identify
reciprocal monophyly of ingroup vs. outgroup, indicating
possible incomplete lineage sorting and interspecific hybri-
dization/introgression. For R. pseudochrysanthum s.l., the
spatial distribution of cpDNA revealed a noteworthy pat-
tern of high differentiation between the populations of the
Yushan Mountain Range and the populations of the other
mountain ranges. Molecular dating revealed that the split
of the populations at different mountain ranges approxi-
mated or predated the formation of the Central Mountain
Range of Taiwan island, likely suggesting independent
colonizations via individuals from previously differentiated
populations on the mainland. At the population level, the
populations of Central, and Sheishan Mountain Ranges
may have undergone postglacial demographic expansion,
while populations of the Yushan Mountain Range are
likely to have remained stable ever since the colonization.
In contrast, the single population of the Alishan Mountain
Range with a fixed cpDNA haplotype may have experi-
enced bottleneck/founder’s events.

Methods

Sample collection, DNA extraction, PCR, and DNA
sequencing

We assessed the levels of genetic variation of cpDNA
(atpB-rbcL intergenic spacer) and ntDNA ITS sequences
among populations of Rhododendron pseudochrysanthum
s.l. (Table 1). In addition, R. formosanum Hemsl. (subge-
nus Hymenanthes subsection Argyrophylla [25]), and
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R. hyperythrum (subgenus Pontica subsection Maculi-
fera) were selected to serve as outgroups. In the field,
R. hyperythrum is sympatric with R. pseudochrysanthum
s.l., while R. formosanum is allopatric from two other spe-
cies. Morphologically, R. hyperythrum and R. formosa-
num are distinguishable from R. pseudochrysanthum s.1.
According to Goetsch et al. [28], R. pseudochrysanthum
s.l. is phylogenetically more related to R. hyperythrum
than to R. formosanum. A total of 70 R. pseudochry-
santhum s.l. individuals were collected from 14 popula-
tions throughout their natural range, mostly from four
major mountain ranges in Taiwan, i.e., Alishan, Central,
Sheishan and Yushan Mountain Ranges (Figure 1 and
Table 1). One to 12 individuals about 100 m apart were
sampled based on the natural size of each population.
Young, healthy leaves were collected in the field, rinsed
with tap water, and dried in silica gel. All samples were
stored at -70°C until processing.

Leaf tissue was ground to powder in liquid nitrogen and
stored at -70°C. Total genomic DNA was extracted from
the powdered tissue using a cetyltrimethyl ammonium
bromide (CTAB) procedure [69]. PCR amplification was
carried out in a 100-puL reaction. The reaction was opti-
mized and programmed on a M] Thermal Cycler (PTC
100) (M]J, Alameda, California, USA) as one cycle of dena-
turation at 95°C for 4 min; 30 cycles of 45 s denaturation
at 92°C, 1 min 15 s annealing at 52°C, and 1 min 30 s
extension at 72°C; followed by 10 min extension at 72°C.
Template DNA was denatured with reaction buffer,
MgCl,, NP-40 and ddH2O for 4 min (first cycle), and
cooled on ice immediately. Primers, for the I'TS (ITS5:
5-GGAAGTAAAAGTCGTAACAAGG-3" and ITS4:
5-TCCTCCGCTATATGATATGC-3’) [70] or cpDNA
atpB-rbcL intergenic spacer (atpB-1: 5’-ACATCKAR-
TACKGGACC AATAA-3 and rbcL-1: 5-AACACCA
GCTTTRAATCCAA-3) [71], ANTP and Tagq polymerase
(Promega, Madison, Wisconsin, USA) were added to the
above ice-cold mix. The reaction was restarted at the first
annealing at 52°C.

PCR products were purified by electrophoresis in 1.0%
agarose gel using 1X TAE buffer. The gel was stained
with ethidium bromide, and the desired DNA band was
cut and eluted using agarose gel purification (Qiagen,
Valencia, California, USA). Both direct and subcloning
sequencing was conducted to check PCR error. Chloro-
plast DNA sequences were determined by direct sequen-
cing, while nrDNA was sequenced via subcloning. For
subcloning, the desired DNA fragments were cloned
into the pGEM-T vector system (Promega, Madison,
Wisconsin, USA). Seven clones of the plasmid DNA
were selected randomly and purified using a plasmid
mini kit (Qiagen). DNA sequencing in both directions
was conducted with an Applied Biosystems Model 377A
automated sequencer (Applied Biosystems, Foster,
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California, USA). No within-individual variation was
detected for either DNA marker.

Data analysis

Nucleotide sequences were aligned with the program
MAFFT version 6 [72] and later adjusted visually. After
the alignment, maximum-likelihood (ML) analyses (HKY
model) were performed with PhyML v3.0 [73], and boot-
strap consensus values were calculated with 1000 boot-
strap pseudoreplicates. Nucleotide substitution models
were determined with the Akaike Information Criterion
by ModelTest 3.7 analysis [74,75]. The HKY + [ + G
model with 6 substitution categories was determined to
be the most suitable model by Modeltest and was used
for all subsequent nucleotide analyses. The number of
mutations between DNA sequence haplotypes in pairwise
comparisons was used to construct a minimum-spanning
network with the aid of the MINSPNET [76] in a hier-
archical manner [77].

To reconstruct the phylogeny of populations, the com-
bined data of both cp- and nrDNA sequences were ana-
lyzed by the program *BEAST vl1.5.4 (Bayesian
Evolutionary Analysis Sampling Trees)[78]. This method
uses coalescent theory to provide joint inferences of a
species tree topology, divergence times, population sizes
and gene trees from multiple genes sampled from multi-
ple individuals across a set of closely related species.

Levels of genetic diversity within populations and spe-
cies were quantified with measures of nucleotide diver-
sity (1) [79] using DnaSP Version 5.1 [80]. Patterns of
geographical subdivision and levels of genetic differen-
tiation among populations were estimated hierarchically
with the aid of DnaSP. Mismatch distribution analyses
and Tajima’s D were also conducted [81].

SAMOVA (spatial analysis of molecular variance) was
applied to identify groups of geographically adjacent
populations of R. pseudochrysanthum s.l. that were
maximally differentiated based on sequence data [82].
We performed the analyses based on 100 simulated
annealing steps and examined maximum indicators of
differentiation (Fcr values) when the program was
assigned to identify K = 2-6 partitions of populations.

Isolation with migration and estimating of ancestral
population size

We used the simulation program IM [83] to investigate
the scenario of isolation with migration between popula-
tions. By applying coalescence simulations and Bayesian
computation procedures, IM yielded six model para-
meters, including the population-split time (¢ = ty), scaled
migration rates (m = m/p), and scaled effective population
size (0 = 4Nep) for the ancestral and two current popula-
tions. The posterior probability densities of these para-
meters were generated by Markov chain Monte Carlo
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(MCMC) simulations, and three of these simulations were
run with individual simulations being updated 50 million
times. Within each simulation, we used a procedure to
swap among 10 heated chains (Metropolis coupling). Each
simulation yielded a marginal density histogram for the six
parameters of interest, and the peaks of the resulting dis-
tributions were considered as the maximum likelihood
estimates (MLE) of the parameter with credibility intervals
equaling the 90% highest posterior density (HPD) inter-
vals. Here we compared populations of the Yushan Moun-
tain Range with other populations of three different
mountain ranges based on the results of Fgr analyses.
Parameters in the IM model are scaled by the mutation
rates per generation for the loci, i.e., u = UG, where U is
the geometric mean of mutation rates of all the loci and G
is the generation time.

Estimation of divergence times of cpoDNA and nrDNA
lineages
In the present study, we estimated the divergence time
of the sister lineages of R. pseudochrysanthum s.1. split
for both cp- and nrDNAs using a Bayesian relaxed clock
method with BEAST. We excluded sequences of 18S,
5.8S and 26S RNA regions of nrDNA from the calcula-
tion of the divergent time. To estimate the divergence
between lineages a well-supported mutation rate is
required. In this study, applying evolutionary rates of
1.0-3.0 x 10™ [84] and 5.0-7.8 x 10™ [85] substitutions
per site per year for synonymous sites of cpDNA and
nrDNA, respectively, we estimated the divergence times
of cpDNA and nrDNA lineages for R. hyperythrum and
R. pseudochrysanthum s.l. Additionally, Bayesian esti-
mates of the divergence time of the MRCA of the
R. pseudochrysanthum s.l. clusters were obtained using
BEAST v. 1.3; available from http://beast.bio.ed.ac.uk/
Main_Page[86]. Following the result of ModelTest ana-
lysis [75], the HKY model of nucleotide substitution
with estimated base frequencies, gamma shape distribu-
tion (with six categories), proportion of invariant sites,
and a relaxed clock with uncorrelated log normal distri-
bution of branch lengths were chosen. Posterior esti-
mates of the mutation rate and divergence time were
obtained by Markov chain Monte Carlo analysis, with
samples drawn every 500 steps over a total of 1 million
steps. All operators were automatically optimized. Con-
vergence of parameters and mixing of chains were fol-
lowed by visual inspection of parameter trend lines and
checking effective sampling size (ESS) values with three
pre-runs. The ESS parameter was found to exceed 100,
which suggests acceptable mixing and sufficient sam-
pling. Adequate sampling and convergence to a station-
ary distribution were checked using TRACER v. 1.3 [87].
There are two primary processes that may cause a
locus to show non-monophyly for a group of closely
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related species, i.e., incomplete lineage sorting and
hybridization/introgression. Distinguishing between
these two processes is difficult, nevertheless, estimates
of divergence time can provide a means of assessing the
probability that incomplete lineage sorting alone could
account for the observed non-monophyly. The expected
time for a locus to become monophyletic following
divergence from a sister lineage is 1.665 x NeG and
1.665 x 2NeG for cp- and nuclear DNAs, respectively
[55,88]. According to IM [83], the effective population
size can be estimated as Ne = 0/(4UG). Therefore, the
former is then equal to 1.665 x 0/4U, while the latter is
1.665 x 0/2U. Here, 0 values were obtained from IM
analyses, and U is the geometric mean of mutation rates
of c¢p- and nrDNAs.

Additional material

Additional file 1: Table S1. Absolute frequency of chloroplast DNA
haplotypes of Rhododendron pseudochrysanthum s.I. Numbers of
chloroplast haplotypes distributions from 14 populutions of
Rhododendron pseudochrysanthum s.l. Cluster | and Il are indicated. N:
number of samples. Alishan Mountain Range: AA; Central Mountain
Range: CB, CK, CY, CS, CN, CH; Sheishan Mountain Range: SS, SL, SB, SG
Yushan Mountain Range: YT, YY, YP. See Table 1 for the detailed
information of populations.

Additional file 2: Table S2. Absolute frequency of nuclear DNA
haplotypes of Rhododendron pseudochrysanthum s.l. Numbers of
nuclear haplotypes distributions from 14 populutions of Rhododendron
pseudochrysanthum s.l. Cluster A, B and C are indicated. N: number of
samples. Alishan Mountain Range: AA; Central Mountain Range: CB, CK, CY,
CS, CN, CH; Sheishan Mountain Range: SS, SL, SB, SG; Yushan Mountain
Range: YT, YY, YP. See Table 1 for the detailed information of populations.
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