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Parallel evolution controlled by adaptation and
covariation in ammonoid cephalopods
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Abstract

Background: A major goal in evolutionary biology is to understand the processes that shape the evolutionary
trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages
suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel
evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from
other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence,
understanding the underlying processes of parallel evolution still requires further research.

Results: Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae
and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external,
chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological
shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line
(the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very
peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution
toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the
shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also
added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture
lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the
morphogenetic properties of the suture.

Conclusions: The morphological evolution of these two Devonian ammonoid lineages follows a near parallel
evolutionary path for some important shell characters during several million years and through their phylogeny.
Evolution of some traits (involution, umbilical lid) appears to be mainly driven by adaptation to improve the
hydrodynamic properties of the shell, whereas other characters (sutural complexity) evolved due to covariation
with features that play a central role in the morphogenesis of mollusc shells. This example provides evidence that
parallel evolution can be driven simultaneously by different factors such as covariation (constructional constraints)
and adaptation (natural selection).

Background
Independent evolution of similar biological traits in two
different lineages branching off from the same ancestor
defines parallel evolution [1-3]. It is a common phenom-
enon described for many animal clades (see e.g., [4-13]),
including molluscs [1,14-19]. Repeated patterns of parallel
evolutionary change of phenotypic traits are commonly
regarded as evidence of adaptation under common selec-
tion pressures such as common environmental factors

[20-22], therefore illustrating natural selection’s major role
in shaping morphological evolution and the repeatability
of evolutionary processes. Several additional processes
have been proposed that could contribute to the fabric of
parallel evolution. However, the contribution and condi-
tions in which these various processes trigger parallel mor-
phological evolution are still insufficiently investigated.
Furthermore, understanding the processes involved in
parallel evolution is also important for solving systematic
problems and thus to estimate evolutionary rates and
diversity [14].* Correspondence: claude.monnet@pim.uzh.ch
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Evolutionary steps in two independent lineages will
never be absolutely identical [1,15,16,23,24]. Neverthe-
less, morphological (phenotypic) evolutionary trends do
occur in independent lineages and can display striking
parallel changes (for a Recent mollusc example, see
[17]). Here, the term parallel evolution is used in a
broad sense, implying that not all parts of the organism
undergo parallel evolutionary transformations and that
the trends are nearly parallel, resulting in very similar
organs/structures in a phylogenetic series of more than
one species in at least two lineages.
Parallel evolution is often difficult to differentiate from

convergence (evolution from two different stages of
separate lineages toward an evolutionary stage that has
evolved striking similarities among some phenetic,
genetic or other traits; [25]) and some authors have
even suggested a continuum between convergent and
parallel evolution [2,26]. The distinction between con-
vergent, parallel, and divergent evolution indeed requires
the historical evolutionary aspect of studied lineages.
Because it is the only direct evidence of evolution in the
past over long time spans, palaeontological data can
provide important insights into patterns and processes
of parallel evolution.
In the fossil record, the Ammonoidea (Cephalopoda,

Mollusca) are well-known to display large-scale morpholo-
gical macroevolutionary trends [27-39]. These marine
extinct cephalopods with an external, chambered shell
have repeatedly been proven to be valuable study objects
to develop or test evolutionary hypotheses [27,29,
34-36,40-50]. Besides, ammonoids “are for palaeontologists
what Drosophila is in genetics” [51]. Their usefulness in
evolutionary biology originates in their high evolutionary
rates, high taxonomic diversity and morphological dispar-
ity, and usually well-known stratigraphic (i.e. temporal)
framework (see [52-54]). However, such morphological
evolutionary trends among ammonoids have been rarely
discussed and quantified in detail [38,39,47,55-58]. Knowl-
edge of details in such lineages with seemingly “directed”
morphological changes is of great interest, because not all
evolutionary morphological changes in the ammonoid
shell have the same causes. On the one hand, some evolu-
tionary changes in ammonoid shell morphology may be
constrained by covariation (e.g., Buckman’s laws of covar-
iation [59]; see discussion) and may thus be a result of
constructional and/or developmental constraints. On the
other hand, cases of parallel evolution of oxyconic shells
(i.e. slender, compressed conchs with acute venter) in var-
ious lineages of ammonoids have been repeatedly docu-
mented and interpreted as adaptations to rapid and/or
improved swimming (e.g., [58,60-63] and see discussion)
and thus as a result of natural selection.
We here report on a probable, recently discovered case

of parallel evolution among ammonoids. It happened

very early in the history and rapid diversification of the
Ammonoidea during the Early and Middle Devonian in
the time interval between about 405 and 395 Ma [64].
The ammonoid shell, which grew by accretion, consists
of a roughly conic, chambered, calcified, often ornamen-
ted and (more or less regularly) coiled conch. Yet, during
this early diversification phase, the history of ammonoids
is characterized by a morphological macroevolutionary
trend from straight-shelled ancestors (bactritoids; for a
review of cephalopod phylogeny, see [65]) via loosely
coiled earliest ammonoids toward completely tightly
coiled forms with closed umbilicus (Figure 1; [58,66-70]).
This major evolutionary trend is thought to have
occurred in a time interval of only about 2 My (see
[58,69]). This rather fast evolution is evidenced by the
co-occurrence of loosely coiled primitive forms, which
are associated with contemporaneous, more derived,
coiled forms in several localities that yielded the earliest
ammonoids [71-78]. Furthermore, this morphological
evolutionary trend occurred during the most intense
phase of the “Devonian nekton revolution” [79]. This
macroecological event corresponds to an explosive trend
from planktonic and demersal marine animals toward
true nekton as represented by the great diversification of
jawed fish and ammonoids, reflecting a selection for
swimming capabilities. It coincided with macroevolution-
ary transformations among various mollusc groups: an
increasing proportion of gastropods formed tightly coiled
protoconchs [80]; some dacryoconarids [81,82], ammo-
noids [58] and some nautiloids [83,84] more or less
simultaneously evolved coiled shells, mainly during
the Early Devonian. Among ammonoids, these post-
embryonic morphological transformations enhanced
buoyancy and swimming capabilities [58,85].
The case of parallel evolution studied here includes two

families of ammonoids, namely the Auguritidae and Pina-
citidae (Figure 2A). These two ammonoid lineages are of
Emsian and Eifelian age (~ 405-395 Ma; [86]) and have a
widespread palaeogeographical distribution (Figure 2B).
Their stratigraphy and taxonomy have been revised
recently [77,87-91]. Representatives of the older lineage
are very rare [77,78]. The study of recently discovered
material [78] and reinvestigation of the most complete
material available in museum collections yielded compre-
hensive morphometric data and revealed the presence of
an umbilical lid (see below) in the auguritid lineage, pre-
viously only known in the pinacitid lineage [92]. Both
lineages under consideration share a common ancestor
(which probably resembled Convoluticeras lardeuxi,
Figure 2A) and their end-members have a very similar
morphology in post-embryonic ontogeny. Although clo-
sely related and in spite of their great morphological
resemblance, there is clear evidence for these two
families being distinct clades. For instance, the embryonic
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shell was openly coiled in the auguritids [75,76,93] and
became tightly coiled in later ammonoid evolution,
including the pinacitids [88]; this is a character that was
never reversed throughout ammonoid evolution, not
even in Mesozoic ammonoids with uncoiled post-
embryonic shells [45,94]. Additionally, the youngest
representatives of the auguritids are at least 5 My older
than the youngest representatives of the pinacitids. The
evolutionary relationships of the auguritids and pinacitids
were elucidated with a comprehensive cladistic analysis
[89] that considered all currently known valid taxa
(except Achguigites tafilaltensis [88] and Weyeroceras
angustus [77], which were introduced later; for their phy-
logenetic position, see [95]). The resultant strict consen-
sus is well resolved (Figure 2A). Both lineages are
characterized at the end of their evolution by the devel-
opment of a very peculiar morphological feature not
known in this specific form in any other ammonoids
(including forms with similar conch shapes). This pecu-
liarity is the development of an umbilical lid (Figure 3),

which is an extension of the lateral shell wall covering
the umbilicus [92].
In the present ammonoid case study, we first describe

and investigate the morphological evolutionary patterns
of both families along their phylogenetic sequence (i.e.
their phylogenetic order of appearance) with bivariate
plots of quantitative characters of the ammonoid shell.
Then, we identify and evaluate statistically the charac-
ters, which may have evolved in parallel and identically.
Finally, we try to decipher the characters, which evolved
identically because of covariation (constructional con-
straints) and/or because of adaptation (selective
constraints).

Methods
To describe and analyze this case of parallel evolution of
ammonoids, their shell geometry is here quantified by
means of eight classical linear measurements, which
characterize the major morphological features of the
ammonoid shell (Figure 4; see also [47,96]).

Figure 1 Morphological evolution of externally-shelled cephalopods during the most intense phase of the “Devonian Nekton
Revolution” in the Early and early Middle Devonian. Reconstructions of the loosely coiled ancestors of the two lineages under consideration
and two representatives of each of the lineages leading to and comprising the Auguritidae and Pinacitidae. The reconstruction of the soft-body
are largely speculative: 10 arms are based on the knowledge that both plesiomorphic coleoids have ten arms and the sister group of the
Ammonoidea + Bactritoidea + Coleoidea, the Nautiloidea, is known to begin with ten arms buds in early embryonic development [201]. The
orientation can be reconstructed from the shell morphology [58]. Presence of a hood and of a camera lucida-style eye as in Recent Nautilida is
speculative [158]. The position of the eye and the hyponome are deduced from the position of the ocular sinus and hyponomic sinus,
respectively. The reconstructions are not shown at the same scale.
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• The maximal diameter (Dmx) is the maximal shell
diameter known for each species and is used to approxi-
mate the adult body size of the ammonoid species
under consideration.
• The whorl expansion rate (WER) is a measure of the

proportional increase of shell diameter through growth
(initially defined by [97,98], but we used the equation of
[47], which is much easier to apply on actual speci-
mens). It is considered one of the most important and
biologically meaningful parameters because it roughly
reflects the growth rates of the coiled shell tube and
strongly correlates with body chamber length, soft part
volume and the syn vivo-orientation of the shell
[58,97-99].

• The whorl shape compression (WSC) is a measure of
the ellipsoid of the whorl section of the ammonoid shell
aperture, which is a very important ammonoid taxonomic
character due to the accretionary growth of the shell.
• The umbilical width index (UWI) is the ratio

between the umbilicus and the shell diameter and thus
approximates the amount of shell coiling (degree of
involution).
• The imprint zone rate (IZR) describes the relative

overlap of two succeeding whorls in terms of height.
• The flank convergence index (FCI; modified after

[100]) approximates the relative compression of the ven-
tral part of the shell compared to its dorsal part (i.e.
acute vs. low-arched rounded venter).
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Figure 2 Spatial and temporal distribution of Auguritidae and Pinacitidae in the Devonian. A, Phylogeny and stratigraphic ranges of
studied Devonian ammonoids. Stratigraphic ranges of taxa compiled from [74-77,88,91,93,202] and own unpublished data. The phylogenetic
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• The number of lobes (NLb) approximates the inden-
tation of the suture line, which is the junction line of
the septa (chamber walls) with the internal side of the
shell. Here, we counted only the lobes on one flank,
including those in the plane of symmetry (i.e. internal
and external lobes).
• Last, the relative depth of the lateral lobe (= “O-

lobe” of [101]; OLb), which is the ratio between width
and height of the lateral lobe, measured from the aper-
tural apices of the neighbouring saddles (see Figure 4).

All available specimens of the two families have been
measured to quantify these characters. Most data are
based on own measurements and some were taken from
the literature [66,76,77,88,95]. The material referred to
in this paper is housed in the following institutional col-
lections: Palaeontological Institute, Moscow (PIN);
Palaeontological Institute and Museum, University of
Zürich (PIMUZ); National Museum, Prague (L 11705);
Institute for Geosciences, University of Tübingen
(GPIT).

Figure 3 Auguritidae and Pinacitidae showing the peculiar umbilical lid. A-D, Celaeceras mirandum, PIN No. 1869/4, lower Emsian, North
Urals, Russia. The specimen and its mould from both sides (B, D) and in apertural view (C). Note the mould of a whorl fragment of Erbenoceras
or a closely related early ammonoid taxon on the top left in A, documenting the rapid evolution from loosely to tightly coiled ammonoids,
which resulted in the co-occurrence of both morphological extremes. E, Kimoceras lentiforme associated with a fragment of a loosely coiled
anetoceratid, PIMUZ 28869, lower Emsian of Shirdak Stow, Zeravshan, Uzbekistan. F-I, Weyeroceras angustum, PIMUZ 28449, lower Emsian, Bou
Tchrafine, Tafilalt, Morocco. F, left side; note the broad yellowish umbilical lid. G, apertural view; note the slender oxyconic shell morphology and
the relatively complicated suture line. H, right side; note the subventral position of the siphuncle. I, septal perforation (refigured from [73]). J,
Exopinacites singularis, internal mould, PIMUZ 28866, middle Eifelian, El Kahla, Tafilalt, Morocco; note the relatively complicated ventral part of the
suture line.
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The eight quantitative parameters are composed of
one size measure (Dmx), six ratios (WSC, WER, UWI,
IZR, FCI, OLb) and one ordinal count (NLb). For Dmx,
FCI, NLb and OLb, only the adult value of each species
is reported and not juvenile values, because these para-
meters always lie near structural boundaries at hatching
(e.g., the suture is simple and will necessarily increase
its complexity through growth; see discussion).
We here consider parallel evolution in a broad sense

by assuming that not all characters are involved in the
parallel evolution and by not assuming that evolutionary
changes are accomplished by similar alterations in the
developmental program (contra [2,102]). From these
definitions, parallel evolution of some characters can be
identified when the evolutionary trajectories of the stu-
died lineages in the morphological space defined by this
subset of characters (1) start with the same morpho-
types, (2) evolve in parallel and are overlapping, and (3)
end with the same forms. In other words, the evolution-
ary trajectories are identical in origin, magnitude and
direction. This pattern of parallel evolution must be dis-
tinguished from parallelism in phenotypic space. This
different phenomenon concerns lineages having parallel
trajectories (same direction), but not necessarily the
same origin and/or magnitude (for an example of paral-
lelism but not parallel evolution, see [103], p. 828, figure
3C). It has to be taken into account that the likelihood
of (1) finding statistical support of parallel evolution as
well as of (2) parallel evolution itself to occur is drama-
tically reduced when the evolutionary transformations
change more often in several aspects (direction, quality,
quantity, proportion) in both lineages. Simple cases of

parallel evolution are thus easier to test but less mean-
ingful with respect to selective forces and vice versa.
Before evaluating the parallel evolution of auguritids

and pinacitids, we describe the patterns of morphological
variation and evolution of these two lineages (Figures 5,
6, 7, 8). Patterns of morphological evolution are exam-
ined globally by means of a multivariate analysis based
on the eight studied quantitative characters of the ammo-
noid shell (Figure 8). We perform a principal component
analysis (PCA; [104]) to examine the variation of the vari-
ables within the sample and identify the characters that
contribute to observed evolutionary changes by creating
high variation. Since the studied characters are of differ-
ent types (size, ratio, ordinal), the PCA has been per-
formed on the correlation matrix (data standardized to
mean zero and unit standard deviation) for all characters.
Then, we examine the evolution of each quantitative
shell character separately by means of bivariate plots
depicting their distribution through the phylogenetic
sequence for the two ammonoid lineages separately
(Figures 5 and 6). These plots enable an empirical evalua-
tion of the presence or absence of directed evolutionary
changes (trends) for each character. Bivariate and multi-
variate exploratory analyses are performed by means of
the versatile palaeontological data analysis freeware
PAST ([105,106]; http://folk.uio.no/ohammer/past), as
well as by scripts programmed by C.M. in MATLAB®

(http://www.mathworks.com/).
Since apparent trends in evolutionary series can be pro-

duced randomly [107-113], the previously and empiri-
cally identified evolutionary trends are tested statistically.
Several methods exist, which are based on random walk
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models, to test and characterize observed trends and to
distinguish the three modes of evolutionary change com-
monly considered in palaeontological studies: directional
change (GRW, general random walk), random walk
(URW, unbiased random walk), and stasis [113-116]. The
evolutionary changes of each character are here evaluated

by means of the maximum likelihood method of
[116-119]. The method is recognized to perform well
even when evolutionary sequences are incompletely
sampled, which is likely for empirical palaeontological
sequences as documented here [116]. It has been imple-
mented as a package (paleoTS, [116]) in the freely
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available statistical environment R (http://www.r-project.
org/). The method evaluates the maximum likelihood of
producing the observed trends for three evolutionary
modes (GRW, URW, and stasis). The relative support of
each of these three models is assessed using well-estab-
lished statistical means such as Akaike weights ([120]; for
details, see [116-118]), which indicate the relative likeli-
hood for each of the three evolutionary models (Figure 9).

Since auguritids and pinacitids branched off from the
same origin, the characters displaying directed trends
shared by both lineages and supported by the statistical
analysis can potentially participate to a case of parallel
evolution (Figure 9).
In order to assess the parallel evolution of the two stu-

died lineages, we use two different approaches, both based
on a multivariate analysis using the subset of characters
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previously identified to be potentially involved in this case
of parallel evolution. Note that univariate approaches can
suffer from a “dimensionality bias” and similarities of tra-
jectories in a morphospace should preferably be tested
multivariately [121,122]. First, the parallel evolution of this
subset of characters is evaluated by means of a method
developed for comparing evolutionary trajectories of phe-
notypic change [123]. According to this method, the phe-
notypic evolution of a lineage is defined as a trajectory
across a set of evolutionary levels in a multivariate mor-
phological space. Attributes of these trajectories (magni-
tude, direction and shape) are quantified and statistically

compared across pairs of taxa by means of a residual ran-
domization permutation method [123,124], and a sum-
mary statistic is used to determine the extent to which
patterns of phenotypic evolution are concordant. Note
that the method currently requires that the compared tra-
jectories have the same number of evolutionary levels (i.e.
in our case the same number of species). Since more spe-
cies of pinacitids have been described, the analysis is per-
formed by first merging the data of the phylogenetically
closest species of the pinacitid lineage in order to obtain
the same number of studied evolutionary levels or steps
for both families. The two species of Pinacites have thus
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been merged, as well as Foordites succedens with F. platy-
pleurus and Achguigites with Fidelites. This constraint of
the method reduces the power of the test since the species
of different lineages cannot be considered as equivalent.
The second method to test the parallel evolution of

these Devonian ammonoids follows the approach pro-
posed by [121] for comparing ontogenetic trajectories.
This method is a permutation test based on within-line-
age multivariate regression of the characters hypothe-
sized to be involved in the parallel evolution. If the two

lineages evolved in parallel, then their phylogenetic tra-
jectories are identical in the morphological space
defined by the subset of characters involved. To test this
hypothesis, we first compute for each lineage separately
a linear total least square regression, then we sum the
squared orthogonal distance for each specimen from its
nearest point on the regression curve. This sum pro-
vides the original test statistic for subsequent compari-
son. Then, we randomly resample without replacement
a large number of times the taxonomic assignment of
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studied specimens to the two lineages and recompute
the summed squared distances of these permuted
families (this provides the permutation distribution). If
the two studied lineages evolved in parallel, the original
test statistic should not be an outlier in the permutation
distribution of summed squared distances (see [121]). In
other words, permuting specimens’ affiliation does not
increase the residuals of the multivariate regressions and
this is possible only if specimens of both families are
close together in the studied morphological space.

Results
Evolution of Auguritidae (Early Devonian)
The evolution of shell characters through the phylogenetic
sequence of the lineage that includes the Auguritidae is

described and reported in Figures 5, 6, 7 and 8. Within
this lineage, several evolutionary trajectories can be
empirically suggested: the adult shell size (Dmx), whorl
shape compression (WSC), number of lobes of the suture
(NLb) and relative depth of the lateral lobe (OLb) increase
simultaneously with decreasing umbilical diameter (more
tightly coiled shells; UWI). The whorl expansion rate
(WER) also increases slightly. The flank convergence
index (FCI) and imprint zone rate (IZR) fluctuates without
emerging trends.
Of great interest is the general trend of increasing

involution (more tightly coiled shells as shown by the
decreasing UWI, Figure 6). Indeed, most ammonoid spe-
cimens of lower Emsian age are very openly coiled and
share a wide umbilical perforation [45]. It is striking
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that all forms of this lineage are still associated with
loosely coiled Anetoceratinae (Figure 3E; see references
in the background section), which indicate that their
evolution must have been comparably fast. In addition
to this trend toward a closed umbilicus, the lineage is
characterized by the appearance of an umbilical lid.
Although the most derived forms of this lineage are
rather rare, re-examination of the material from the
Urals (Russian) and the Zeravshan Range (Uzbekistan)
in the Palaeontological Museum of Moscow [75,93] and
new specimens from Morocco [78] reveals that the two
most derived genera Weyeroceras and Celaeceras both
possess extensions of the lateral shell wall covering the
umbilicus (i.e. umbilical lid; Figures 3, 7). This structure
was previously known in this form only from the pinaci-
tids [92]. Noteworthy, the trends toward more com-
pressed (WSC) and more involute (UWI) shells levelled
off with the appearance of the umbilical lid. The appear-
ance of the umbilical lid is also associated with the
smallest UWI (almost closed umbilicus).

Evolution of Pinacitidae (Early and Middle Devonian)
The evolution of shell characters for the lineage that
includes the Pinacitidae and which evolved from the
same remote ancestor of auguritids is reported in Fig-
ures 5, 6, 7 and 8. Within this lineage, the adult shell
size (Dmx), the number of lobes of the suture (NLb)
and their relative depth (OLb), as well as the acuteness
of the venter (FCI) increased simultaneously, especially
among the more derived species. The umbilical width
index (UWI) and the imprint zone rate (IZR) also dis-
play trends but these occur only among the more primi-
tive species. Evolutionary changes of whorl shape
compression (WSC) and whorl expansion rate (WER)
display different, slightly more complex evolutionary
patterns: a quick increase in the most primitive species,
an abrupt reset and then a slight increase in the most
derived species, giving the trend a sigmoid course.
This lineage is better known, much more abundant

and more diverse than auguritids. The pinacitids had a
nearly cosmopolitan distribution during the Middle
Devonian (see Figure 2B; [87,88]) and even the most
derived representatives were locally quite common. Like
in the auguritids, the derived species of pinacitids
acquire more oxyconic shells and more complex sutures,
as well as an umbilical lid. With the appearance of the
umbilical lid, the trends toward greater involution
(decreasing UWI) and whorl overlap (IZR) levelled off
(Figure 6). This levelling off may correspond to a “left-
wall” effect, i.e. the trend cannot go further once the
umbilicus is closed, because the closure of the umbilicus
marks a constructional boundary (whorls completely
overlap).

Parallel evolution of the two lineages
The results of the morphological principal components
analysis are plotted in Figure 8. The first three compo-
nents extracted from the dataset accounted for 79.4% of
the morphological variation. The PCA plots indicate
which shell characters contribute to the morphological
evolution of Devonian ammonoids by creating high var-
iation. Vectors of shell characters (length and direction
compared to the PC axes) revealed that variation on
PC1 is mainly associated with Dmx, WSC, NLb/OLb,
FCI and UWI, PC2 with WER and IZR, and PC3 with
WSC. When viewed in the PC1/PC2 plot (Figuer 8), the
morphological evolutionary trajectories of Auguritidae
and Pinacitidae display a seemingly pattern of paralle-
lism. However, this pattern is absent on other PC axes
and is thus an artefact of projection onto a reduced
number of axes (compare figure 5 in [121]). Noteworthy,
it does not reflect the case of parallel evolution dis-
cussed here, since this PCA is based on the eight quan-
titative characters and not only those really evolving in
parallel (see below). Finally, this principal component
analysis shows that the two studied clades are clearly
distinct morphological clusters even if related to a com-
mon ancestor, because they occupy distinct areas of
morphospace. Therefore, even if these lineages experi-
ence a parallel evolution of some characters (see below),
each lineage is clearly distinct and has its own evolu-
tionary history. The auguritid lineage has also a more
irregular evolutionary trend than the pinacitid clade.
This higher inter-specific variation probably originated
from the poorer database and the fewer evolutionary
steps for this rare family.
Both ammonoid lineages display empirical morpholo-

gical evolutionary trends of some shell characters. Their
statistical evaluation by means of the method of [116] is
illustrated and reported in Figure 9. Among the three
tested evolutionary patterns (directed trend, GRW; ran-
dom trend, URW; stasis), the studied quantitative char-
acters are mainly characterized by random trends and/
or stasis (Akaike weights of URW or Stasis > 0.5). The
only well-supported directional trend (GRW > 0.5) is for
UWI (increasing involution) in the pinacitids, as well as
in the auguritids if we remove one “outlier species” (Fig-
ure 9). Hence, this suggests that, except for UWI, the
two ammonoid lineages have no directed evolutionary
changes of their morphology. However, we must
acknowledge that the power of this statistical test is
reduced by the current state of our data. First, although
we managed to acquire a comprehensive dataset from a
palaeontological point of view, the number of species
and specimens in the studied dataset remains low.
Second, the studied ammonoids display important onto-
genetic changes [88,125], which largely increase the
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variance and range of studied characters. However, the
scarcity of well-preserved, adult specimens of these ear-
liest ammonoids prevents using only adult values. If we
relax the necessary statistical support, two studied shell
characters may display possible directed trends for both
lineages: Dmx and NLb, which have negligible values for
stasis and low but not negligible support for GRW. By
comparison with other ammonoid groups [28,29,31-33,
35,36,39], trends in these two characters are expectable,
but it remains to be tested by additional material in the
future. Nevertheless, all other characters remain devoid
of directional trends. Thus, the two studied lineages
share the same directed trends for UWI with certainty,
and more hypothetically for Dmx and NLb. Finally, it
also appears plausible that the evolutionary trajectories
for these three characters end with forms having equal
means: for UWI, the last auguritid and the last pinacitid
have no significant difference in their mean (Welch t =
-1.588, p = 0.139); for Dmx, the last auguritid has the
same value has the penultimate pinacitid but the last
pinacitid is larger than the last auguritid; and for NLb,

both lineages have at the end the same number of
suture elements. This is also suggested graphically in
Figure 9.
Since auguritids and pinacitids originated from the

same ancestor, had possible directional trends in UWI,
Dmx and NLb, and finally ended with similar values for
these three characters, auguritids and pinacitids may
have a parallel evolution for three quantifiable traits (coil-
ing, adult size, and suture complexity). There is, however,
also the evolution of the umbilical lid, which is a pre-
sence/absence character and does not influence the
quantitative results. The hypothesis of parallel evolution
of the measurable characters is tested by two permuta-
tion methods based on the character subset made by
UWI, Dmx and NLb (Figure 10). Using the trajectory
approach of [123], it appears that there are no significant
differences in the magnitude (MDsize = 0.103, Psize =
0.920) and in the direction (θdir = 14.735, Pdir = 0.087) of
phenotypic evolution between the two lineages (Figure
10A). However, there are significant differences in the
shape of the two evolutionary trajectories (Dshape = 0.586,

-2 -1 0 1 2 3

-2
-1

0
2

1

PC 1

PC
 2

u.l.
u.l.

A B

Psize: 0.013
Pdirection: 0.008

Pshape: 0.001

MDsize: 2.599
θdirection: 21.270

Dshape: 0.602

Psize: 0.920
Pdirection: 0.087

Pshape: 0.001 Pparallel regression: 0.019

MDsize: 0.103
θdirection: 14.735

Dshape: 0.586

magnitude :
direction :
shape :

magnitude :
direction :
shape :

with the auguritid outlier taxon (dashed line):

without the auguritid outlier taxon:

without the auguritid outlier taxon:

UWI
0

0.2
0.4

0.6
0.8

1

0
50

100
150

200
250

300
350

1

2

3

4

5

6

7

Dmx

N
Lb

phylogenetic sequence of

Auguritidae Pinacitidae

Figure 10 Evolutionary trajectories of Auguritidae and Pinacitidae in the morphological space defined by the three characters
involved in the case of parallel evolution. A, Statistical evaluation of the parallel evolution by means of the trajectory approach of [123]. Plot
of the first and second principal components estimated from the correlation matrix for auguritids and pinacitids based on the three standardized
characters UWI, Dmx, and NLb. Statistical evaluation of the parallel evolution is indicated with and without the auguritid outlier taxon
Weyeroceras angustus (dashed line). Parameters with more than minimal support are in bold. There are no significant differences in magnitude
and direction of the trajectories, but they are different in shape. B, Statistical evaluation of the parallel evolution by means of the regression
approach of [121]. The phylogenetic trajectory of each lineage is fitted by a linear total least square regression. The statistical evaluation is
indicated without the auguritid outlier taxon. The p-value of the test (p = 0.0197) is low, but the hypothesis of parallel trajectories could not be
rejected by the permutation test.

Monnet et al. BMC Evolutionary Biology 2011, 11:115
http://www.biomedcentral.com/1471-2148/11/115

Page 13 of 21



Pshape = 0.001). This difference in the shape of the two
trajectories is, however, expected because the taxa of
each lineage are not truly equivalent and do not necessa-
rily represent the same evolutionary steps.
Using the regression approach of [121], it appears that

the hypothesis of parallel trajectories of the two studied
lineages cannot be rejected (p = 0.019), but the value is
low (Figure 10B). The statistical evidence for the parallel
evolution in UWI, Dmx and NLb of auguritids and
pinacitids is thus controversial between the two
approaches we used. As discussed previously, our sparse
and unbalanced dataset is probably responsible for the
low power of these statistical tests. Additional data are
thus required to better test this hypothesis of parallel
evolution. Noteworthy, both lineages developed the
peculiar umbilical lid, not known in any other ammo-
noid group. It still appears likely that auguritids and
pinacitids evolved in parallel with respect to the increas-
ing involution, adult size, suture complexity and evolu-
tion of an umbilical lid.
In summary, this probable but not fully proven case of

parallel evolution included the following quantitative and
qualitative traits and their corresponding evolutionary
trends (Figuers 5, 6, 7, 8 and 9): (1) adult body size (Dmx:
from less than 50 mm to more than 150 mm for auguritids
and 300 mm for pinacitids); (2) umbilical width (UWI:
from moderately wide to closed; and with formation of an
umbilical lid by extending the lateral shell wall across the
umbilicus); (3) sutural complexity (NLb: from simple to
more complex by ventral and umbilical insertion of acces-
sory elements); (4) siphuncle position (not quantified:
from ventral to subventral, see e.g. Figuer 3H); (5) aperture
shape/whorl cross section (from platycone to oxycone, i.e.
more compressed shell and/or more acute venter); and (6)
shape of venter (not quantified: from rounded to acute;
Figuer 7). These trends occurred in a phase that lasted ca.
10 My from the last common ancestor of both lineages to
the extinction of the last representative of the pinacitids.
As shortly discussed in the introduction, parallel evolution
is never exact and never includes all traits of the members
of the lineages under consideration. Differences between
the two ammonoid lineages can be seen in the following
traits for example (Figuers 5, 6, 7, 8 and 9): (1) adult body
size (Dmx: both increasing, but pinacitids reach over twice
the size of the auguritids); (2) whorl overlap (IZR: trend
and higher values for pinacitids); (3) suture line (higher
values of OLb for pinacitids); and (4) aperture shape/
whorl cross section (both from platycone to oxycone, but
by increasing WSC for auguritids and increasing FCI for
pinacitids).

Discussion
Parallel evolution could theoretically have various causes
such as chance, genetic heritage, covariation/developmental

constraints, and/or adaptation/selection. In the context of
cases of protracted parallel evolution of more or less com-
plex structures or organs, which comprise many taxa in
the lineages under consideration, the likelihood is very low
that this parallel evolution is a result of sheer chance.
Therefore, it is necessary to determine which causes con-
tributed how, and to what degree to the documented evo-
lutionary parallel and identical trends. In the case of
auguritids and pinacitids, covariation of some traits is evi-
dent while we can suggest adaptation for other morpholo-
gical aspects of the shell.

Functional traits (adaptation)
Among the documented parallel morphological evolu-
tionary trends, the most important are: increasing invo-
lution (more tightly coiled whorls toward a closed
umbilicus); development of an oxyconic shell (more
compressed shell and/or more acute venter); larger shell
diameters (body size); and the terminal acquisition of an
umbilical lid.
The increasing body size of both studied lineages consti-

tutes an example of Cope’s rule, known as the widespread
tendency of animal groups to evolve toward larger body
size [126-129]. This type of trend has been attributed to
certain advantages of size increase such as increased
defence against predation, increased food competition,
increased success in mating, increased individual longevity,
and better energy use [20,126-128,130-132]. Since the line-
age starts with small shells, the observed trend toward a
larger shell size conforms to the traditional gradualist and
adaptive interpretation that large-scale evolutionary trends
result from persistent selection within long-ranging
lineages. Several authors have illustrated examples of
increasing ammonoid shell size during initial radiation of a
group [46,129,133,134]. However, [135] found no evidence
for Cope’s rule among Early Jurassic ammonoids, after the
initial recovery radiation following the Triassic/Jurassic
boundary extinction.
The persistent increasing involution (i.e. more tightly

coiled whorls toward a closed umbilicus) coupled with
the oxyconic shell as displayed by the auguritids and
pinacitids is surely one of the most frequently observed
large-scale morphological evolutionary trends among
ammonoids [27,28,31-33,38,39,66,136-139]. This highly
recurrent trend among numerous and distantly related
ammonoid clades (thus independent of phylogeny) sug-
gests that it may have a strong adaptive significance due
to functional constraints [140,141]. Since ammonoids are
an extinct group, we have no direct evidence of the cause
and advantage of this possible adaptation. However,
thanks to mechanical experiments on shell models and
analytical calculations of shell hydrodynamics [61-63,
99,142-144], as well as by analogy with Recent nautiloids
(the only extant cephalopod with a chambered external
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shell; see [145,146]), numerous studies evaluated the
hydrodynamic performances (locomotion) of the ammo-
noid shell shape. It has been widely demonstrated that,
for shells with oxyconic shell shapes, the energy con-
sumption for swimming is the lowest and potential maxi-
mal swimming speed is the highest. Manoeuvrability is
best with roughly horizontal apertures at relatively short
body chambers and more or less high whorl expansion
rates [58,60,62,63,147]. Indications for a link between
water energy, facies and conch form are not rare but only
few publications on that matter are available [55,57,88,
139,148-155]. Increased involution of the shell (decreased
UWI) therefore appears to represent a consistent adapta-
tion toward improved hydrodynamic properties of the
shell (decreased drag, increased streamlining) and conse-
quently probably improved predation efficiency,
increased food competition, increased predator escape,
and/or improved search for mating partners and suitable
spawning regions. Hence, the parallel and identical trend
of ammonoid shell involution in the Auguritidae and
Pinacitidae is here suggested to be best and most plausi-
bly explained by functional adaptation.
Finally, both studied lineages evolved a peculiar mor-

phological trait, the umbilical lid. This shell modification
occurred only among the most derived species of both
studied evolutionary lineages. This umbilical lid repre-
sents an extension of the lateral shell wall, passing across
the umbilical shoulder toward the coiling axis and conse-
quently more or less completely occludes the umbilicus
of the ammonoid shell. This construction of the umbili-
cal lid is a unique feature of the two studied lineages and
is not known in this form from any younger ammonoid
group, not even in groups having similar shell shapes.
Other ammonoid groups do occasionally possess mor-
phological features occluding the umbilicus [92,95,156],
but in these cases, the structure is only superficially simi-
lar and results from a different origin (e.g., thickened
umbilical walls and/or reduced umbilical width [92]).
Since there are countless taxa with an overall shell shape
(oxyconic shell with a very narrow umbilicus) roughly
resembling that of auguritids and pinacitids, the appear-
ance of this morphological structure (the umbilical lid)
cannot be simply explained by covariation, thus making
an adaptive explanation most likely. The parallel evolu-
tion of umbilical lids could be functionally explained by
different, not mutually exclusive hypotheses.
(1) The umbilical lid could represent an adaptation for

the improvement of the hydrodynamic properties of the
shell. Indeed, it has been shown repeatedly that the size
and shape of the umbilicus in combination with the
overall shell geometry has a profound influence on the
hydrodynamic properties of the shell [57,61-63,142]. For
instance, forms with a closed umbilicus reduce added
mass (such as the water trapped by the umbilicus) and

confer better acceleration and deceleration during swim-
ming [63]. In this context, this hypothesis supports the
adaptation to improve swimming, but it does not
explain completely why the umbilical lid is constructed
in such a peculiar way in only these two groups.
(2) In addition to the previous hypothesis, the umbili-

cal lid could act as a device directing water into the
mantle cavity from behind when swimming backwards
by means of jet propulsion. Indeed, most cephalopods
swim “backwards” by taking in water into the mantle
cavity and by expelling this water by mantle cavity com-
pression through the hyponome (e.g., [157]; for a discus-
sion on the functional analogy between ammonoids and
Nautilus, the only extant cephalopod with an external
shell, see [63,146]). Note that all recent and all fossil
cephalopods still have or had a hyponome [158]. This is
corroborated by the presence of a hyponomic sinus in
our forms just like in Nautilus [146]. In this case, the
umbilical lid has hydrodynamic advantages because the
water enters from the swimming direction and leaves in
the opposite direction (i.e. in the direction of the aper-
ture, where the animal came from) with a deviation
through the mantle cavity where it is accelerated by the
animal’s musculature (Figuer 11). Furthermore, the
umbilical lid is not formed at the beginning of ontogeny
but rather at a diameter of about 5 mm. This roughly
coincides with the size when swimming movements
become more effective in the course of ammonoid
development [62,63], thus supporting a link between
shell hydrodynamics and the evolution of the lid. True
evidence for this function is missing, but both lineages

Figure 11 Reconstruction of Exopinacites singularis and of its
possible swimming advantage involved by the presence of an
umbilical lid. Speculative functional advantage of the umbilical lid,
which was combined with a deep umbilical sinus in the aperture,
allowing water to enter directly from the swimming direction into
the mantle cavity. The position of the hyponome can be deduced
from the hyponomic sinus.
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lived in a time when a general increase in mobility
among swimming animals occurred [79].
(3) Finally, the umbilical lid might have been caused

by, or linked to, features unrelated to the hard parts
(e.g., soft-tissues, genes). For instance, the parallel evolu-
tion of an umbilical lid may speculatively result from
the repetitive loss of expression of regulatory Hox genes
(e.g., [159]; for the description of such a case in the evo-
lution of crustacean maxillipeds, see [7]) or the repeated
selection of developmental genes (see e.g., [10,160]).
Logically, this is impossible to test on Devonian fossils.
Furthermore, the genetic underpinnings of parallel and
convergent evolution are generally unknown in Recent
organisms [161]. Although it is not yet possible to find
evidence for another function of this lid, it appears likely
that it served indeed as a structure to improve swim-
ming abilities.

Covarying traits (constructional constraints)
Among the documented parallel morphological evolu-
tionary trends, some can be explained as covarying traits,
meaning that some morphological trends can result from
constructional constraints [39,162-165]. The characters
involved in such indirectly triggered trends are important
to identify because, in this case, there is no need to
search for an adaptive or genetic explanation.
Covariation of shell characters is well-known for

ammonoids [166]. For instance, the intraspecific variation
of an ammonoid species is usually expressed by the fol-
lowing gradient: the more evolute the shell, the thicker
the whorl shape, and the more robust the ornamentation.
It is referred to as Buckman’s first law of covariation
[59,163,167,168] and has been abundantly documented
and discussed (e.g., [38,169-174]). Shape and differentia-
tion of suture lines (i.e. the kind and degree of folding of
the phragmocone chamber walls) also covary with shell
shape and shell size (Buckman’s second law of covaria-
tion). More precisely, the number of suture elements
(frilling of the suture line) increases with the size of the
shell (whorl height) and/or with the compression of the
shell. This is evidenced by the widely documented
increase in the suture complexity through ontogeny of
the ammonoid shell (for Devonian taxa see, e.g.,
[47,66,93]; see also inside frame of Figure 7). Further-
more, both patterns are usually linked because in most
ammonoid ontogenies, a more or less rapid change from
more circular to either compressed or depressed aper-
tures happened (see Figure 7). During this change in
whorl section, the relative number of suture elements
changes in such way that less suture elements occur
when the whorl cross section is closer to a circle, and
vice versa [51,175]. Both patterns are abundantly docu-
mented for all ammonoid groups (e.g., [44,47,55,60,
66,93,95,176-184]).

The function of the septal folding is the subject of
much debate (e.g., [150,185,186]) and many hypotheses
have been proposed, such as buttressing [144,187,188],
muscle attachment [189], cameral liquid transfer [190],
metabolic effect [191], developmental epiphenomena
[175,192-194], and/or locomotion [195]. Nevertheless,
the increase with size and through ontogeny is expected
because septal formation behaves like a “viscous finger-
ing” phenomenon (see review of [175]); in this morpho-
genetic model, the details (not the general outline) of the
suture pattern depend on the space and shape available
for the suture during its formation ("domain effect”).
Both studied lineages are no exception to this rule of

covariation. The two lineages are characterized by the
parallel and identical evolution toward an increasing
number of lobes (Figure 5). In the case of pinacitids and
auguritids, new lobes and saddles were especially inserted
dorsally and ventrally, where the shell void was the nar-
rowest (Figure 7). Note that in the two derived species
Weyeroceras angustum (Auguritidae) and Exopinacites
singularis (Pinacitidae) the siphuncle shifted to a subven-
tral position causing the formation of an additional lobe
[78,92]. Both lineages are also characterized by an
increasing adult size and an increasing oxyconic charac-
ter of the shell (more compressed shell and/or more
acute venter; Figures 5 and 6). Hence, in the case of these
Devonian ammonoids, the trends toward increasing
number of suture line elements are likely to be induced
by covariation as corroborated by the strong correlation
of NLb with IZR, FCI and WSC (Figure 12). This covaria-
tion of NLb with WSC and FCI is not the indirect result
of parallel evolution, because the two studied lineages
display different trends for WSC and FCI (neither paral-
lel, nor identical; Figures 5, 6, 9). Hence, both studied
lineages experienced a parallel and identical trend toward
more complex suture patterns, both by covariation with
other evolutionary trends of the shell shape, but this is
achieved differently in both lineages (mainly WSC for
auguritids and FCI for pinacitids).

Conclusions
Very early in the course of the evolution of the Ammo-
noidea, the two families Auguritidae and Pinacitidae
evolved independently but display a striking pattern of
probably parallel morphological evolution. These two
families share several essential morphological traits such
as shell shape, suture line course, and the presence of
an umbilical lid, which is an extension of the lateral
shell wall and is unknown in this form from any other
ammonoid lineage. The similar and parallel evolution of
both lineages toward large, involute shells with more
complex suture lines and with closed umbilicus includ-
ing the formation of an umbilical lid can be explained
best by selection for enhanced hydrodynamic properties
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of the shell (selective/adaptive constraints). Specula-
tively, the umbilical lid might have facilitated the intake
of water from the swimming direction during repulsion
swimming. Some other shell parameters also show a
parallel evolution, but most likely due to covariation
(constructional constraints). The increase in sutural
complexity represents a typical case of covariation
induced by the evolution toward involute and larger
shells with acute venter and deep imprint zone.
Covariation and adaptive constraints are thus not

mutually exclusive and both can contribute to parallel evo-
lution of ammonoid lineages. Constructional constraints
belong therefore to the primary factors governing evolu-
tionary trends of the ammonoid shell, indirectly triggered
by adaptive trends. Furthermore, this underlines that
form, and the controls upon it, can never be truly under-
stood in isolation from functional adaptation and con-
structional covariation. Distinction between covariation
and adaptation in the process of evolutionary trends is
also important in order to avoid over-interpretation of the
patterns; in such cases, detailed studies of convergent or
parallel evolutionary trends can contribute important
impetus toward a decision for either cause. For instance,
recurrence of particular combinations of morphology and
their strong independence of phylogeny are commonly
regarded as strong arguments for functional constraints.
The evolutionary recurrence of these combinations of
characters depends partially on selection for certain func-
tional aspects (e.g., trend of increased involution induced
by selection for improved hydrodynamic properties), and
partially on shell morphogenesis and associated covaria-
tion following functional adaptations (e.g., trend of
increased suture complexity induced by size- and involu-
tion-increase trends), thus representing “fabricational

noise” [162,196] (i.e. constructional constraints). In other
words, evolutionary transformations that occurred in these
ammonoid lineages may be directly or indirectly linked to
some kind of adaptation, but not all innovations are neces-
sarily functional. For instance, some authors have inter-
preted the adaptive signification of sutural complexity,
especially to water depth against implosion (for a discus-
sion and references, see e.g., [144,190,197]). Such interpre-
tations are questionable because trends in suture
complexity may be (at least partially) a side effect and not
the target of evolution. Furthermore, several studies also
tried to demonstrate the increasing complexity of life by
focusing on the ammonoid suture complexity (e.g.,
[36,198,199]). All these studies resulted in more or less
equivocal results and this may be explained by the fact
that many changes in suture patterns can be induced by
covariation. It is thus crucial for phylogenetic analyses,
especially at higher systematic ranks [200], to understand
the driving factors behind evolutionary morphological
modifications, whether they are driven by some selective
force, sheer covariation or even random processes.
Those evolutionary trends which are not parallel between

the two studied groups also highlights that these are inde-
pendent characters of the ammonoid shell. Hence, although
adaptation and covariation largely shape the morphological
evolution of ammonoids, the still divergent evolution of
several shell characters of both lineages in our case of paral-
lel evolution imply that the unique histories of organisms
still play a large role in shaping the evolutionary trajectory
of clades [2]. As large-scale macroevolutionary studies can
only proceed gradually, we hope that further fossil discov-
eries and the application of new methods and better knowl-
edge of mollusc shell morphogenesis (see e.g., [164,165])
will help to test the hypotheses advocated in this paper, and

1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log( NLb ) log( NLb ) log( NLb )

lo
g(

 IZ
R

 )

 -0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

lo
g(

 F
C

I )
 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

lo
g(

 W
S

C
 )

 

r2 = 0.58
r2 = 0.22

r2 = 0.26
r2 = 0.70

r2 = 0.47
r2 = 0.25

auguritid lineage trendpinacitid lineage trend

Figure 12 Covariation of suture line geometry and shell geometry. Bivariate plots of IZR, FCI and WSC versus number of lobes (NLb); the
number of lobes increased throughout the phylogeny of both lineages.

Monnet et al. BMC Evolutionary Biology 2011, 11:115
http://www.biomedcentral.com/1471-2148/11/115

Page 17 of 21



continue to reveal information about the evolutionary his-
tory of this major marine extinct group, the ammonoids.
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