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Scaling properties of protein family phylogenies
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Abstract

Background: One of the classical questions in evolutionary biology is how evolutionary processes are coupled at
the gene and species level. With this motivation, we compare the topological properties (mainly the depth scaling,
as a characterization of balance) of a large set of protein phylogenies with those of a set of species phylogenies.

Results: The comparative analysis between protein and species phylogenies shows that both sets of phylogenies
share a remarkably similar scaling behavior, suggesting the universality of branching rules and of the evolutionary
processes that drive biological diversification from gene to species level. In order to explain such generality, we
propose a simple model which allows us to estimate the proportion of evolvability/robustness needed to
approximate the scaling behavior observed in the phylogenies, highlighting the relevance of the robustness of a
biological system (species or protein) in the scaling properties of the phylogenetic trees.

Conclusions: The invariance of the scaling properties at levels spanning from genes to species suggests that rules that
govern the incapability of a biological system to diversify are equally relevant both at the gene and at the species level.

Background
During the last century, an important effort has been
devoted to the understanding of diversification patterns
and processes in terms of branching evolutionary trees
[1-7]. Tempo and mode of genetic change, and their
connections with tempo and mode of speciation is an
important issue in this context. In that sense, we address
the question of whether similar forces act across the
gene level and species-level evolution [8-10], through a
comparative analysis of the topological behavior of pro-
tein and species phylogenies.
Previous analyses of the topological properties of phylo-

genies have revealed universal patterns of phylogenetic dif-
ferentiation [3,6,7,11,12]. This means that the impact of
evolutionary forces shaping the diversity of life on Earth
on the shape of phylogenetic trees is, at least to the level
of detail captured by the descriptors used, similar across a
broad range of scales, from macro-evolution to speciation
and population differentiation, and across diverse organ-
isms such as eukaryotes, eubacteria, archaea or viruses,
thereby. This together with the fact that evolutionary
forces work at molecular level motivates the study of the
topology of evolutionary relationships among molecular

entities, looking for patterns of differentiation at such
molecular level, thereby extending the examination of the
universality of the scaling of branching laws in phylogenies
all the way from molecular- to macro-evolution.
The term “protein family” was coined by Dayhoff in

the 1960’s to comprise similar proteins in structure and/
or function, which are presumed to have evolved from a
common ancestor protein [13]. Our analysis is based on
a thorough data set of 7,738 protein families down-
loaded from the PANDIT database http://www.ebi.ac.
uk/goldman-srv/pandit/[14] on May 27th 2008. It con-
tains families with a broad range of sizes (see Figure 1).
Taking into account that protein family diversification is
driven by alternative evolutionary processes beyond spe-
ciation (orthology), such as gene duplication (paralogy),
these data were used to test if the universal patterns
found previously in species, subspecies, and higher taxo-
nomic levels, also apply at the molecular evolutionary
level. In particular we use tools derived from modern
network theory [7,15-18] to examine the scaling of the
branching in the protein family phylogenies.
A protein family phylogeny is represented as a tree, i.e.,

as an acyclic graph of nodes connected by branches
(links), where each node represents a diversification
event. For each node in a phylogeny, a subtree (or sub-
family) S is made of the root at the selected node and all
of its descendant nodes. The subtree size A is the total
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number of subfamily members that diversify from the
root (including itself). The characterization of how pro-
tein diversity is arranged through the phylogenies can be
achieved in a variety of ways [19-26]. We focus here on
the mean depth, d, of the subtree S (see Methods)
[6,27,28] defined as: d =

∑
j droot,j/A, where, for a given

node j, droot,j is its topological distance to the root of the
subtree S, that is, the number of nodes one has to go
through so as to go from that node to the root (including
the root in the counting), and the sum is over all nodes
in the subtree S. Note that we use here the mean depth
over all subtree nodes and not just the leaves, which
gives a different but related measure [4,29,30]. In the
remainder, when no subindex is indicated, we understand
that mean depth and other quantities refer to a whole
tree or a subtree depending on the context.
How the shape of a phylogenetic tree, i.e., the distribu-

tion of protein diversification, changes with tree size, i.e.,
with the number of proteins it contains, can be analyzed

by examining the dependence of the mean depth on sub-
family size d = d(A). This gives information on the bal-
ance characteristics of the tree. To be clearer, in the
additional file 1 we show the analysis of A and d for a
fully balanced and a fully imbalanced 15-tip tree, as well
as for a 15-tip subtree of a real phylogenetic tree. For a
given tree size, the smallest value of the mean depth cor-
responds to the fully polytomic tree. The mean depth d
as a function of tree size A is given in this case by

dmin = 1 − 1
A
. (1)

For large sizes the leading contribution is dmin ~ 1.
The largest mean depth value for a given size is given
by the fully imbalanced, or asymmetric, binary tree with
a mean depth given by

dmax =
1
4

(
A2 − 1

A

)
, (2)

Figure 1 Protein family size distribution. Distribution of the size of the PANDIT protein families. Black line corresponds to a power law P(T) ~
T-g, with a fitted exponent g = 1.6 ± 0.1. The inset shows the complementary cumulative distribution F (T), that is, the probability of finding
family sizes larger than T.
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which for large sizes A leads to the scaling behavior
dmax ~ A. The fully balanced, or symmetric, binary tree
is inside these extremes, with a mean depth given by

d =
((A + 1) ln2(A + 1) − 2A)

A
. (3)

The leading contribution at large sizes is logarithmic:
d ~ ln A. This logarithmic scaling is not exclusive of
fully balanced trees, it is also the behavior of the Equal-
Rates Markov (ERM) model [28,31,32], the natural null
model for stochastic tree construction, in which, at each
time step, one of the existing leaves of the tree is chosen
at random and bifurcated into two new leaves.
We report here the patterns of mean depth for protein

families, and compare the branching patterns derived for
protein families, from the PANDIT database with those
of species phylogenies, reported previously from the
TreeBASE database [7]. This comparison shows that
branching patterns are mostly preserved across evolu-
tionary scales spanning from genes to species.

Results
Protein phylogenies depth scaling
The analysis of the 7,738 protein phylogenies of PAN-
DIT database shows (Figure 2) that the scaling of the
mean depth with tree size lies between the two extreme
topologies for binary trees (fully imbalanced and fully

balanced trees), with the exception of a few polytomic
subtrees, which display mean depth values lower that
the one expected for the same size fully balanced binary
tree. The data for independent protein trees are not
scattered between the extreme cases but instead cluster
in a space intermediate between these extremes depend-
ing on the size of the trees. Figure 2 displays depth,
averaged within logarithmic bins of values of tree size A,
as a function of A. The axes of this and other plots in
the following have been chosen so that a depth behavior
of the form d ~ (ln A)2 will appear as a straight line.
This is the behavior suggested by the models in [33,34]
and for organisms phylogenies in [6], which seems to
correspond rather well to our data. The fully imbalanced
tree shows a linear dependence d ~ A, and the fully
balanced tree shows a logarithmic dependence of the
form d ~ ln A (lines also shown in Figure 2).
We analyzed the scaling of the mean depth as func-

tion of the tree size for different protein functions (e.g.
nuclear, structural, metabolic) to assess whether differ-
ent protein functions show scaling laws departing from
the average mean depth scaling described for the whole
PANDIT database. The results obtained show that the
depth of different protein functions shows the same
scaling with tree size as that described for the whole
PANDIT dataset independently of function (Figure 3).
This result supports the existence of universal scaling
laws in the depth of protein phylogenies.
The universality observed in the depth scaling of pro-

tein phylogenies is even more remarkable when protein
phylogenies are compared with the species phylogenies
[7] obtained from the TreeBASE database (Figure 4).
The comparative analysis between PANDIT and
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Figure 2 Depth scaling of protein phylogenies. Mean depth
scaling for all protein families in the PANDIT database (solid circles,
where each point represents a subtree) and the corresponding
averaged binned depth (empty circles). Where the error bars are not
visible we have that the standard error for the mean depth is
smaller than the symbol size. The discontinuous and continuous
lines correspond to the two extreme binary trees: fully imbalanced
and fully balanced trees, respectively. The scales of the axes are
chosen so that a behavior of the type d ~ (ln A)2 appears as a
straight line. Note that the values below the fully balanced tree
scaling correspond to polytomic subtrees.
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Figure 3 Depth scaling of different protein functions. Binned
values of the mean depth for nuclear (empty squares), structural
(solid diamonds) and metabolic (stars) protein families. The empty
circles represent the averaged binned depth for the whole PANDIT
database.
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TreeBASE shows a similar scaling of the mean depth
with the tree size for both datasets. Although in a pre-
vious work with organism phylogenies the depth scaling
was fitted to a power law [7], we find here that the
squared logarithmic scaling d ~ (ln A)2 of [6,33,34] pro-
vides also a reasonable fit for the protein families. Dis-
criminating between these two scaling laws requires the
comparison of larger trees, which are not available at
the moment. Further discussion on this point is pro-
vided in the additional file 2. The important point, how-
ever, is that the analysis of protein phylogenies shows
that the trees follow a scaling law as they speciate,
which is universal across protein functions, and similar
to that associated with the speciation at the species
level.
There is some dispersion of the mean depth for the

whole PANDIT dataset observed in Figure 2, which is
attributable to imbalanced bifurcations in some specific
trees. This increase in the presence of imbalanced bifur-
cations is reflected as a fast increase, characteristic of
fully imbalanced trees. These regions with a high num-
ber of imbalanced bifurcations are most of the times
close to the root, which can be related to a lack of reso-
lution in the reconstruction process. In Figure 5 we
show a detailed example of a phylogenetic tree with a
region with a high presence of imbalance in the bifurca-
tions close to the root, that leads to a dispersion from
the mean depth scaling in the range A Î (2 × 102, 3 ×
102), preserving the previously described universal mean
depth scaling behavior in most of the size range, from 1
to 2 × 102. The fact that the deviation from the mean is
restricted only to certain regions of the phylogenetic
trees, and that they do not affect significatively the

average depth, thus preserving the global trend, supports
the overall universality of the average depth scaling
behavior found in the protein phylogenies from the
PANDIT database.

Evolvability model
The depth scaling behavior shared by protein and spe-
cies phylogenies can be explained by different branching
mechanisms. In this direction, during the last decade,
several models have been published proposing different
mechanisms to capture the topology of phylogenetic
trees [6,27,28,33,35,36]. Most of the models proposed
yield a logarithmic scaling of the mean depth, i.e., ERM-
type for large sizes [31,32,37], which is not a good
description of our data (see Figure 2 and additional file
2), at least at the tree sizes available; the AB model pro-
posed in Ref. [33] is one of the few models that deviate
from the ERM-like scaling leading to a squared logarith-
mic d ~ (ln A)2 (see also [6]); models with power law
scaling of the mean depth d ~ Ah have also been
defined in terms of statistical rules assigning probabil-
ities to different splittings or types of trees [33] or in
terms of (simplified) evolutionary events (in the sense
specified in Ref. [35]) occurring in time [27,28].
An alternative explanation of the scaling properties of

the phylogenetic trees [36] suggests that the non-ERM
behavior is a small-size transient behavior, which would
cross-over to the ERM scaling d ~ ln A as larger tree
sizes become available.
The process conducive to trees that deviate from ERM

behavior is the presence of temporal correlations, which
leads to asymptotic or just finite-size deviations with
respect to the ERM behavior depending on whether these
correlations are permanent or restricted to finite but large
times. We, thus, explored the role of such correlations
through a simple model based on the inheritability of the
evolvability, i.e., the ability to evolve [38,39], as a biological
characteristic which is itself inherited by sister species in
speciation events. The process starts with the root, which
we consider capable to speciate. At each time step, all pre-
sent species capable to speciate branch simultaneously.
Each branching event yields two new daughter species, for
which we allow two possible outcomes:

• with probability p, the new species inherit the evol-
vability of the mother species, i.e., they have the
same capacity as the mother species to speciate
again;
• with probability 1- p, one of the daughter species is
unable to speciate again, that is, only one of the two
daughter species preserves the ability to evolve. Stem-
ming from the definition of robustness as the property
of a system to remain invariant in the presence of
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Figure 4 Protein vs organism phylogenies. Averaged and binned
mean depth for organisms in TreeBASE (solid squares) and for
protein phylogenies in PANDIT (empty circles). Where the error bars
are not visible we have that the standard error for the mean depth
is smaller than the symbol size.
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Figure 5 Mean depth behavior for a specific phylogenetic tree. (a) Phylogenetic tree corresponding to the Probable molybdopterin binding
domain family (PF00994), with a high presence of imbalanced bifurcations close to the root. (b) Mean depth scaling of Probable molybdopterin
binding domain family phylogenetic tree, where the empty squares correspond to the protein family. Solid circles represent the averaged and
binned set for all the protein families of PANDIT.
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genetic or environmental perturbations [40], we con-
sider a species’ inability to speciate its robustness.

The first case gives rise to a symmetric speciation
event, in which the two species emerging from the
speciation event are similar, while the second one giv-
ing rise to asymmetries in the tree. If p = 1, we recover
the completely balanced binary tree, while the topology
obtained in the other extreme, p = 0, is the completely
imbalanced binary tree (Figure 6). Thus the model
combines symmetric with asymmetric branching intro-
ducing correlations (since one occurrence of the asym-
metric event precludes further speciation on that
branch), with the proportion determined by the para-
meter p.
The trees generated with this algorithm yield a scal-

ing very close to those observed for phylogenetic trees
in both PANDIT and TreeBASE for p = 0.24 (see Fig-
ure 6, and additional file 3). This result identifies the
prevalence of imbalanced branching events (occurring
with frequency 1- p = 0.76) relative to balanced ones
(p = 0.24), which is consistent with earlier reports
[5,6,33].
The correlations introduced by our model are not,

however, permanent and ultimately a crossover to the
random behavior appears for long sizes. To evaluate
this, we calculated the analytical expression of the aver-
age depth, d. Taking into account that the expected
number of o springs of a pair of sister nodes is 2z = 4p
+ 2(1 - p) = 2(1 + p), starting with the root, the
expected number of nodes after n branching events is

A = 1 + 2

[
n−1∑
i=0

zi
]
= 1 + 2

zn − 1
z − 1

, (4)

where z = 1 + p is the expected o spring per sister
node. The expected value of the cumulative branch size
(see Methods) is given by

C = 1 + 2

[
n−1∑
i=0

zi(i + 2)

]

= 1 + 2
{
z
(n − 1)zn − nzn−1 + 1

(z − 1)2
+ 2

zn − 1
z − 1

}
.

(5)

At large n, the leading contributions are A ~ zn and C
~ nzn (we do not write explicitly prefactors which may
depend on z but not on n). Taking into account Eq. (7)
in Methods (i.e. d = (C/A) - 1) and inverting the rela-
tionship between A and n (n ~ ln A), we obtain that for
large sizes the leading order of the mean depth is d ~ ln
A, which indicates that what we observe in the simula-
tions is a long transient behavior. This transient beha-
vior leads to the fact that our model ts the proper
behavior of the data at the sizes in the databases, but
the asymptotic scaling at the larger sizes will finally be d
~ ln A, as in the ERM.

Discussion
The development of high-throughput “-omics” has pro-
vided the data required to address the traditional debate
on how gene-level evolution shapes the species-level
evolution [8-10]. This debate connects with that on the
(dis)continuity between micro- and macro-evolution,
and gradualism versus saltationism [41-43]. In the con-
text of these debates, the universal scaling of phyloge-
netic trees at intra and inter-specific levels shown earlier
[7] suggested the conservation of the evolutionary pro-
cesses that drive biological diversification across the
entire history of life. Here we extend this observation
further to demonstrate that the universality of the scal-
ing properties can also be extrapolated to the gene-level.
The results presented here show that the branching and
scaling patterns in protein families do not differ signifi-
cantly from the patterns observed in species phyloge-
nies, at least for the topological properties we have
calculated. We do not observe any discrepancy between
the shape of protein phylogenies and species phyloge-
nies. Moreover, the results presented here shows no evi-
dence for possible differences in phylogenetic trees
among protein families with different biological func-
tions, further providing evidence of universal, conserved
evolutionary processes from genes to species.
In 2006, Cotton and Page published a comparative

analysis between human gene phylogenies and species
phylogenies [24]. They found quantitative differences
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Figure 6 Depth scaling of the evolvability model. The mean
depth scaling of the trees generated with the evolvability model for
p = 1 and for p = 0 reproduces the mean depth scaling of the fully
balanced (continuous line) and imbalanced binary trees
(discontinuous line), respectively. The trees for p = 0.24 (empty
diamonds) adjust the average behavior of protein (empty circles)
very well. The stars correspond to trees for p = 0.5.
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between human paralogous gene and orthologous gene
phylogenies. Their research focused on the comparison
between (small) paralogous and orthologous gene
families, while here we have analyzed complete protein
families, which included both paralogous and ortholo-
gous protein members, focusing on the comparison
between protein and species phylogenies. Our approach
is based on a scaling analysis, examining how variables
change with tree size, whereas the Cotton-Page’s
approach is based on a quantitative analysis of small
sizes. This implies that despite their finding of quantita-
tive differences between paralogous and orthologous
gene phylogenies, we expect that both phylogenies
would display scaling behavior similar to that we
described here for complete protein phylogenies and
organism phylogenies [7].
Different evolutionary models and mechanisms have

been proposed to explain the branching patterns arising
in evolution [6,27,28,33,36,37]. Here we have introduced
a simple model accounting for differences in the degree
of evolvability, which is emerging as a key trait constraint
as important as robustness in evolution [44-47]. The
model we proposed can be interpreted in the framework
of the balance between evolvability as the potential of a
biological system for future adaptive mutation and evolu-
tion [39], and robustness as the property of a system to
produce relatively invariant output in the presence of a
perturbation [40]. Indeed, the symmetric diversification
event should correspond to the biological context in
which the biological system is evolvable, while the asym-
metric diversification process should correspond to a bio-
logical context where the new biological system, which
has just appeared from the diversification process, is
robust and unable of unlimited diversification.
The asymptotic behavior of our model at long tree

sizes recovers the logarithmic behavior of the ERM scal-
ing, so that, as in the models by [36], the non-ERM
behavior occurs as a transient for the relatively small
tree sizes present in the databases. Despite this, the
local (i.e. present for finite sizes) imbalance in real trees
can be interpreted in terms of the evolvability concept.
The prevalence of the unbalanced branching found is
consistent with previous works [6,33,48-51], and has
been traditionally explained by the presence of varia-
tions in the speciation and/or extinction rates through-
out the Tree of Life [4,5].
Different biological explanations for these variations in

the speciation and/or extinction rates have been pro-
posed, such as: refractory period [52], mass extinctions
[53], specialization [4] or environment effects [54]. The
consideration of an evolutionary scenario based on the
evolvability/robustness interplay has led us to postulate
the presence of asymmetric diversification events over

the depth scaling during evolutionary processes giving
rise to a new biological system which is unable to
undergo a new diversification event. An incapability to
diversify may occur at different levels of evolution, and
can be found at the macroevolutionary level with taxa
that require very long refractory periods or with random
massive extinctions of taxa, as well as at the microevolu-
tionary or gene level, where the elements unable to
diversify are individuals from a population or genetic
variants from a cell, embryo or individual.

Conclusions
In summary, the finding of universal scaling properties
at gene and species level, characterized by the similar
scaling laws, strongly suggest the universality of branch-
ing rules, and hence of the evolutionary processes that
drive biological diversification across the entire history
of life, from genes to species. The topological characteri-
zation of phylogenetic trees has proven helpful to ana-
lyze the relevance of the robustness of a biological
system (species or protein) in the scaling properties of
the phylogenetic trees. Thus, the invariance of the scal-
ing properties at levels spanning from genes to species
suggests that the mechanisms leading to the incapability
of a biological system to diversify for a very long period
of time act at both the gene- and species-level.

Methods
0.1 Protein phylogenies database
We analyzed the 7,738 protein families available in the
PANDIT database (http://www.ebi.ac.uk/goldman-srv/
pandit/ accession date May 27, 2008) [14]. PANDIT is
based upon Pfam http://pfam.sanger.ac.uk/[55], and con-
stitutes a large collection of protein family phylogenies
from different signalling pathways, cellular organelles
and biological functions, reconstructed with five differ-
ent methods: NJ [56], BioNJ [57], Weighbor [58], Fas-
tME [59] and Phyml [60]. The size of each of the
protein phylogenies, T, ranges from 2 to more than
2000 tips (i.e. proteins within families) and, in agree-
ment with previous reports [20,61-64], shows a power
law distribution P(T) ~T-g (see Figure 1). Most of the
bifurcations in these phylogenies are binary, with only
22% of polytomic bifurcations.

0.2 Mean depth
The definition of the mean depth d used here is directly
related to the cumulative branch size [7,16-18,65]
defined as C =

∑
j Aj. The sum runs over all nodes j in a

tree and Aj corresponds to the size of the subtree Sj.
The relationship between C and the mean depth can be
obtained taking into account that the cumulative branch
size can also be written as

Herrada et al. BMC Evolutionary Biology 2011, 11:155
http://www.biomedcentral.com/1471-2148/11/155

Page 7 of 9

http://www.ebi.ac.uk/goldman-srv/pandit/
http://www.ebi.ac.uk/goldman-srv/pandit/
http://pfam.sanger.ac.uk/


C =
∑
j

(droot,j + 1) = dA + A, (6)

where droot,j is the distance of node j to the root.
Thus, the mean depth of a tree is obtained as

d =
C
A

− 1. (7)

The depth of a tree can also be characterized by taking
into account only the distance from the tips to the root.
This is the case of the Sackin’s index, S, which is defined
as the sum of the depths of all the leaves of the tree
S =

∑
j droot,j[29]. Taking into account that a binary tree

can be obtained as a growing tree adding at each time a
speciation event we can calculate the change ΔC and ΔS
at each speciation. If the distance of the node that speci-
ates (leading to two new nodes) to the root is d’ then

�C = 2(d′ + 2) = 2d′ + 4, (8)

while

�S = −d′ + 2(d′ + 1) = d′ + 2. (9)

Accounting for the initial condition, that is, the root,
with C = 1 and S = 0, yields C = 2S + 1 for binary trees.
Thus, at large sizes, both quantities, C and S, become
proportional and scale in the same way with size.

Additional material

Additional file 1: Branch size and mean depth examples. The values
of the branch size, A and of the mean depth, d, are shown (in brackets,
as (A,d)) at each node of a fully balanced 15-tip phylogenetic tree (a), a
fully imbalanced 15-tip phylogenetic tree (b), a 15-tip subtree of a real
phylogenetic tree.

Additional file 2: Power-law vs. logarithmic scaling of the depth with
tree size. We compare the local exponents of the possible scaling laws of
the depth with tree size for PANDIT. For sizes larger than 300 fluctuations
make estimations unreliable. Filled squares: For the power-law scaling d ~
Ah the local exponent at bin i is calculated as hi = Δi ln d/Δi ln A, where Δi
indicates the difference between two consecutive bins, for instance Δi ln d
= ln d(i + 1) ln d(i). Empty diamonds: For the log scaling d ~ (ln A)b the
local exponent at bin i is calculated as bi = Δi ln d/Δi ln ln A. Constant
values of the local exponents, or values approaching a given value as sizes
increase, indicate appropriateness of the corresponding scaling laws to
describe the data. For the power-law scaling, the exponent is around h ≃
0.5 and slightly decays for larger trees. For the logarithmic scaling, the
exponent approaches 2 as larger trees are considered, indicating d ~ (ln A)
2. The results indicate comparable quality of fit for both laws at the reliable
range. Note that the simpler logarithmic law, b = 1, is not supported by
the available data.

Additional file 3: Standard deviation of the evolvability model.
Values of the standard error (SE) of the results from simulations of the
evolvability model with respect to the PANDIT dataset, for values of p
between [0.21 - 0.27]. A value p = 0.24 minimizes the error.
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