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Abstract

Background: Several susceptibility genetic variants for autoimmune diseases have been identified. A subset of
these polymorphisms displays an opposite risk profile in different autoimmune conditions. This observation open
interesting questions on the evolutionary forces shaping the frequency of these alleles in human populations.

We aimed at testing the hypothesis whereby balancing selection has shaped the frequency of opposite risk alleles.

Results: Since balancing selection signatures are expected to extend over short genomic portions, we focused our
analyses on 11 regions carrying putative functional polymorphisms that may represent the disease variants (and
the selection targets). No exceptional nucleotide diversity was observed for ZSCAN23, HLA-DMB, VARS2, PTPN22,
BAT3, Céorf47, and IL10; summary statistics were consistent with evolutionary neutrality for these gene regions.

Conversely, CDSN/PSORSICT, TRIMT0/TRIM40, BTNL2, and TAP2 showed extremely high nucleotide diversity and most
tests rejected neutrality, suggesting the action of balancing selection. For TAP2 and BTNL2 these signatures are not
secondary to linkage disequilibrium with HLA class Il genes. Nonetheless, with the exception of variants in TRIM40

neutral variants.

regions with high genetic diversity.

and CDSN, our data suggest that opposite risk SNPs are not selection targets but rather have accumulated as

Conclusion: Data herein indicate that balancing selection is common within the extended MHC region and
involves several non-HLA loci. Yet, the evolutionary history of most SNPs with an opposite effect for autoimmune
diseases is consistent with evolutionary neutrality. We suggest that variants with an opposite effect on
autoimmune diseases should not be considered a distinct class of disease alleles from the evolutionary perspective
and, in a few cases, the opposite effect on distinct diseases may derive from complex haplotype structures in
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Background

Genome-wide association studies (GWAS) have proved
powerful in unravelling the genetic component of sev-
eral common diseases and complex traits, although
increasing evidences [1] suggest that rare variants, which
are typically not analysed in GWASs, also contribute a
considerable proportion of disease risk. Through
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GWASs and meta-analyses, a large number of single
nucleotide polymorphisms (SNPs) have been associated
with distinct autoimmune conditions including Crohn’s
disease (CD), ulcerative colitis (UC), multiple sclerosis
(MS), type 1 diabetes (T1D), rheumatoid arthritis (RA),
autoimmune thyroid disease (ATD), and ankylosing
spondylitis (AS). A general concept emerging from these
studies is that a portion of susceptibility alleles is shared
among two or more diseases, suggesting that common
molecular mechanisms and pathways are involved. This
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may come as no surprise given the observation whereby
clustering of distinct autoimmune diseases occurs within
families (reviewed in [2]). However, recent evidences
have also indicated that a subset of alleles displays an
opposite risk profile in different autoimmune conditions
with one allele predisposing to one disease while being
protective for another [3,4]. The first described example
concerns a nonsynonymous variant (R602W, rs2476601)
in PTPN22 (a tyrosine phosphatase expressed in T
cells): the 602W allele protects from CD but predisposes
to RA, SLE (systemic lupus erythematosus), T1D
(reviewed in [5]), and vitiligo [6]. Similar observations
have recently been extended to several SNPs [3,4],
mostly located within the extended major histocompat-
ibility complex (xMHC) region (Figure 1).

Besides opening interesting questions as to how
immune balances are maintained and modulated, these
data stimulate speculations on the evolutionary forces
and selective pressures shaping the frequency of these
alleles in human populations.

In general, variants associated with complex traits
contribute little to the overall disease risk and are there-
fore thought to be subjected to mild purifying selection
[7]. Yet, a portion of risk alleles may be regarded as
deleterious, albeit mildly, from a medical standpoint but
evolutionary neutral or even beneficial. Evolutionary stu-
dies of the MHC region have mainly focused on HLA
class I and II genes, that are known to be characterized
by extreme polymorphism levels maintained by natural
selection (reviewed in [8]). Conversely, the evolutionary
history of non-HLA genes has rarely been investigated.

Here we aimed at testing the hypothesis [4] whereby
alleles with opposite risk profiles for autoimmune dis-
eases have been maintained by balancing selection, possi-
bly due to antagonistic pleiotropy, and to describe the
evolutionary pattern of several non-HLA genes located in
the human xMHC. Our data indicate that long-standing
balancing selection has characterized the evolutionary
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history of non-HLA genes located in the xMHC but only
a minority of alleles with opposite risk profile can be
regarded as targets of natural selection in human
populations.

Results

Identification of alleles with opposite risk profile and
selection of candidate genomic regions

Two recent studies [3,4] have identified several alleles with
opposite risk profiles for autoimmune diseases (Table 1).
In order to search for additional instances, we analysed
published GWAS http://www.genome.gov/26525384 and,
in addition to the aforementioned variant in PTPN22, we
identified rs744166 in STAT3 and rs2201841 in IL23R
(Table 1). The aim of our study is analysing the selective
processes acting on variants with an opposite effect on
two or more diseases and testing the hypothesis whereby
balancing selection has shaped the frequency of a portion
of these alleles. Balancing selection is a process that main-
tains genetic variability in human populations and its sig-
natures, due to recombination and mutation, are expected
to extend over relatively short genomic regions (reviewed
in [9]). Since variants identified in association studies often
represent genetic markers rather than causal polymorph-
isms, we analysed the SNPs reported in table 1 and their
surrounding genomic regions for the presence of putative
functional polymorphisms that may represent the causal
variant and, possibly, the selection target. Details on func-
tional annotation are reported in table 1 as well as in Fig-
ure 2 (and in additional file 1). Variants located in
intergenic or relatively large intronic regions were not ana-
lysed due to the difficult inference of functional signifi-
cance. Also, the polymorphism located in MICA was
excluded as nucleotide diversity at this locus has been
extensively investigated, although a clear picture of the
selective or non-selective forces responsible for the pre-
sence of multiple alleles is still missing [10]. In the case of
TAP2, the analysed region was extended so as to include a
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Figure 1 Schematic representation of a portion of the xMHC region. The location of all genes mentioned in the text is shown. Opposite
risk SNPs are indicated with their ID if they are intergenic, otherwise the gene is indicated. The genes/gene regions we analysed are reported in
red. Genomic coordinates for the region shown are chré: 28497563-33238447 (NCBI Build 36.1).
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Table 1 SNPs with opposite risk profiles in different autoimmune diseases
SNP Gene Chr® A1° Annotation Diseases® Ref
RA-AS-
rs11752919 ZSCAN23 6 C in small intron [3]
T1D/ATD-MS
Asp527Asn (in CDSN); less than 2.6 RA-AS-
rs3130981 CDSN/PSORSICT 6 A 3]
kb from rs1265048 T1D/ATD-MS
intergenic; 1.2kb upstream of RA-AS-
rs1265048 6 @ [3]
PSORSICI T1D/ATD-MS
RA-AS-
rs151719 HLA-DMB 6 G in small intron (3]
T1D/ATD-MS
ATD-MS/RA-
rs10484565 TAP2 6 T in 3" UTR [3]
AS-T1D
RA-AS-
0rs1264303 VARS2 6 G in 5'UTR [3]
T1D/ATD-MS
RA-AS-
rs2076530 BTNL2 6 G splice site altering/protein truncation (3]
T1D/ATD-MS
intergenic; 0.7 kb downstream RA-AS-MS/T1D-
rs3129953 6 T [3]
BTNL2 ATD
RA-AS-
15757262 TRIM40 6 T Thr183Met [3]
T1D/ATD-MS
intronic; close to alternatively spliced RA-AS-T1D-
152517646 TRIM10 6 G [3]
exon ATD/MS
RA-AS-
rs2071286 NOTCH4 6 A intronic [3]
T1D/ATD-MS
CD/T1D-RA-
152476601 PTPN22 1 T Arg620TRP [6,60-64]
SLE-GD
about Tkb downstream the
rs3024505 IL10 1 A T1D/CD-UC (4]
transcription end site
about Tkb downstream the
rs917997 IL18RAP 2 T T1D/CD [4]
transcription end site
rs9388489 6 G intergenic CD/TD [4]
rs4788084 16 T intergenic T1D/CD [4]
T1D-ATD-
rs1063635 MICA 6 A GIn274Arg (3]
MS/AS
rs1634717 6 A intergenic RA/T1D-ATD- [3]
MS
RA-AS-MS/T1D-
rs204991 GPSM3 6 @ intronic (3]
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Table 1 SNPs with opposite risk profiles in different autoimmune diseases (Continued)
ATD
1s2242655 Ceorf47 6 C Lys92Asn ATD-MS/RA- [3]
AS-T1D
ATD-MS/RA-
rs2299851 MSH5 6 T Intronic (3]
AS-T1D
AS/RA-T1D-
152248462 6 A intergenic [3]
ATD-MS
intronic; close to alternatively spliced RA-AS-
152844463 BAT3 6 T [3]
exon ATD/T1D-MS
RA-AS-MS/T1D-
rs3135363 6 C intergenic [3]
ATD
RA-AS-MS/T1D-
rs4428528 6 C intergenic [3]
ATD
MS/RA-AS-T1D-
1s887464 6 A intergenic (upstream PSORS1C3) [3]
ATD
ATD-MS/RA-
159267954 6 T intergenic [3]
AS-T1D
152201841 IL23R 1 G intronic UC/psoriasis [65,66]
15744166 STAT3 17 G intronic CD/MS (67,68]

@ chromosome.
® minor allele in CEU.

¢ diseases are shown in order depending on the predisposing/protective effect of the minor allele.

region that undergoes haplotype-specific alternative spli-
cing [11]. SNPs located in close physical proximity were
analysed as a single region: this was the case for rs3130981
and rs1265048 (in CDSN/PSORS1C1), rs2076530 and
rs3129953 (in BTNL2), and rs757262 and rs2517646 (in
TRIMI10/TRIM40).

As for rs917997, located downstream ILI8RAP, the
SNP was not considered as the gene has previously been
shown to be subjected to balancing selection [12].
Finally, rs3024505 (downstream /L10) lies in a region
resequenced by the SeattleSNPs program and data were
therefore retrieved from their website. A signature of
balancing selection at the promoter region of IL10 had
previously been described [13]. Resequencing data for
STAT3 are also publicly available (from the SeattleSNPs
program website) but the opposite-risk SNP was not
analysed as it is located within a resequencing gap in
the long intron 1.

Nucleotide diversity and neutrality tests

As reported in table 2, at least 2 kb encompassing each
selected SNP(s) (Figure 2) were resequenced in 20 Hap-
Map subjects with European ancestry (CEU), as most

GWASs for autoimmune diseases have been performed
in European cohorts. The number of segregating sites
identified in each region is reported in table 2.

Common population genetic tests based on the site
frequency spectrum (SFES) include Tajima’s D (D) [14]
and Fu and Li’s D* and F* [15]. D tests the departure
from neutrality by comparing two nucleotide diversity
indexes: Oy [16], an estimate of the expected per site
heterozigosity, and 1 [17], the average number of pair-
wise sequence nucleotide differences. Positive values of
Dr indicate an excess of intermediate frequency variants
and are a signature of balancing selection. Fu and Li’s F*
and D* are also based on SNP frequency spectra and
differ from Dt in that they also take into account
whether mutations occur in external or internal
branches of a genealogy [15]. As an empirical compari-
son, Oy, 1, as well as D, F* and D* were calculated for
5 kb windows (thereafter referred to as reference win-
dows) deriving from 238 genes resequenced by the
NIEHS program in CEU. Additionally, the statistical sig-
nificance of neutrality tests was evaluated by performing
coalescent simulations with a population genetic model
that incorporates demographic scenarios [18].
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Figure 2 Schematic representation of the gene regions we resequenced in TAP2, TRIM10/TRIM40, CDSN/PSORS1C1 and BTNL2.
Transcribed regions are shown in grey; different transcripts either from the same or from different genes are shown separately. The direction of
transcription is indicated by the arrows. The location of SNPs with opposite risk profile is reported.
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Table 2 Nucleotide diversity and neutrality tests for the analysed gene regions
Gene L PP st ey n® Tajima’s D Fu & Li's D* Fu & Li's F*

value rank’ value rank’ value rank’ p? value rank’ p9 value rank! p?
ZSCAN23 33 CEU 7 496 044 6.52 0.66 0.87 0.78 020 051 0.72 034 0.73 0.74 0.25

VARS2 32 CEU 10 730 0.69 1078  0.86 143
HLA-DMB 31 CEU 14 1060 091 1212 089 045
PTPN22 35 CEU 7 4.70 044 457 041 -0.077
BAT3 20 CEU 3 347 0.21 3.14 0.27 -0.20
Céort47 20 CEU 3 359 0.21 5.21 048 0.98
IL10 23 CEU 3 297 0.15 595 0.55 212

CDSN/ 45 CEU 59 3080 >099 4942  >099 217
PSORSCI

YRI 63 3283 >099 4620 >099 146

EAS 64 3341 >099 4750  >099 152
TRIM40/ 91 CEU 68 1751 0.98 2613 099 1.78
TRIM10

YRI 64 1648 096 1574 094 -0.16
EAS 79 2034 099 1933 098 -0.18
BTNL2 38 CEU 53 3304 >099 3975 099 -0.33
YRI 63 3928  >099 3001 >099 0043
EAS 94 5860 >099 4738 >099 -0.70
TAP2 44 CEU 33 1756 098 2907 099 227
YRI 54 2873 >099 3455 >099 073
EAS 41 2181 0.99 3288  >099 179
TAP2-ctr 26 CEU 12 1071 091 1218 0.89 042
BINL2-ctr 20 CEU 15 1747 098 1673 096 -0.14

0.89 009 024 0.65 040 0.73 0.74 0.25
0.66 030 -0.28 047 0.60 -0050 054 0.51
0.51 049  -0.98 0.23 0.80 -0.81 0.31 0.75
047 057  -035 046 0.64 -0.36 044 0.62
0.81 0.18 092 0.85 0.19 1.09 0.84 0.13
0.97 001 090 0.84 0.16 147 094 0.04
097 001 140 0.95 0.03 1.98 097 0.01

0.99 001 144 >099 <001 172 >099 <001
091 008 145 0.98 001 1.75 098 0.02
0.96 003 161 0.98 <001 198 097 <0.01

0.64 022 107 0.97 <001 076 093 0.02
046 031 -0.20 046 0.68 -0.23 045 0.71
042 036 132 0.93 0.03 0.88 0.78 0.15
0.71 018 067 0.89 0.06 0.53 0.86 0.07
0.31 021 095 0.88 0.13 043 0.69 0.35
0.98 001 159 0.98 0.01 2.16 098 <001
0.94 005 163 >099 <001 156 0.99 <0.01
0.97 004 130 0.96 0.04 1.74 0.98 0.02
0.65 032 046 0.70 0.29 0.52 0.69 0.18
0.50 054 156 097 0.01 1.18 0.90 0.09

? length of analyzed sequenced region (kb).

® sampled population (for each population 40 chromosomes were resequenced).
€ number of segregating sites.

d Watterson’s theta estimation per site (x10).

€ nucleotide diversity per site (x10™).

f percentile rank relative to a distribution of 238 5kb segments from NIEHS genes.
9 p value applying demographic coalescent simulations.

As shown in table 2, no exceptional nucleotide diver-
sity was observed for ZSCAN23, HLA-DMB, VARS?2,
PTPN22, BAT3, C6orf47, and IL10. In line with this
observation, summary statistics were consistent with
evolutionary neutrality for these gene regions (Table 2).
Conversely, the regions we analysed in CDSN/
PSORS1CI, TRIM10/TRIM40, BTNL2 and TAP2 showed
extremely high nucleotide diversity, with both 6y and m
ranking above the 95" percentile in the distribution of
5kb reference windows.

For TAP2, CDSN/PSORSICI, and TRIM10/TRIM40
all tests rejected the null hypothesis of selective neutral-
ity in CEU and ranks of D, F* and D* were higher than
the 95th percentile. In the case of BTNL2, D*, but not
Dt and F*, was close to statistical significance in the
empirical comparison and rejected neutrality when coa-
lescent simulations were performed.

TAP2 and BTNL?2 are located within the classical class
II MHC sub-region (Figure 1) and flank a class II HLA
gene cluster containing highly polymorphic genes

subjected to balancing selection in humans and other
primates [19,20]. We therefore wished to verify whether
the selection signatures we identified at both genes
might be secondary to linkage disequilibrium with HLA
class II genes. Thus, intergenic regions flanking the class
II HLA gene cluster were also resequenced: as shown in
Figure 1, the TAP2-ctr region is telomeric to TAP2,
while BTNL2-ctr is centromeric to BTNL2. These two
control regions have very similar divergence to the
TAP2 and BTNL?2 regions we analysed (not shown). As
reported in table 2, the TAP2-ctr region displayed no
exceptional variability and all statistics were consistent
with selective neutrality. As for BTNL2-ctr, a high
nucleotide diversity was observed but both 0y and n
were about half the value observed at the BTNL2 genic
region; only F* displayed a significantly high value.
Therefore, high nucleotide diversity at the TAP2 locus is
not secondary to LD with HLA class II genes. In the
case of BTNL2, the lower diversity observed at the con-
trol compared to the genic region also suggest that the
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gene is an independent target of balancing selection (see
below).

In order to obtain a more comprehensive description
of nucleotide diversity, the four regions covering CDSN/
PSORSIC1, TRIM10/TRIM40, BTNL2, and TAP2 were
resequenced in two additional HapMap populations,
namely Yoruba (YRI) and East Asians (EAS). For all
regions, nucleotide diversity resulted extremely high in
YRI and EAS, as well (Table 2). Neutrality tests and
empirical comparison with resequenced regions rejected
neutrality for these populations at the CDSN/PSORSICI
and TAP2 regions. Similar results were obtained for
TRIM10/TRIM40 in YRI but not in EAS. This latter
finding is due to the presence of several singletons that
affect SFS-based tests in this population (see below). As
for BTNL2, the values of SFS-based statistics were not
exceptionally high in YRI and EAS.

A hallmark of balancing selection is an excess of poly-
morphism compared to neutral expectations. Indeed,
our data (Table 2) indicate that nucleotide diversity
indexes are extremely high for CDSN/PSORSICI,
TRIM10/TRIM40, BTNL2 and TAP2. Yet, polymorphism
levels also depend on local mutation rates, and under
neutral evolution the amount of within- and between-
species diversity is expected to be similar at all loci in
the genome [21]. The multi-locus HKA test was devel-
oped to verify this expectation [22]. We applied a multi-
locus MLHKA (maximum-likelihood HKA) test by com-
paring polymorphisms and divergence levels at the
CDSN/PSORSIC1, TRIM10/TRIM40, BTNL2 and TAP2
genomic regions with 16 NIEHS genes resequenced in
YRI, CEU and EAS. The results are shown in table 3
and indicate that a significant excess of nucleotide diver-
sity versus divergence is detectable in all populations for
all loci. For TAP2 and TRIM10/TRIM40 the chimpanzee
was used for inter-species divergence. Yet, divergence
with chimpanzee is unusually low (0.5%) for the CDSN/
PSORSICI region and the reference sequence for oran-
gutan is not available; as for macaque, divergence for
CDSN/PSORSICI (4.8%) is also lower than genome
average but not markedly so. Therefore, for CDSN/
PSORSICI the MLHKA test was performed using maca-
que divergence data. Finally, in the case of BTNL2, no
reference sequence for chimpanzee is available for the
gene region we analysed. Since a partial sequence is
available for orangutan, we sequenced the genomic
DNA of one Pongo pygmaeus (see methods) and used
the sequence we obtained for calculation of divergence;
therefore the MLHKA test for BTNL2 was performed
with human/orangutan divergence data.

We next took advantage of the availability of data
from the 1000 Genomes Pilot project [23] to validate
our results in a larger poulation sample. The low-cover-
age 1000 Genomes approach, which generated whole
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Table 3 MLHKA tests
Region Pop.? MLHKA
K® p
TAP2 CEU 3.69 1.1x10°
YR 494 64 x 107
EAS 5.11 32 %107
CDSN/PSORSICT CEU 479 16 x 10
YR 3.88 16 %107
EAS 566 16 x 107
TRIM10/TRIMA40 CEU 382 55x 10*
YRI 2.23 2.1 % 107
EAS 421 39 % 107
BTNL2 CEU 557 64 % 107
YRI 544 1.7 x 10°
EAS 10.80 56 % 107
2 population.

bselection parameter (k>1 indicates an excess of polymorphism relative to
divergence).

genome sequencing data of 179 individuals with differ-
ent ancestry (YRI, CEU and EAS), is estimated to have
relatively low power to detect singleton SNPs or rare
variants [23]. Thus, an empirical comaprison is needed
to evaluate whether selected gene regions display diver-
sity indexes or SFS-based staistics that are exceptionally
high (i.e. that reject neutral expectations). To this aim
we randomly selected 2,000 human genes and, from
each of them, one 5 kb window was extracted. We next
calculated diversity indexes and SFS-based statistics, as
in table 2. All results were confirmed using this
approach (Additional file 2). Finally, we used the 1000
Genomes data to perform a sliding-window analysis of
an extended genomic regions covering BTNL2, the
MHC class II gene cluster, and TAP2 plus flanking
regions. As shown in Figure 3, two peaks of diversity
were observed at the BTNL2 and TAP2 regions we rese-
quenced. These are separated from the MHC class II
region (showing extreme diversity, as expected) by seg-
ments showing lower values of both 6y and 1, suggest-
ing that they represent independent selection targets.

Haplotype analysis and TMRCA estimates

Further insight into the evolutionary history of a gene
region can be gained by inferring haplotype genealogies.
This has both a descriptive purpose (i.e. showing the
relationship among alleles and their distribution in
human populations) and can be used to test for selec-
tion. In particular, balancing selection is expected to
result in two or more major haplotype clades with a
deep coalescence time (TMRCA, time to the most
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common recent ancestor). In fact, while neutrally evol-
ving autosomal loci have TMRCAs ranging from 0.8 to
1.5 million years (MY) [24], gene regions under balan-
cing selection may show coalescence times dating back
more than 4 MY [25-27]. Here we constructed haplo-
type genealogies using two approaches: a neighbour-
joining network and a maximum-likelihood coalescent
method implemented in GENETREE. This latter
assumes an infinite-site model without recombination,
requiring the removal of variants and haplotypes that
violate these assumptions. In order to obtain more reli-
able trees, we selected sub-regions based on LD for
those genomic regions showing high recombination
rates. Thus, for TAP2 we used data from a 1.9 kb region
with relatively high LD (Additional files 3 and 4). This
region does not encompass the opposite risk SNP but
includes a set of markers (rs241448, rs241447 and
241441, variants 19, 18 and 8, respectively in the net-
work, Figure 4A) previously known to identify the two
haplotypes that generate alternatively spliced isoforms
[11]. As it is evident from both the network and GENE-
TREE analysis (Figure 4), the TAP2 genealogy is split
into two major haplotype clades with an estimated time

to the most recent common ancestor (TMRCA) of
~5.36 MY. The two clades differ at several variants
including those affecting TAP2 splicing.

Similarly, due to extensive recombination, a sub-region
with stronger LD (Additional files 3 and 4) was analysed
in the case of TRIM10/TRIM40. The rs2517646 variant
(table 1) lies outside this region, whereas the second var-
iant with an opposite risk profile (rs757262) is located on
the major branch leading to clade B (Figure 5A). As
evident in both the network and GENETREE analyses a
single, highly divergent haplotype is observed in EAS
(Figure 5); although several positions along the branch
are recurrent and possibly originate from recombination
between the two major clades or gene conversion, 13
SNPs are specific to this haplotype and represent single-
tons in EAS, therefore affecting SFS-based statistics
(Table 2).

In the case of CDSN/PSORSICI, again we selected a 2
kb region of relative LD (Additional files 3 and 4) which
includes one of the two variants with opposite risk-
profile (variants 13 in the network, Figure 6A). The two
major clades of the genealogy have a TMRCA of 4.18
MY and clade B is split into two main haplogroups that
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coalesce at 2.2 MY (Figure 6B), possibly suggesting a
multiallelic balancing selection regime. It is worth not-
ing that, for the same reasons reported above, the coa-
lescence time was calibrated on the basis of a mutation
rate calculated from human/macaque divergence. The
opposite-risk SNP defines a subset of haplotypes in
clade B (Figure 6A).

Finally, in the case of BTNL2, the gene portion we
analysed is in relative tight LD and the network and
GENETREE analyses were performed over the entire
region. Three major haplotype clades are evident with

the most distantly related haplotype cluster being pre-
sent in EAS only (Figure 7).

Conversely, chromosomes from all populations contri-
bute to the two remaining clades, although with extre-
mely different frequency. The TMRCA for the whole
genealogy amounts to ~ 6 MY, while the two more clo-
sely related clades coalesce at ~ 2.8 MY (Figure 7B).
The branches leading to the two lower-frequency clades
share some variants and their relatively close physical
proximity suggests that these apparent homoplasies
are due to a recombination or gene conversion event.
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The two variants with opposite effect are not located on
the major branches of the genealogy but define haplotye
subsets within the major clade (Figure 7A).

This haplotype genealogy explains the results we
obtained for SFS-based statistics in this region; the pre-
sence of two (CEU and YRI) or three (EAS) deeply sepa-
rated haplotype clades introduces a high number of
polymorphic sites (resulting in high nucleotide diversity
indexes). Yet, clade 2 haplotypes are present at low fre-
quency in all populations and the same applies to clade
1 in EAS. Therefore, the frequency spectrum is not
markedly skewed towards intermediate frequency alleles
and, consequently, most SFS-based statistics fail to reject
the null hypothesis of neutrality.

Nonetheless, the haplotype genealogy and TMRCAs
we obtained are not consistent with neutral evolution in
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an unstructured population but rather suggest the action
of balancing selection and/or a possible contribution of
archaic population structure in Asia. An alternative pos-
sibility is that, as discussed below, this pattern is due to
LD with HLA class II genes.

Discussion

Autoimmune diseases are common in industrialized
societies, collectively reaching a prevalence of 5% in
populations with European ancestry [28]. Epidemiologi-
cal studies have indicated that the incidence of these
disorders has been steadily increasing during the last
decades in the industrialized world. Therefore, much
scientific debate has addressed the role of human evolu-
tionary history and adaptation in shaping the genetic
predisposition to the development of autoimmunity
[29]. For any single autoimmune condition, more than
50% of the disease risk is heritable [30] and GWASs
have unveiled the role of several common risk variants,
possibly reflecting an allelic architecture for autoim-
mune disease that matches a “common variant/common
disease” model more closely than observed for other
traits [30]. From the evolutionary perspective, this raises
interesting questions on the forces responsible for the
maintenance of disease alleles in populations (reviewed
in [29]). Since the evolutionary history of autoimmune-
related alleles is only beginning to be investigated, our
knowledge is still relatively limited in this field. Specifi-
cally, a subset of risk alleles for CD and UC has pre-
viously been shown to have evolved in response to
pathogen-driven selective pressures, the underlying sce-
nario for some of them being balancing selection [12].
More recently, several disease alleles for autoimmune
conditions were reported to display signatures of direc-
tional selection in favour of the risk alleles [31]. Finally,
two common variants for T1D, an early-onset, poten-
tially lethal disease, have been described as neutrally
evolving [32]. Albeit limited to a small number of var-
iants, these data do not support the notion whereby
autoimmune phenomena have acted as a selective pres-
sure strong enough to affect the frequency distribution
of risk alleles, although some authors have speculated
that balancing selection at innate immunity genes might
stem from a tuning of response to pathogens and to self
[33]. The identification of a set of variants with an
opposite risk profile for different autoimmune condi-
tions prompted the speculation that these variants
might be targets of balancing selection possibly deriving
from antagonistic pleiotropy. Therefore the question is:
if neither allele can be considered medically favourable,
are they both evolutionary beneficial under specific cir-
cumstances? Our data indicate that 4 out of ten gene
regions we analysed have been subjected to balancing
selection. Additionally, /LIS8RAP has previously been
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indicated as a possible selection target [12]. Similarly, a  for the TAP2, TRIM10/TRIM40, and CDSN/PSORS1C1
signature of balancing selection has previously been gene regions are all consistent with the hypothesis
described at the promoter region of IL10 [13], suggest-  whereby genetic variability is maintained at these loci by
ing that the selected variant might be different from the long-standing balancing selection. In the case of BTNL2
opposite risk allele which is located downstream the and TAP2, we addressed the possibility that LD with
transcription end site. The evidences we report herein  HLA class II genes influences the results we obtained,
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as genetic hitch-hiking can potentially affect neutral
diversity over long genomic regions. Yet, the sliding
window analysis of nucleotide diversity across the region
encompassing these two genes and HLA class II loci
indicated that peaks at BTNL2 and TAP2 are flanked by
regions with lower diversity, suggesting that these two
genes represent independent (from class II loci) selec-
tion targets.

Conversely, we identified no selection signature for the
remaining 6 genes, namely ZSCAN23, PTPN22, HLA-
DMB, VARS2, Cé6orf47, and BAT3. In all these cases
nucleotide diversity was within average values and no test
significantly deviated from the null hypothesis of neutral
evolution. One possibility is that opposite risk SNPs in
these regions do not represent causal variants but genetic
markers and, therefore, that natural selection might be
acting in a region different from the one we resequenced.
Yet, this is unlikely to be the case for PTPN22, as the
opposite risk variant has been shown to be functional. The
derived 602W allele, which segregates at low frequency in
Caucasian populations and is extremely rare outside
Europe, confers to the phosphatase a stronger ability to
inhibit the T cell receptor signalling pathway [34]; this
allele has been associated with T1D, RA and other autoim-
mune manifestations [35]. Conversely, the ancestral allele
has been associated with a higher risk of developing CD.
Our analysis of the region carrying the R602W variant did
not unveil any molecular signature of natural selection, as
all tests were consistent with neutrality. Nonetheless, the
power of most tests is strongly influenced by the timing
and strength of the selective pressure; it has been sug-
gested that the 602W allele has risen in frequency in some
European populations as a result of natural selection, as its
frequency seems to increase with latitude [35]. An extre-
mely recent selective event in these populations would not
be detected using our approach.

The four targets of balancing selection we identified in
this study are all located within the xMHC and have dif-
ferent molecular functions. TAP2 is a central component
of the antigen processing pathway; the protein products
of TAP1 and TAP2 interact to form a transporter com-
plex (TAP) that translocates antigenic peptides to the
endoplasmic reticulum (ER) where loading onto MHC
class I molecules occurs. Therefore, inhibition of TAP
has been exploited by different viruses as an immune eva-
sion strategy (reviewed in [36]). Specifically, proteins
encoded by herpesviruses (HSV), human cytomegalovirus
(HCMV) and Epstein-Barr virus can block TAP function,
limit the supply of peptides to the endoplasmic reticulum
and therefore inhibit MHC class I maturation. Interest-
ingly, the ability of HSV- and HCMV-encoded proteins
to block TAP function is species-specific, suggesting that
viral products have co-evolved with the TAP molecules
of their host species. This observation also suggests that
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TAPI and TAP2 may be subjected to a selective pressure
exerted by viruses to avoid binding of inhibitory proteins.
The TAP2 gene portion we analysed herein is subjected
to a haplotype-specific alternative splicing event that
results in two molecular forms differing at the C-termi-
nus; our data show that the two haplotypes associated
with alternative splicing are maintained by balancing
selection. Whether the two protein products are differen-
tially sensitive to viral inhibitors is presently unknown,
but a previous report has indicated that they display
marked differences in the translocation efficiency of spe-
cific peptides. This difference may have an effect on the
susceptibility to specific viral infections and the
Ala665Thr variant (rs241447), which is associated with
alternative splicing, and located on the major branch
leading to clade b (Figure 4A) has been associated to
altered susceptibility to HIV-1 infection [37].

Two genes encoding ER aminopeptidases that trim
peptides translocated by TAP have recently been shown
to be subjected to long-standing balancing selection
with polymorphic variants conferring resistance against
HIV-1 [26]. It is therefore tempting to speculate that
maintenance of genetic diversity at genes in the antigen
processing pathway derives from the differential activity
of diverse alleles for specific peptides, eventually leading
to distinctive repertoires of antigens presented to CD8"
T cells and, possibly, altered susceptibility to specific
infections. Nonetheless, it is worth noting that the allele
with opposite risk profile (rs10484565) has a low MAF
(frequency of minor allele < 0.10) in all populations and
our data suggest that it is not (and is not in linkage
with) the balancing selection target.

TRIMI10 and TRIM40 code for two members of a large
family of tripartite motif-containing (TRIM) proteins.
While several TRIM proteins have been shown to act as
antiviral factors, the role of TRIM10 and TRIM40 is
virtually unknown, although TRIM10 may have a role in
erythropoiesis [38]. A recent GWAS for host genetic fac-
tors involved in HIV control identified a SNP (rs9468692)
located in 3'UTR of TRIM10, within the region we ana-
lysed. Our resequencing data indicate that this SNP is
triallelic with T/G alleles segregating in CEU and YRI, and
A/G in EAS. This is clearly shown in the network analysis:
variant 74 defines two different haplotype clusters one
containing African and European chromosomes and the
other Asian haplotypes only. The variant involves a CpG
dinucleotide suggesting that the triallelic status is deter-
mined by a two-hit mutation process on different haploty-
pic backgrounds and involving deamination of 5-methyl
cytosine in the case of the A/G alleles. While the descrip-
tion of a triallelic variant might have a relevance for future
association studies in populations with different ancestry,
its location in the network suggests that the site is
neutrally evolving. Conversely, the Thr183Met variant
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(rs757262, variant 19 in Figure 5A) with opposite risk pro-
file (Table 1) is in strong LD with another nonsynonymous
variant (Glu215Lys, rs757259, variant 26 in Figure 5A) and
both SNPs separate the two major haplotype clades, sug-
gesting that they may represent the selection target(s). The
limited knowledge on the biological function of TRIMI10
and TRIM40 does not allow extensive speculation on the
selective pressure responsible for maintaining nucleotide
diversity at these genes and further functional studies will
be required to determine whether it is virus-driven or not.

The third gene region which we found to be subjected
to balancing selection covers part of CDSN and
PSORSICI. A previous work using a different dataset
has also suggested that CDSN might be a balancing
selection target [39]. CDSN and PSORSICI the two
genes are transcribed in the opposite direction and the
whole coding region of corneodesmosin (CDSN) is com-
prised within the first intron of PSORS1CI (also known
as SEEKI). Both transcripts are widely expressed http://
biogps.gnf.org and have been associated with psoriasis in
several studies. Specifically, CDSN is up-regulated in
psoriatic lesisons [40] and one psoriasis-associated allele
(rs1062470, variant 5 in Figure 6A) affects the binding
of an unknown cellular factor, resulting in increased
transcript stability [40]. This SNP is located on the net-
work branch separating the two major haplotype clades,
suggesting that it may represent the selected variant.
Similarly, one of the two SNPs (rs3130981, Asp527Asn)
with an opposite effect on autoimmune diseases defines
a major haplotype group within clade b, indicating that
it may represent (or be in linkage with) a selection tar-
get (in a multiallelic selection regime).

The role of the protein product of PSORSICI is pre-
sently unknown, although one SNP in PSORSICI imme-
diately downstream the region we analysed has been
associated through GWAS with white blood cell counts
[41] and a second downstream variant with delayed AIDS
progression [42]. Conversely the role of CDSN is well
studied as the gene encodes corneodesmosin, an adhesive
protein which participates in the stabilization of corneo-
desmosomes in the skin and other cornified squamous
epithelia. Loss of coreneodesmosin in humans results in
generalised peeling skin disease, a condition character-
ized by skin barrier defects, pruritus and atopy, with
patients also showing Staphylococcus aureus superinfec-
tions [43]. Mice lacking CDSN display a severe phenotype
and the skin barrier defect is accompanied by a 10-fold
increase in transepithelial water loss. These observations
highlight the central role played by the epidermal barrier
in protection from infections and in water homeostasis,
two processes that are though to have been targeted by
natural selection during human evolutionary history.
Therefore, SNPs in CDSN may have been maintained by
balancing selection due to their modulation of the skin
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barrier properties. Still, the observation that humans with
genetic defects in CDSN also display food allergies [43]
suggests that the protein may play a role in processes
unrelated to skin function.

Finally, BTNL2 encodes a butrophilin-like, widely
expressed protein with still poorly understood function.
Experiments in mice have suggested that BTNL2 might
function as a negative co-stimulatory molecule with
inhibitory activity on T cell activation [44,45]. In parti-
cular, a possible modulatory role for the protein in
intestine inflammation has been proposed in this animal
model, in line with the observation that a SNP
(rs9268480) in the region we analysed has also been
associated with UC [46].

The haplotype genealogy of the BTNL2 region we rese-
quenced is peculiar with one deeply separated clade lim-
ited to EAS subjects. Previous studies have suggested that
such tree topologies might originate from admixture of
anatomically modern humans with archaic hominin
populations (reviewed in [47]) rather than by a selective
force; yet, a TMRCA > 5 MY may be unlikely even under
ancient admixture scenarios [47]. Therefore, we suggest
that the distantly related clade is maintained by a selec-
tive process acting on BTNL2 or on the nearby class II
MHC loci. As reported above, the coalescence time of
the two more closely related clades is also deep and sev-
eral nonsynonymous variants are located on the major
branches (Figure 7A). Specifically, 3D modelling of
BTNL2 [48] indicated that the Pro285Leu, Met286lle and
Pro299Gln variants are all located in close physical proxi-
mity within the IgC domain and adjacent to cystein resi-
dues involved in disulfide bonding. These variants are
postulated to be functional [48] and can be regarded as
potential selection targets. Conversely both the opposite
risk alleles and the UC susceptibility variant identify hap-
lotype subsets within the major clade (Figure 7A).

Therefore, even in those regions where we did identify
balancing selection signatures, the opposite risk alleles do
not always represent (or are in tight linkage with) the
selected variants. Rather, our data suggest that, with the
exclusion of rs757262 and rs3130981 in TRIM40 and
CDSN, opposite risk SNPs are likely to have accumulated
as neutral variants, possibly maintained through hitch-
hiking with the balanced polymorphisms. An alternative
possibility is that, as in the case of the gene regions that
we described as neutrally evolving, weaker and more
recent selective events have been maintaining the oppo-
site risk alleles. In this respect it is worth noting that the
haplotype structure of the gene regions we analysed is
often complex, raising the possibility that the opposite
risk profile identified for some of these SNPs is secondary
to association with another causal variant which is not
analysed in the association study. In the case of BTNL2,
for example, we were able to include two opposite risk
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alleles in the network analysis; based on the risk profiles
of variants 28 and 100 (rs2076530 and rs3129953, respec-
tively, Table 1) we were able to identify a set of haplo-
types that should confer increased risk for ATD (they
carry 2 predisposing alleles) and a group of haplotypes
that predispose to MS (again with two risk alleles) (Figure
7A). This means that rs2076530 and rs3129953 may sim-
ply define haplotype subsets that carry causal variants for
MS and ATD but when these variants are not typed in
the association study, the haplotype structure is such that
the derived allele of at position 100 will be under-repre-
sented among MS patients for example, resulting in an
apparent protective effect. A similar situation might
apply to CDSN, as well (Figure 6A).

Conclusion

Data herein indicate that balancing selection is common
within the xMHC region and involves several non-HLA
loci. Yet, the evolutionary history of most SNPs with an
opposite effect for autoimmune diseases is consistent
with evolutionary neutrality. We suggest that variants
with an opposite effect on autoimmune diseases should
not be considered a distinct class of disease alleles from
the evolutionary perspective. Moreover, in a few cases,
the opposite effect on distinct diseases may derive from
complex haplotype structures in regions where genetic
diversity is high and typing in association studies only
captures limited information.

Methods

HapMap samples and sequencing

Human genomic DNA from HapMap subjects was
obtained from the Coriell Institute for Medical Research.
All analysed regions were PCR amplified and directly
sequenced; primer sequences are available upon request.
PCR products were treated with ExoSAP-IT (USB Cor-
poration Cleveland Ohio, USA), directly sequenced on
both strands with a Big Dye Terminator sequencing Kit
(v3.1 Applied Biosystems) and run on an Applied Biosys-
tems ABI 3130 XL Genetic Analyzer (Applied Biosystems).
Sequences were assembled using AutoAssembler version
1.4.0 (Applied Biosystems), and inspected manually by two
distinct operators. Orangutan (Pongo Pygmaeus) genomic
DNA (Cell line name: EB185_JC) was obtained from Eur-
opean Collection of Cell Cultures. In order to fill gaps in
the reference sequence, we PCR-amplified two genomic
region using the following primer sets: F1 (5-TGGAGTG-
CAGTGGCATGATC-3)/R1 (5-TCAGTCTGCCCTCGT-
CAATG-3’) and F2 (5-CTTGTCAGAGTGGGAGAA
GAT-3)/R2 (5-CTCAGAGGAGTAGAATCCCTG-3’).
The PCR products F1/R1 and F2/R2 were sequenced with
seqF1 (5-CTCGTCAGAGTGGGAGAAGAT-3’) and R2,
respectively.
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Data retrieval and haplotype construction

Information on SNPs identified in GWAS were retrieved
from the National Human Genome Institute website (A
Catalog of Published Genome-Wide Association Studies;
http://www.genome.gov/26525384) updated to Septem-
ber the 1st, 2010. Data on gene expression in different
human tissues were derived from the BioGPS website
http://biogps.gnf.org. Genotype data for 5 kb regions
from 238 resequenced human genes were derived from
the NIEHS SNPs Program web site http://egp.gs.
washington.edu. In particular we selected genes that had
been resequenced in populations of defined ethnicity
including Europeans (CEU), Yoruba (YRI) and East
Asians (EAS) (NIEHS panel 2).

Haplotypes were inferred using PHASE version 2.1
[49,50]. Linkage disequilibrium analyses were performed
using the Haploview (v. 4.1) [51] and blocks were identi-
fied through an algorithm implemented in the software.

Data from the Pilot 1 phase of the 1000 Genomes
Project were retrieved from the dedicated website http://
www.1000genomes.org/. Low coverage SNP genotypes
were organized in a MySQL database. A set of programs
was developed to retrieve genotypes from the database
and to analyse them according to selected regions/popu-
lations. These programs were developed in C++ using
the GeCo++ [52] and the LibSequence [53] libraries.
Genotype information was obtained for all analysed
region and for 2,000 regions (5kb in size) randomly
derived from an equal number of RefSeq genes.

Statistical analysis

Tajima’s D [14], Fu and Li’s D* and F* [15] statistics, as
well as diversity parameters Oy [16] and m [17] were cal-
culated using libsequence [53]. Calibrated coalescent
simulations were performed using the cosi package [18]
and its best-fit parameters for YRI, EU and EAS popula-
tions with 10,000 iterations. Briefly, this model supposes
a series of population size changes occurring at each
population, along with migratory events, with intensity
and duration estimated by fitting demographic para-
meters with genome-wide real data (see[18] for further
details including parameters of the best-fitting model).
A major advantage of this model is that it can generates
simulated data closely resembling empirical data, rather
than accurately infer historical scenarios for human
populations. Coalescent simulations were performed
conditioned on the local mutation rate, estimated from
the number of fixed differences with an out-group spe-
cies, and on the local recombination rate, retrieved by
UCSC Genome Browser tables (ucsc.genome.gov). The
maximum-likelihood-ratio HKA test was performed
using the MLHKA software [22], as previously proposed
[54]. Briefly, 16 reference loci were randomly selected
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among NIEHS loci shorter than 20 kb that have been
resequenced in the 3 populations; the only criterion was
that Tajima’s D did not suggest the action of natural
selection (i.e. Tajima’s D is higher than the 5™ and
lower than the 95" percentiles in the distribution of
NIEHS genes). The reference set was accounted for by
the following genes: VNN3, PLA2G2D, MB, MAD2L2,
HRAS, CYP17A1, ATOX1, BNIP3, CDC20, NGB,
TUBAIL, MT3, NUDTI, PRDXS5, RETN and JUND. The
chimpanzee, orangutan or macaque sequence was used
as the out-group as detailed in the text.

Haplotype analysis and TMRCA calculation
Median-joining networks to infer haplotype genealogy
was constructed using NETWORK 4.5 [55]. Estimate of
the time to the most common ancestor (TMRCA)
derived from application of a maximumd-likelihood coa-
lescent method implemented in GENETREE [56,57].
Again, the mutation rate u was obtained on the basis of
the divergence between human and chimpanzee or
orangutan or macaque and under the assumption both
that the species separation occurred 6, 13 and 23 MY
ago, respectively [58] and of a generation time of 25
years. The migration matrix was derived from previous
estimated migration rates [18]. Using this p and 6 maxi-
mum likelihood (0y;1), we estimated the effective popu-
lation size parameter (N.). With these assumptions, the
coalescence time, scaled in 2N, units, was converted
into years. For the coalescence process, 10° simulations
were performed. Details on the GENETREE analyses are
available in Additional file 5.

All calculations were carried out in the R environment
[59].

Additional material

Additional file 1: Schematic representation of the gene regions we
resequenced in ZSCAN23, HLA-DMB, VARS2, Céorf47, BAT3, PTPN22
and IL10.

Additional file 2: Nucleotide diversity indexes and summary
statistics calculated from the low-coverage 1000 Genomes data.

Additional file 3: LD map of the genomic regions we resequenced
in TAP2 region (chr6:32901567-32905985), TRIM40/TRIM10 region
(chr6:30221583-30230714), CDSN/PSORS1C1 region (chr6:31188857-
31193360).

Additional File 4: Nucleotide diversity estimates and summary
statistics for the sub-regions included and excluded from GENETREE
analysis.

Additional file 5: Table with details on GENETREE analyses.
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