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Abstract

Background: Some of the evolutionary history of land plants has been documented based on the fossil record
and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed
phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny
using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into
account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates
through time. We also compared these diversification profiles against the distribution of the climate modes of the
Phanerozoic.

Results: We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with
the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining
diversification rates during geological time periods of cool global climate.

Conclusions: This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that
made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been
necessary for the rise of the diversity under a successive lineage replacement scenario.

Background
It is believed that climate change is one of the main fac-
tors affecting global biodiversity [1-3]. During the history
of life, fluctuations of the world’s climate have most likely
caused major extinctions [4] and led to the development
of new ecosystems, promoting new biotic interactions
and the evolution of novel adaptive traits. The dynamics
of such diversification events can be studied based on
phylogenetic trees dated with fossils. Here we focus on
land plants. The origin and diversification of land plants
has intrigued biologists for centuries. According to the
fossil record, land plants diverged from green algae
before 475 million years ago (Ma; first land plant fossil)
and led to the major clades found today [5,6]. These are
liverworts (74 families, ca. 6,000 spp. [7]), mosses (112
families, ca. 12,000 spp. [8,9]), hornworts (five families,
ca. 150 spp. [10]) and tracheophytes. The latter include
ferns (45 families, ca. 9,000 spp. [11]), lycophytes (three
families, ca. 1,200 spp. [12]), and seed plants, which in

turn are separated into gymnosperms (14 families, ca.
1,000 spp. [13]) and angiosperms (456 families, ca.
260,000 spp. [13]).
There are various possible scenarios to describe the

processes that influenced land plant diversification
throughout geological time. One frequently proposed
scenario is based on a successive replacement of ancestral
lineages by more derived lineages, which in turn evolved
similar habits (e.g., tree-like structure for forested ecosys-
tems), and diversified to fill up the niches left empty after
the extinction of the ‘previous’ taxon. In this kind of sce-
nario, extant taxa of liverworts, mosses, and ferns, are
considered to be relicts of previous radiations [14]. An
alternative scenario suggests a coincidence between
diversification events in each of the extant land plant
lineages instead of a ‘continuous replacement’ idea. In
this case, the majority of extant diversity is either the
result of recent radiation events or of a long accumula-
tion of species diversity throughout a taxon’s history [14].
External factors, such as the break-up of continents and
climate fluctuations, are prominent factors influencing
the branching of the tree of life.
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In this study we ask two questions: (1) Do we find evi-
dence for non-constant rate of diversification in land
plants? (2) Are major shifts of diversification rates, if any,
correlated with some major external factors such as global
climate warming or cooling?

Results
We inferred the divergence times of over 98% of all
families of land plants in a single phylogenetic analysis
based on multiple genes from two genomes (Additional
file 1; TreeBase study ID S11106). The topology and diver-
gence times retrieved from the various analyses are
broadly congruent with previous studies with limited sam-
pling [15-17]. All major lineages of land plants as well as
the relationships among them were supported (bootstrap
support > 74%) being mosses (62%), lycophytes as sister to
seed plants (68%) and hornworts as sister to mosses (47%)
the clades with lowest bootstrap values (TreeBase study
ID S11106). This topology is congruent with the analysis
using the three most complete markers (18S, rbcL and
atpB; 6.3% missing data).
The tree was calibrated using multiple fossils. In one of

the calibration procedures, we also constrained the age of
angiosperms to a maximum of 130 Ma following Brenner
[18] (hereafter the constrained tree). The estimated
crown age of land plants was 544.7 Ma (confidence inter-
val [C.I.] = 563.1-536.5) and that of angiosperms was
267.6 Ma (C.I. = 289.9-263.2; Additional file 2; TreeBase
study ID 11106) whereas for the constrained tree we
obtained a crown age for land plants of 510.8 Ma (C.I. =
512.9-475.5).
We produced lineage through time (LTT) plots for

both time estimations, presented in Figure 1. These show
a roughly constant rate of lineage increase (at least for
the family-level studied here), although for angiosperms,
ferns and mosses some acceleration is apparent since the
Cretaceous, while for liverworts and gymnosperms a
slowdown is observed (Figure 1).
A congruent pattern is obtained when we explore the

data applying a high level of background extinction using
a methodology developed by Magallón & Sanderson [19].
Figure 2 shows sizes of the major clades against a 95%
confidence interval of background diversification through
time for land plants as a whole. In recent times, most
clade sizes for mosses (Figure 2C), ferns (Figure 2D) and
angiosperms (Figures 2E &2F, the former being the tree
from a constrained analysis) fall above these confidence
intervals.
Using a topology-based test of diversification [20], a total

of 135 significant rate shifts were identified, with a similar
figure found for the constrained tree (139; Table 1). The
inclusion of 11 families with no DNA data resulted in the
identification of just one more shift in diversification, i.e.
on the branch leading to Balanophoraceae. We then

explored the concordance of these shifts with the major
cool and warm climatic modes [21] and we found some
striking correlations. The majority of shifts in diversifica-
tion rates in angiosperms, ferns, and mosses coincide with
the last warm climate mode (Table 1). For liverworts, the
highest number of shifts (5) took place in another warm
climate mode (184-252 Ma; Table 1). For gymnosperms,
only one shift in net diversification occurred, but in this
case, during a cool period. This pattern appears to also
hold if we compare the timing of shifts in diversification
rates with the more continuous global temperature change
presented in Scotese [22] (Additional file 3).
Using another diversification test that take into account

branch lengths (i.e., LASER [23]), constant rates of line-
age diversification were rejected for all major subclades.
In gymnoperms, the best model was one with a rate shift
occurring ca. 154 Ma, corresponding to a decrease in
diversification during a cool climate mode (Table 2,
Figure 1A). In the other subclades, two-variable rates
were favoured (Table 2, Figure 1A). In angiosperms, two
consecutive slowdowns in diversification were identified
for the current cool climate mode. In liverworts, a similar
pattern was encountered but decreases in rates of diversi-
fication occurred firstly in a cool climate mode (ca. 184
Ma) and secondly during a warm climate mode (ca. 99
Ma). In ferns and mosses, we first observe two increases
in diversification during a cool climate mode (ca. 106 and
133 Ma, respectively, Table 2, Figure 1A). Subsequently,
two decreases took place 60 Ma (warm mode) for ferns
and 35 Ma (cool mode) for mosses (Table 2, Figure 1A).
With the constrained tree, the pattern is similar for gym-
nosperms (Figure 1B, Additional file 4). In the case of
angiosperms and liverworts, only one decrease was
retrieved about 34 (cool mode) and 99 Ma (warm mode)
ago, respectively (Figure 1B, Additional file 4). This pat-
tern is similar to that obtained in the unconstrained tree
for mosses and ferns (Figure 1B, Additional file 4),
although this time fern diversification increases during a
warm mode (ca. 93 Ma) and decreases during a cool
mode (ca. 52 Ma; Figure 1B, Additional file 4).
Finally, diversification test incorporating multiple birth

and death models as implemented in MEDUSA [24]
located 69 diversification rate shifts being the highest
overall net diversification rates for different clades within
angiosperms (Figure 3, Additional file 5). Among land
plants we also found rate shifts leading to high clade-size
in mosses and ferns for individual families and clades
(Figure 3, Additional file 5). On other hand rates among
liverworts and gymnosperms were among the lowest:
their background rate were similar to the overall back-
ground rate, and their highest rates were lower than
most rates found for mosses and ferns (see Additional
file 5). Results using the constrained tree were widely
congruent (Additional file 5) and a new rate shift for

Fiz-Palacios et al. BMC Evolutionary Biology 2011, 11:341
http://www.biomedcentral.com/1471-2148/11/341

Page 2 of 10



10.

14.

18.

22.

-600 -500 -400 -300 -200 -100 0

 500                     400                    300                     200                    100                       0   
                                                      Time (myr) 

Te
m

pe
ra

tu
re

 (º
C

) 
lo

g 
(N

) 

22 

18 

14 

500 

200 

100 

50 

20 

10 

5 

2 

1 

 500                     400                    300                     200                    100                       0   Cambriam  Ordovician   Silu      Devonian        Carboniferous    Permian     Triassic         Jurassic               Cretaceous               Tertiary       

10.

14.

18.

22.

26.

-600 -500 -400 -300 -200 -100 0

                           400                    300                     200                    100                       0     
                                                      Time (myr) 

lo
g 

(N
) 

500 

200 

100 

50 

20 

10 

5 

2 

1 

                          400                    300                     200                    100                       0      

22 

18 

14 

Cambriam  Ordovician   Silu      Devonian        Carboniferous    Permian     Triassic         Jurassic               Cretaceous               Tertiary       

Te
m

pe
ra

tu
re

 (º
C

) 

A 

B 

Figure 1 Lineage Through Time plot. Lineage Through Time (LTT) plot for liverworts (blue), mosses (green), ferns (purple), gymnosperms
(yellow) and angiosperms (red) with indication of average global temperature [22] and cool climate modes (blue bars [21]). Triangles pointing
up or down indicate diversification rate shifts as detected with LASER (increasing or decreasing, respectively, see Methods). (A) unconstrained
tree; (B) constrained tree (i.e., angiosperms not older than 130 Ma). The y-axis indicates the number of lineages N on a logarithmic scale.
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Figure 2 Clade-size through time plot. Clade-size through time plot with indication of the 95% C.I. depicted from the rate of diversification of
land plants as a whole and assuming some background extinction (see Methods): (A) liverworts, (B) gymnosperms, (C) mosses, (D) ferns (E)
angiosperms unconstrained tree (F) angiosperms constrained tree.
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gymnosperms and higher net diversification rates across
monocots were recovered.

Discussion and Conclusion
By combining data for all families of land plants we are
now able to clarify the picture of their evolution through
geological times. Lineages of extant gymnosperms
radiated in the Permian and experienced a decrease in
diversification rate towards the end of the Jurassic (analy-
sis with unconstrained tree) or early Cretaceous (analysis
with constrained tree), during a cool climate mode.
Although their early history may have involved various
lineage replacements associated with the evolution of

new ecosystems [25,26], we found that the slowdown in
diversification of gymnosperms took place in the same
period as liverworts while mosses were diversifying inten-
sely, pointing towards a role of climate in determining
such patterns.
In this study we were also able to evaluate the diversifi-

cation dynamics of all families of mosses within a phylo-
genetic framework for the first time. Our analyses
converge to show that the diversification rate of this
group experienced an important acceleration in the Cre-
taceous, potentially ‘replacing’ the diversity of gymnos-
perms and liverworts. This occurred during a warm
climate mode when tropical habitats were undergoing

Table 2 LASER analysis using a constant-rate birth-death model with no extinction (a = 0) against variable-rates
models with 2 and 3 rates (r) and 1 or 2 time shifts given for best fitting model (ts; time unit is million years ago)

Birth-death model (a = 0) 2-rates model (r1, r2, ts) 3-rates model (r1, r2, r3, ts1, ts2)

Angiosperms

AIC 274.8786 -6.7234 -43

Delta AIC 0 281.602 317.40126

Ts1 27.53

Ts2 52.43

Ferns

AIC 233.6887 232.7399 231.2457

Delta AIC 0 0.9488 2.443

Ts1 60.02

Ts2 106.39

Mosses

AIC 388.785 306.4588 301.9242

Delta AIC 0 82.3262 86.8608

Ts1 35.19

Ts2 132.65

Gymnosperms

AIC 113.2583 107.9801 109.1307

Delta AIC 0 5.2782 4.1276

Ts 153.76

Liverworts

AIC 416.5246 365.2789 360.1666

Delta AIC 0 51.2457 56.358

Ts1 99.52

Ts2 183.89

Table 1 Number of significant shifts in net diversification rate (topology-based method of Moore et al.[20]) with
indication of cool (black) and warm (bold) climate modes of the Phanerozoic [21]

Climate modes 0-54 55-105 106-183 184-252 253-333 334-420 421-458 Total

Angiosperms 23 29 54 52 16 20 6 - - - - - - - 99 101

Ferns - - 5 4 1 1 1 1 1 1 - 2 2 - 10 9

Mosses 2 7 6 8 3 2 - - - - - - - - 11 17

Gymnosperms - - - - 1 1 - - - - - - - - 1 1

Liverworts - - - - 2 1 5 4 4 4 2 1 1 1 14 11

Total 25 36 65 64 23 25 12 5 5 5 2 3 3 1 135 139

Bold number columns correspond to periods of rate increases. Time unit is Mya (million years ago). For each lineage the bottom row (italics) corresponds to the
constrained tree.
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Figure 3 MEDUSA chronogram. Diversification chronogram with rate shifts located using MEDUSA [24] for different groups of land plants.
Numbers correspond to the rate shifts located by MEDUSA being the numbers in increasing order from the highest to lowest net diversification
rate (see Additional file 5). Different colours indicate different net diversification rates found in the tree. Boostrap support for the main nodes are
indicated with one asterisk (> 70%) and two asterisk (50%-70%). Angiosperms (grey asterisk) have been simplified for this figure.
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expansion. Significantly, it also corresponds to the origin
of the angiosperms according to Brenner [18], or to the
origin of major groups of angiosperms (asterids, rosids)
as found on our unconstrained analysis and as suggested
by previous studies [27]. In this sense, mosses have diver-
sified at the same period as the one reported for fern as
“the shadow of angiosperms”. It is important to note that
the Cretaceous could be divided in three main intervals
with regards to vegetation and climate: i) “Early” Cretac-
eous (ca. Berriasian–Barremian) with few angiosperms,
probably no closed canopy angiosperm forests, largely
dry climates at low palaeolatitudes; ii) mid-Cretaceous
(ca. Aptian-Santonian/Campanian), where we observe
the rapid diversification of angiosperms, with presence of
some angiosperm-dominated forests but still no tropical
everwet forests at low palaeolatitudes; and iii) “Late” Cre-
taceous (ca. Campanian-Maastrichtian), where we see an
early development of angiosperm dominated forests, pos-
sibly with everwet forests in low palaeolatitudes of the
Old World, and perhaps also in the New World [14].
This is then followed by iv) the Early Cenozoic, when
temperatures were warm and climate wet–and where
there is strong evidence of widespread tropical-sub-tropi-
cal warm wet forests [14]. We found that all six shifts in
diversification for mosses (Table 1) fall within this last
two intervals (i.e. 75, 69, 64, 57, 43 and 37 mya; see
details in Additional files 3), pointing to the importance
of both warm temperatures and wet climate for the rise
of moss diversity.
According to our analyses, mosses were not the only

group to have diversified in the shadow of angiosperms:
ferns have also radiated in a period that coincides with
the rise of angiosperms. Such a pattern, had previously
been reported [28]. Here, we find further support for
this hypothesis of diversification in the shadow of
angiosperms, identifying a significant increase in diversi-
fication during the warmest period of the Cretaceous,
and decrease during the coolest period of the Tertiary
(see Figure 1). More specifically, three out of the five
rate shifts (Table 1) fall within interval iii) above of the
Cretaceous, when climate was warm and wet.
Finally, we found that angiosperm diversity has accu-

mulated sharply in recent time (as shown by the LTT
plots), but diversification decreased in the coolest period
of the Tertiary (Figure 1). This is in agreement with the
idea that angiosperms have outcompeted and outnum-
ber gymnosperms and free-sporing plants [29,30]. Sub-
sequently, ferns (especially polypods [28,31]) and mosses
[32] opportunistically diversified in the ecological niches
provided by the angiosperms as the climate became war-
mer and more humid. In this sense, our study favours
the “successive replacement” of ancestral lineages [14].

Methods
Phylogeny
We put together phylogenetic data for at least one
representative of each of the 706 currently accepted
families of land plants (Additional file 1). Our dataset
was assembled using plastid rbcL, atpB and rps4 genes,
as well as 18S and 26S nuclear ribosomal regions (here-
after 18S rDNA and 26S rDNA). We downloaded
sequences from GenBank when available and filled some
of the gaps by sequencing missing taxa when we were
able to obtain suitable material (Additional file 1). DNA
extraction and PCR amplification used standard proto-
cols and primers for nuclear and plastid genes from
Nickrent and Starr [33] and Cox et al. [34]. We
sequenced the 18S rDNA for 22 angiosperms and 13
mosses, rbcL for two angiosperms, 10 mosses and one
liverwort, and atpB for 39 mosses, two liverworts, one
hornwort, and 18 angiosperms (Additional file 1). In
total we produced a 6,950 base pairs data matrix con-
sisting of 699 families (including four outgroups) with
65% of data presence. Only one gene could be obtained
for 55 of these 699 families (Additional file 1). Strepto-
phytes and Chlorophytes were used as the outgroup.
Due to the large size of the matrix, maximum likeli-

hood analyses were performed in RAxML [35] using
200 bootstrap replicates and GTR+GAMMA model, as
selected by ModelTest [36]. Divergence times were cal-
culated using penalized likelihood in r8s [37] and the
smoothing parameter (smooth = 1000) was calculated
by cross-validation. We calibrated the chronogram with
the age of eudicots at 121 mya, corresponding to the
appearance of the tricolpate pollen grain typical of this
clade [38]. We used a further sixteen calibration points
as minimum constrains, plus a maximum age of 725 Ma
[39] for the root of the tree (Marchantiopsida, Monilo-
phytes, Mosses, Seed plants, Annonaceae, Calycantha-
ceae, Hedyosmum, Lauraceae, Magnoliaceae, Meliosma,
Menispermaceae, Nelumbaceae, Nymphaceae, Platana-
ceae, Trochodendron, Winteraceae, Additional file 6).
Confidence intervals (C.I.) for divergences times were
calculated by repeating the dating procedures in r8s
using 100 bootstrapped matrices produced in RAxML
[35]. The dating procedure was repeated constraining
the age of angiosperms to a maximum of 130 Ma fol-
lowing Brenner [18], i.e. “constrained tree”.

Diversification tests
We examined diversification through time using several
methods.
Firstly, we plotted the number of lineages through

time (hereafter LTT plots) for each major subclade of
land plants using the APE 1.8 package [40].
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Secondly, to take into account extinction rates we
used the approach of Magallón and Sanderson [19]. For
time intervals of one million year, we calculated net
diversification rates under a relative high level of back-
ground extinction (0.9 using equation 10 of Magallón
and Sanderson [19].
Thirdly, we applied a topological-based test of diversifi-

cation. Diversification rate shifts were calculated using
the Δ1 statistics of Moore et al. [20] as implemented by
Bouchenak-Khelladi et al. [41] in ApTreeshape [42] using
0.05 significance level as the cut-off point. This test uses
the tree but also takes into account the total number of
species per family (Table 1).
Fourthly, we used a test of diversification that takes into

account branch lengths, i.e. the elapsed time between the
nodes of the family-level tree, LASER [23]. Using the
Akaike Information Criterion (AIC), LASER can compare
models with various rates of diversifications (yule model
with rates r) against the null expectation of a constant rate
(birth-death model with no extinction). LASER also allows
to identify at which points in time a given rate shift
occurred (ts). LASER was applied to all major subclades.
Fifthly, we tested for multiple shifts in birth and death

rates using a stepwise approach implemented in MEDUSA
until improvement in AIC score was < 4 [24]. Net diversi-
fication rates together with relative extinction rates and
AIC improvements were retrieved (Additional file 5).
Also, to comply with other phylogenetic analyses that

have combined more genes but for fewer taxa, we also
re-ran the analyses above with the following two modifi-
cations. First 11 families for which we could not obtain
any DNA data (i.e., five families of liverworts, three of
mosses, and three of angiosperms; Additional file 1)
were placed in the DNA-based phylogenetic tree using
taxonomic information following Crosby et al. [8], Buck
and Goffinet [9], Stevens [13], Heinrichs et al. [7] and
Smith et al. [11] (see Additional file 2). Although this
procedure is suboptimal, it allowed us to perform diver-
sification tests on a complete-family level tree. Second
we enforced hornworts and lycophytes to be sister to
vascular plants [15,16] plus we set the maximum age for
angiosperms to 130 Ma (following Brenner [18]; our
“constrained tree”). Results were compared for the con-
strained vs. unconstrained topologies. Finally, we com-
pared these diversification profiles and metrics against
the distribution of the climate modes of the Panerozoic
following Frakes et al. [21], as well as the global tem-
perature model of Scotese [22].

Additional material

Additional file 1: Taxa and GenBank accession numbers with new
sequences generated for this study in bold. Families for which DNA
data could not be obtained are indicated in italics.

Additional file 2: Chronogram of the unconstrained tree. Numbers
after family name are species number considered for our analysis
following Stevens [13] for angiosperms and gymnosperms, Crosby et al.
[8] and Buck and Goffinet [9] for mosses, Smith et al. [11] for ferns and
Stotler et al. [43] for liverworts. The x axis indicate time in million years.
The placement of 11 families in which no molecular data could be
collected are indicated; they were connected to node numbers as
follows: 1 - Monocarpaceae, 2 - Sandeothallaceae, 3 - Chonecoleaceae, 4
- Grolleaceae, 5 - Trichotemnomaceae, 6 - Viridivelleraceae, 7 -
Microtheliaceae, 8 - Sorapillaceae, 9 - Hapthantaceae, 10 -
Balanophoraceae and 11 - Rafflesiaceae.

Additional file 3: Number of significant shift in net diversification
rate (topology-based method of Moore et al. [20]) with indication of
cool (grey) and warm (black) temperatures of the Phanerozoic [22].
Bold number columns correspond to periods of rate increases. Time unit
is Mya (million years ago). For each lineage the bottom row (italics)
corresponds to the constrained tree.

Additional file 4: LASER analysis for the constrained tree using a
constant-rate birth-death model with no extinction (a = 0) against
variable-rates models with 2 and 3 rates (r) and 1 or 2 time shifts
given for best fitting model (ts; time unit is million years ago).

Additional file 5: Diversification rate shift retrieved from MEDUSA
[24]. Numbers on the first column correspond to the net diversification
rate from highest to lowest and are depicted on Figure 3. Non-
angiosperms cases are highlighted in bold, followed by the name of the
group they belong to in brackets. “r” are the estimates for net
diversification rate, “e” are estimates for relative extinction rate, “ΔAIC” is
the increase on the stepwise AIC procedure and “ΔAICc” is the increase
when corrected for small sample size [24]. Results for the constrained
tree are presented at the bottom.

Additional file 6: Minimum-age calibration points used in
divergence time reconstructions [44-57].
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