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Acoustic structure of male loud-calls support
molecular phylogeny of Sumatran and Javanese
leaf monkeys (genus Presbytis)
Dirk Meyer1,2*, John K Hodges1, Dones Rinaldi3, Ambang Wijaya3,4, Christian Roos5 and Kurt Hammerschmidt6

Abstract

Background: The degree to which loud-calls in nonhuman primates can be used as a reliable taxonomic tool is
the subject of ongoing debate. A recent study on crested gibbons showed that these species can be well
distinguished by their songs; even at the population level the authors found reliable differences. Although there
are some further studies on geographic and phylogenetic differences in loud-calls of nonhuman primate species, it
is unclear to what extent loud-calls of other species have a similar close relation between acoustic structure,
phylogenetic relatedness and geographic distance. We therefore conducted a field survey in 19 locations on
Sumatra, Java and the Mentawai islands to record male loud-calls of wild surilis (Presbytis), a genus of Asian leaf
monkeys (Colobinae) with disputed taxanomy, and compared the structure of their loud-calls with a molecular
genetic analysis.

Results: The acoustic analysis of 100 surili male loud-calls from 68 wild animals confirms the differentiation of P.
potenziani, P.comata, P.thomasi and P.melalophos. In a more detailed acoustic analysis of subspecies of P.
melalophos, a further separation of the southern P.m.mitrata confirms the proposed paraphyly of this group. In
concordance with their geographic distribution we found the highest correlation between call structure and
genetic similarity, and lesser significant correlations between call structure and geographic distance, and genetic
similarity and geographic distance.

Conclusions: In this study we show, that as in crested gibbons, the acoustic structure of surili loud-calls is a
reliable tool to distinguish between species and to verify phylogenetic relatedness and migration backgrounds of
respective taxa. Since vocal production in other nonhuman primates show similar constraints, it is likely that an
acoustic analysis of call structure can help to clarify taxonomic and phylogenetic relationships.

Background
Langurs of the Asian colobine genus Presbytis (surilis)
are exclusively arboreal animals, which inhabit tropical
rainforest habitats of Sundaland, i.e., the Malay penin-
sula and the western Indo-Malay archipelago, compris-
ing of Sumatra, Borneo, Java, the Mentawai islands and
some smaller interjacent islands [1]. Mainly driven by
Sundaland’s dramatic geological and climatic changes
during the past million years, the genus has undergone
an extensive radiation [2]. With more than 50 described
color variants [3,4], Presbytis is one of the most diverse
primate genera among Old World monkeys.

Like many other primate species, surilis emit loud,
conspicuous vocalizations termed loud-calls or long-dis-
tance calls. In contrast to Presbytis, gibbon loud-calls
have a well-adapted acoustic structure [5,6]; with an
energy concentration in single frequency bands, a slow
modulation of song elements and a transmission range
adjusted to the frequency window of rainforest condi-
tions, their songs can be heard over several miles [7,8].
Although less well optimized, loud-calls produced by
other nonhuman primate species, such as howler mon-
keys [9] or surilis [10], also exhibit adaptations for long-
distance transmission. Loud-calls can have a variety of
different functions; they may be used to defend
resources, to compete for mates, to mediate intergroup
spacing and to promote intragroup cohesion [9,11,12].
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In those species in which the structure of loud-calls is
well adapted to long-distance transmission, they func-
tion predominantly to mark and defend territories.
Although there is general agreement that loud-calls

may also serve as phylogenetic traits, systematic studies
comparing call structure and genetic relatedness are
rare. Amongst gibbons, structural differences are routi-
nely used as a taxonomic tool [13,14]. In a recent study
on crested gibbons carried out in 24 different locations
in Vietnam, Laos and Cambodia, Thinh and colleagues
[15] combined a molecular genetic analysis with an
acoustic analysis and showed that song structure alone
can be used to distinguish the different species. Based
on call structure, the authors were also able to distin-
guish single populations and support not only their phy-
logentic relatedness, but also their proposed geographic
origins. Comparable studies in other nonhuman pri-
mates are lacking. However, single studies on loud-calls
of orangutans [16], Thomas langurs [17], chimpanzees
[18], black-and-white colobus monkeys [19] or sportive
lemurs [20] revealed geographic or genetic related differ-
ences in the structure of loud-calls of these species.
Some previous studies proposed that loud-calls of surilis
could be a useful tool to characterize phylogenetic relat-
edness [21-23]. According to these studies, the Suma-
tran surilis were divided into the species P.melalophos,
P.femoralis, P.thomasi [21-23] and P.potenziani [21,23],
and Wilson and Wilson [23] proposed a successive inva-
sion of Sumatra, Borneo and the Mentawai islands from
the Asian mainland. However, all these studies are only
based on phonetic descriptions of loud-calls and did not
make a systematic analysis of the acoustic structure or a
direct comparison between acoustic structure and
genetic relatedness.
Here we combine the results of the most comprehen-

sive molecular genetic study on leaf monkeys of the
genus Presbytis currently available [24] with a systematic
field survey in which the loud-calls of P.potenziani
siberu, P.comata comata, P.thomasi and the four subspe-
cies of P.melalophos (melalophos, mitrata, bicolor and
sumatrana) were recorded [3]. Previous classifications
and phylogenies of Presbytis were mainly based on beha-
vioral and anatomical features, in particular coat colora-
tion [1,3,4,22,25-31], while genetic studies are extremely
limited [24,32-34]. In our recent study [24], mitochon-
drial DNA was used to propose a revision of Groves’
classification [3] suggesting species status for the four
subspecies of P.melalophos and also for both subspecies
of P.comata and P.potenziani. However, for convenience
we use here the classification of Groves [3].
Since surilis intensively responds to stranger call play-

backs [35], we used a playback design in order to collect
vocalization data under comparable conditions. We
hypothesized that, similar to crested gibbons, structural

differences in Presbytis loud-calls reflect phylogenetic
relationships and can support a revision of the current
classification.

Results
In 2007 and 2008, we conducted field surveys in 19
locations (which resemble 19 populations) on Sumatra,
Java and the Mentawai islands, and recorded male loud-
calls of seven wild non-habituated Presbytis taxa (Figure
1). Included are P.thomasi, P.potenziani siberu, P.comata
comata and all four subspecies of P.melalophos (P.m.
melalophos, P.m.mitrata, P.m.bicolor and P.m.suma-
trana). In total, we recorded more than 300 loud-calls
of 68 male individuals.
In response to the playbacks, males often responded

several times, but only one call of this bout was used for
the analysis (in total 100 calls). Counter calling males in
general decreased the distance to the speaker, while
females hid or disappeared. A further common response
to playback treatments was alarm calling of group mem-
bers and in addition juveniles often started to squeal
[36]. Loud-calls were mostly accompanied by a jumping
display.

General differences in male loud-calls
P.thomasi, P.potenziani, P.comata and P.melalophos can
be clearly identified by general acoustic characteristics
in their call structure (Figure 2). In addition, species’
calls are readily distinguished by ear, but P.melalophos
subspecific differences are undetectable.
P.thomasi (n = 10) and P.potenziani (n = 9) calls start

with coughing elements at the beginning and end with
howling tonal phrases. These two parts include inhala-
tion and exhalation elements. In P.thomasi, the initial
coughing elements rise in crescendo and increase in
volume (build-up phase). In P. potenziani (n = 9), the
build-up phase is missing and the coughing elements
are equally loud and noisy (Figure 2). Both loud-calls
also differ in their mean duration with 3.58 s (SD =
0.35) for P.thomasi and 4.17 s (SD = 0.42) for P.poten-
ziani. On the average, P.potenziani produces 28 ele-
ments (SD = 2) per call with a mean element frequency
of 6.42 per second (SD = 0.56), while P.thomasi pro-
duces 30 elements (SD = 4) with a mean element fre-
quency of 8.5 elements/s (SD = 1) (Figure 2). Detailed
differences in the acoustic structure can be found in
Additional File 1.
The typical P.comata call (n = 10) is characterized by

a unique staccato-like sequence of 52 (SD = 8) alternat-
ing exhalation and inhalation elements (mean 18.20, SD
= 1.91 elements/s). P.comata calls, with a mean call
duration of 2.86 s (SD = 0.26), include a short build-up
phase and an end-up phase, both with increasing loud-
ness and frequency (Figure 2, Additional File 1).
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Loud-calls of P.m.bicolor (n = 15), P.m.sumatrana (n
= 9), the central Sumatran P.m.mitrata (n = 7) and P.m.
melalophos (n = 26) from outside of Bengkulu, consist
of a sequence of exhalation elements. An exception are
the calls of P.m.melalophos from Bengkulu (n = 3) and
the southern Sumatran P.m.mitrata (n = 12), which dif-
fer by producing alternating exhalation and inhalation
elements at the end of the call (Figure 3). The mean
duration of P.melalophos calls lies between 2.39 s (SD =
0.33) for P.m.mitrata and 2.53 s (SD = 0.40) for P.m.
sumatrana. The mean frequency of produced elements
lies between 10.85 elements/s, (SD = 2.36) for P.m.
mitrata and 7.35 elements/s (SD = 0.4) for P.m.bicolor
(Figure 3, Additional File 1).

Subtle differences in male loud-calls
Result of the discriminant function analysis of all 19
populations (DFA1)
The DFA assigns 72% of the loud-calls (62% of cross-vali-
dated, chance level = 5.3%) to the original populations. In
relation to taxon identity 83% of the cross-validated cases
are correctly classified. Most misclassified cases are
found between P.melalophos subspecies (Table 1).

No misclassification can be found between the four
Presbytis species, P.comata (populations 1-3), P.melalo-
phos (populations 4-16), P.potenziani (population 17)
and P.thomasi (populations 18-19). They form four well
separated clusters with a correct assignment of 100%
(Table 1, Figure 4A). Among the large P.melalophos
cluster, one further sub-cluster is indicated, which
includes P.m.melalophos from Bengkulu (population 7)
and the southern Sumatran P.m.mitrata (populations 4-
6). The scattergram (Figure 4A) shows the separation of
the 19 populations according to the first and second dis-
criminant function, explaining 56.3% and 26.7% of the
total acoustic variation, respectively. The first discrimi-
nant function, which mainly represents the amount of
inhalation elements, separates populations 1-3 from all
others, while the second discriminant function, which
represents rhythmical features, separates population 17
from all others. To focus on the P.melalophos cluster
(populations 4-16), we conducted a second DFA.
Result of the discriminant function analysis of P.melalophos
populations (DFA2)
The second DFA2 assigns 66.2% of the loud-calls (49.3%
of cross-validated, chance level = 7.7%) to the original

Figure 1 Geographical distribution of Presbytis taxa on Sumatra, Java and the Malay peninsula. Sampled taxa are labeled in the map.
Hatched areas in the map indicate distribution ranges of respective taxa, colors indicate species and numbers indicate the origin of acoustic
samples (populations).
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populations and establishes three distinct clusters (Fig-
ure 4B), separating the southern Sumatran P.m.mitrata
(populations 4-6) and the P.m.melalophos from Beng-
kulu (population 7) from the remaining P.melalophos
populations.
In relation to the taxon identity 89% P.m.mitrata, 76%

P.m.melalophos, 93% P.m.bicolor and 63% P.m.suma-
trana of the cross-validated population cases are cor-
rectly classified (Table 1). The scattergram (Figure 4B)
shows the separation of the 13 populations according to
the first and second discriminant function, explaining
92.9% and 3.8% of the total variation, respectively. The
first discriminant function, which explains nearly all
structural differences, represents the amount of inhala-
tion elements, separates populations 4-6 from popula-
tion 7, and the remaining populations. The second
discriminant function mainly based on the minimum
frequency of the call, indicates the separation of popula-
tions 14, 15 and 5 from population 7 and the lasting
locations.
Phylogenetic relationships among Presbytis taxa based on
acoustic data and comparison with molecular data
The vocal- (Figure 5A) and molecular-based phylogenies
(Figure 5B) [24] are highly congruent. In both phyloge-
nies, P.thomasi, P.potenziani, P.melalophos (excluding P.
m.mitrata from South Sumatra) and P.comata + P.m.
mitrata from South Sumatra form four distinct clusters/
lineages and indicate a similar branching pattern. Con-
trary to the molecular phylogeny, in the acoustic tree P.
m.mitrata from South Sumatra (populations 4-6) does
not form a monophyletic cluster, and P.m.sumatrana
(population 16) and P.m.bicolor (populations 14-15) are

Figure 2 Spectrograms of typical loud-calls of P.thomasi, P.
potenziani, P.comata and P.melalophos.

Figure 3 Spectrograms of typical loud-calls of P.melalophos subspecies.
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nested within the cluster consisting of P.m.melaophos
and P.m.mitrata from Central Sumatra (populations 7-
13). This might be due to the subtle differences found
in the vocal structure of respective populations.
Correlation between vocal structure, genetic and
geographical distance
A Mantel test was performed to test the concordance
between genetic distance, geographical distance and
acoustic similarity. All populations where corresponding
genetic data was available (N = 17) were included in the
analysis (populations 3 [P.comata], populations 4,6,13
[P.m.mitrata], population 9 [P.m.melalophos], popula-
tions 14, 15 [P.m.bicolor], populations 17 [P.potenziani],
populations 18, 19 [P.thomasi]; Figure 1). We found the
highest significant correlations between vocal structure
and genetic distance (P = 0.001, Rx, y = 0.91), and lower
significant correlations between genetic and geographi-
cal distance (P = 0.001, Rx, y = 0.66), and geographical
distance and vocal structure (P = 0.001, Rx, y = 0.55).

Discussion
Here we report significant differences between loud-call
structures of P.thomasi, P.potenziani, P.comata and P.
melalophos. Among the latter species a significant
separation between the South Sumatran P.m.mitrata
and the central Sumatran P.m.mitrata, as well as a
further separation between P.m.melalophos from Beng-
kulu and the remaining P.m.melalophos populations,
could be detected. The acoustic discrimination between
Presbytis taxa was highly positively correlated with their
genetic distance. In addition, we found substantial sig-
nificant correlations between acoustic similarity and
geographic distance and between genetic distance and
geographic distance.
In our recent molecular genetic study [24] we sug-

gested a paraphyly for P.m.mitrata, with the central
Sumatran populations being closely related to P.m.

melalophos and the South Sumatran populations form-
ing a sister lineage to P.comata (Figure 5B). Our current
findings on the acoustic structure of loud-calls strongly
support these results.
P.m.mitrata was reported to inhabit the area southeast

of the Batang Hari river, a large river in central Sumatra.
In the west, this subspecies does not extend to the Bukit
Barisan range, a mountain range on the western side of
Sumatra [26], where P.m.melalophos occurs [3]. Our
samples of the central Sumatran P.m.mitrata (popula-
tion 13) derived from the above described northernmost
distribution range of this subspecies, south of the Batang
Hari river. Although much paler, the morphological
appearance resembles the reddish P.m.melalophos more
than the grayish white southern Sumatran P.m.mitrata
(Additional File 2). Whether there might be a transition
zone between P.m.melalophos and P.m.mitrata demands
further research. It is highly likely that P.m.melalophos
gradually intergrades with P.m.mitrata, as may be the
case between P.m.bicolor and P.m.melalophos [26]. Our
results, however, let us conclude that the central Suma-
tran P.m.mitrata population is the paler color variant of
P.m.melalophos. Thus, the geographical distribution
range of P.m.melalophos should be extended from the
Bukit Barisan range eastwards towards Jambi. The
southern Sumatran P.m.mitrata is genetically, morpho-
logically and acoustically distinct from the remaining P.
melalophos subspecies (see also Additional File 2).
Therefore, if the Phylogenetic Species Concept [37,38] is
applied, P.m.mitrata would be elevated to a monotypic
species P.mitrata Eschscholtz, 1821 [39].
Among P.m.melalophos we found the calls from Beng-

kulu (population 7) forming a distinct cluster. Unfortu-
nately, genetic data from Bengkulu are lacking, but
acoustically, the call types were more closely related to
the Southern P.m.mitrata mainly due to the presence of
inhalation elements. Historically different color morphs

Table 1 Classification results of the first and second DFA in relation to the taxon membership*

P.comata
n = 10
P 1-3

P.m.mitrata
n = 19
P 4-6, 13

P.m.melalophos
n = 29
P 7-12

P.m.bicolor
n = 15
P 14-15

P.m.sumatrana
n = 8
P 16

P.potenziani
n = 9
P 17

P.thomasi
n = 10
P 18-19

P.comata
I = 8

100

P.m.mitrata
I = 13

68/89 26/11 6/0

P.m.melalophos I = 18 7/7 79/76 14/10 0/7

P.m.bicolor
I = 13

7/0 20/7 73/93

P.m.sumatrana I = 5 12/25 0/12 88/63

P.potenziani
I = 4

100

P.thomasi
I = 7

100

*Relative predicted group membership in % (DFA 1/DFA 2), n = calls, P = population numbers (see also Figure 1), I = individuals.
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of P.m.melalophos were described, all of which are cur-
rently classified as synonyms of P.m.melalophos [3].
These are a) the much less red and buffer variant from
Bengkulu (Simia melalophos Raffles, 1821; syn. flavima-
nus Geoffroy, 1830), b) a foxy red northern form (Pres-
bytis nobilis Gray, 1842) from Solok [4], c) a less
reddish form from Padang (Semnopithecus ferruginneus
Schlegel, 1876) and d) a golden buff variant (Semno-
pithecus sumatranus var. aurata Müller & Schlegel,
1841) from Gunung Talamau (ca. 150 km northwards
from Padang) [3]. The great diversity of color morphs in
Presbytis, in particular in P.melalophos, has caused
much debate over the past decades. Coloration might

indicate relatedness, but can often be misleading, in par-
ticular, when no broad geographic sampling is available.
Our data point out that the taxonomic ranking of some
of these historically described taxa possibly should be
reconsidered. However, the loud-calls from population 7
are only derived from two individuals and genetic data
are missing. Therefore, further molecular genetic and
bio-acoustic research based on a broader sampling is
needed to draw final conclusions. Of great interest are
the acoustic data of the Bornean taxa, in particular data
of P.rubicunda. Based on molecular genetic results P.
melalophos is even polyphyletic since P.rubicunda is
nested within the P.m.sumatrana, P.m.bicolor, P.m.mela-
lophos/central Sumatran P.m.mitrata clade [24]. Pre-
vious studies already proposed a close affiliation of P.
rubicunda and P.melalophos based on the red coat col-
oration [31] or in some aspects of behavior and vocali-
zation [23]. If species status of P.rubicunda is retained,
species status of P.m.sumatrana, P.m.bicolor, P.m.mela-
lophos will be consequently warranted, otherwise P.rubi-
cunda has to be assigned as a subspecies of P.
melalophos.
The correlation between acoustic structure and

genetic differences was higher than the correlation
between acoustic structure and geographic distance.
This pattern can be explained by the following proposed
Presbytis migration pattern, which is largely in agree-
ment with Wilson and Wilson [23]. The initial split in
Presbytis occurred between P.thomasi and all other taxa,
and P.thomasi colonized North Sumatra, which became
isolated afterwards. The ancestor of the remaining taxa
colonized first Borneo and later Sumatra. An early
divergence of Bornean taxa is also supported by pre-
vious genetic studies [24,32-34]. Of the ancestral Suma-
tran stock, one lineage invaded the Mentawai islands (P.
potenziani), the other split into the proto-P.melalophos
lineage and into the southern P.m.mitrata/P.comata
lineage (Figure 5). Although calls from P.femoralis/P.sia-
mensis (eastern Sumatra, Asian mainland) are not ana-
lysed in our study, previous publications show
similarities in call structures of P.femoralis and P.tho-
masi [40,41]. Our genetic study [24] shows that P.femor-
alis diverged relatively early from other lineages and,
thus, the similar call structure of P.femoralis and P.tho-
masi might be a plesiomorphic feature. Up to this point
the genetic, geographic and acoustic differences between
populations increased. From this point onwards the geo-
graphic distances between populations decreased,
because proto-P.melalophos subsequently transmuted
into various present day subspecies, which were finally
distributed across Sumatra as far as to the distribution
range of P.thomasi in North Sumatra. Consequently, the
geographic distance between P.thomasi and the remain-
ing Sumatran populations decreased, while the genetic

Figure 4 Scattergram presenting the results of the DFA. A:
Assignment of the four species P.melalophos, P.comata, P.
thomasi and P.potenziani. B: Assignment of P.melalophos
subspecies. Rectangles indicate population centroids. Species are
marked by color.
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and the acoustic differences increased. Finally, the
southern P.m.mitrata/P.comata lineage split into P.m.
mitrata and P.comata that colonized Java. In this case
we have a linear migration pattern and thus would
expect a similar high correlation between acoustic struc-
ture, genetic and geographic distance, as it was currently
shown in crested gibbons which are proposed to migrate
in a linear fashion from North to South [15].
Surilis and gibbons are limited to rainforest habitats

where the selection pressure forces an optimal adapta-
tion of the structure of loud-calls for transmission over
longer distances [5,42]. Since the structure of loud-calls
is inherited and call adaptation forces a similar struc-
ture, gene flow could achieve the major influence on the
structural variation of calls [15]. By combining the phy-
logenetic reconstruction of Meyer and colleagues [24]
and the results of our study (Figures 2, 5A), we can
observe a trend to simplification in call structure over
time. However, it is difficult to explain why we found
such a simplification in call structure. We cannot
answer whether this is a general rule or whether this is
a Presbytis-specific trait. Crested gibbons show an
ambiguous result [15], where after a long period of sylla-
ble types with simple frequency modulation, a trend to a
slightly more complex modulation appears. More

acoustic comparisons with more species and at a higher
taxonomic level are necessary to answer this question.
Interestingly, P.potenziani was regarded as most basal

lineage [43] and due to similarities in call structure, the
species was proposed as closely affiliated with P.thomasi
[21]. However, neither is the case, since P.potenziani
derived much later [24]. The specific call structure of P.
potenziani is therefore either the result of an analogous
evolution or a pleisiomorphic Presbytis feature. To clar-
ify this issue further research is needed and particularly
genetic and acoustic data on the Bornean and Malaysian
taxa will help to better understand the evolution and
phylogeography of the genus.
For instance, the call structure of P.rubicunda seems

to be similar to P.melalophos calls [23] and, as discussed
above, molecular genetic data also group P.rubicunda
with P.melalophos [24]. This close relationship can
partly help to explain the interesting feature of general
allopatry of respective Presbytis taxa in Sumatra, and
sympatry in Borneo [1]. P.rubicunda originated on
Sumatra and subsequently invaded Borneo during the
middle Pleistocene via a proposed connection between
both islands [44]. At this time Borneo was already colo-
nized by the Bornean species P.chrysomelas, P.frontata
and P.hosei. As a result of this second colonization, P.

Figure 5 (A) Neighbor-joining tree of Presbytis taxa based on the acoustic similarity matrix (F values) and (B) their phylogenetic
relationships according to mitochondrial sequence data (redrawn from [24]). In A, colored letters indicate species and numbers
corresponding to sampling locations (see Figure 1). In B, branch lengths refer to those obtained from the Bayesian reconstruction in [24] and
black dots on nodes indicate Bayesian posterior probabilities of > 0.96.
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rubicunda is sympatric today with the three other spe-
cies wherever their ranges overlap [45].

Conclusions
In this study we have shown that vocal similarity highly
correlates with genetic relatedness; these two measures
also correlate significantly with geographic distance, but
the strength of the relationship is lower. Accordingly,
acoustic analysis of surili loud-calls has been proven to
be a promising and powerful tool to support taxon-
affiliation and phylogenetic relatedness. In addition, we
were able to confirm the proposed paraphyly of P.mela-
lophos by differences in loud-call structure. Further-
more, acoustic analysis can be used as a tool to support
proposed migration routes. These findings might also
help to explain taxonomic relationships and migration
backgrounds in other nonhuman primate taxa, as long
as they have similar constraints in their vocal
communication.

Methods
Survey locations and data collection
In 2007 and 2008 we conducted field surveys in 19 loca-
tions on Sumatra, Java and the Mentawai islands, and
recorded male loud-calls of P.thomasi, P.potenziani, P.
melalophos and P.comata (Figure 2). To find and track
animals the field sites were explored between 5.30 am
and 6 am until noon, and in the evening from 3 pm till
sundown. When a group was encountered GPS data of
the location (using a handheld GARMIn© GPSMAP
76CSX), information about the group composition and
the appearance of the animals (i.e. morphological char-
acters, for instance pelage coloration or scars) were
noted on data sheets whenever possible. All visual
observations were made by using binoculars (8 × 32
Steiner Sky-Hawk).
Since surilis intensively respond to stranger call play-

backs [35], we used a playback design to collect data
under comparable conditions. Initially, vocalizations
were opportunistically recorded to achieve a high quality
call of each population. For the playback the quality of
the recorded vocalizations was screened on a notebook
using AVISOFT SASLAB Pro software version 5.1 (R.
Specht, Berlin, Germany). Undisturbed calls from each
population were selected and only one of these was
used to stimulate response from respective study popu-
lations in the same area. At each site, we tried to avoid
recording the same individuals by direct observations.
Each playback comprised of 4 calls, which were played
back one by one in 20 second intervals.
For the final data collection, playback treatments were

amplified with a Vision David Speaker connected to a
MP3-Player (Samsung YP-U3) from about 75 m distance
of the focal group at a height of 2 m [35,46]. After the

performance at least 15 minutes were recorded. If a
response was given before the playback was finished the
playback was stopped. To record vocalizations a solid
state recorder (Mirant PMD 660 (Marantz, Japan); sam-
pling rate: 44.1 kHz, 16 bit amplitude resolution) and a
Sennheiser directional microphone (K6 power module,
ME66 recording head, MZW66 pro windscreen, Senn-
heiser, Wedemark, Germany) were utilized. For each
playback treatment the GPS position of the location, the
group number, the date, time and the identity of a
responding male were noted on data sheets.

Acoustic analysis
Male surili loud-calls consist of iterations of single ele-
ments. P.thomasi and P.potenziani produce coughing
elements at the beginning of the call. In P.thomasi, the
successive elements rise in crescendo and increase in
volume (see build up phase Figure 2), while the cough-
ing elements in P.potenziani are equally loud and noisy.
Both loud-calls end with howling tonal phrases includ-
ing inhalation and exhalation elements (Figure 2). We
considered these calls as completely developed when
both parts were produced. P.comata loud-calls were
considered as completely developed when a boost in
loudness and frequency till the end of the call was pre-
sent. P.melalophos loud-calls were considered as com-
pletely developed when they included at least 10
elements (the only two calls that were interrupted had
less than 10 elements).
AVISOFT SASLAB Pro 5.1 was used to measure

acoustic parameters and to generate spectrograms (FFT
= 1024 pt, Frequency resolution = app. 27 Hz). To find
the point with maximum energy at the beginning, end-
ing and intermediate points of call elements in the spec-
trogram, the bounded reticule cursor tool of AVISOFT
was used. To address different phases within loud-calls,
each call was additionally divided into four quarters.
Since all taxa produce exhalation elements, the amount
of exhalation elements (Ex) was therefore divided by 4
and subsequently multiplied by 1, 2, 3 and 4, respec-
tively. Odd numbers were rounded. If inhalation ele-
ments (In) were present; the second, third and fourth
quarter always started with an exhalation element (for a
detailed description of used parameters see Table 2 and
Additional File 3).

Discriminant Function Analysis
For both Discriminant Function Analyses (DFAs), we
excluded acoustic variables that could not be obtained
in the majority of loud-calls. In the first DFA we used
23 acoustic parameters for 100 loud-calls from all 19
populations (Table 2, Figure 1). For the second DFA,
including only the four P.melalophos subspecies (melalo-
phos, mitrata, sumatrana, bicolor), we used the same 23
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acoustic parameters for 71 loud-calls (population num-
bers 4-16, Figure 1). All acoustic parameters were con-
ducted to stepwise DFAs in SPSS 19 [47]. The selection
criterion for an acoustic parameter to be entered was p
= 0.05 and p = 0.1 to be removed from the analysis.
The assignment of loud-calls to the different popula-
tions was cross-validated by the leaving-one-out method
[48], which involves leaving out each of the cases in
turn, calculating the functions based on the remaining
n-1 cases and then classifying the left-out case.

Phylogenetic tree reconstruction
For reconstructing phylogenetic relationships of loud-
call structure, we used the F values of pairwise distances
of the stepwise DFA described above. These F values
describe the pairwise similarity of the 19 populations in
relation to their overall similarity. Based on these F
values, a neighbor-joining tree of acoustic data was
reconstructed in the program Neighbor of the PHYLIP
package 3.69 [49]. The molecular-based phylogenetic
tree derived from mitochondrial sequence data was
redrawn from Figure 2 in [24] and shows only taxa
included in the present study. Respective branch lengths
refer to those obtained from the Bayesian reconstruction
in [24].

Correlation analysis between vocal structure, genetic and
geographical distance
To test the statistical relationship between acoustic
structure, and genetic and geographic distance matrices,
we used a Mantel Test algorithm programmed in R (R.

Mundry, Leipzig, Germany). For the analysis we only
used populations where acoustic and genetic data was
available (N = 17). The acoustic similarity matrices were
generated as described above. Geographic coordinates
were obtained via GPS and the geographic distance
matrices were calculated from the minimum distance of
different groups as implemented in GenAlEx 6.4.1 [50].
GenAlEx was also applied to calculate uncorrected pair-
wise genetic distances between haplotypes of a 1.8 kb
fragment of the mitochondrial genome. Respective hap-
lotypes were recently published by our group [24] (Gen-
Bank accession numbers: JF295100-JF295101 [P.m.
mitrata], JF295104 [P.m.melalophos], JF295106-JF295109
[P.m.bicolor], JF295117-JF295118 [P.comata], JF295124-
JF295125 [P.thomasi], JF295119-JF295121 [P.
potenziani]).

Additional material

Additional file 1: Calculated values of the arithmetic mean and the
standard derivation of measured variables (pdf).

Additional file 2: Photographs of wild Presbytis taxa from Sumatra,
Java and the Mentawai islands. Numbers refer to locations in Figure 1
(photograph of P.thomasi by Cedric Buttoz Girard, all others by Dirk
Meyer & Ambang Wijaya) (tif).

Additional file 3: Spectrogram of a Presbytis loud-call with
examples for measured parameters (tif).
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Table 2 Description of acoustic parameters used in the analysis

Parameter
Number

Parameter description

1 Duration of the entire call [s]: from the starting point of the first element till the ending point of the last element

2 Elements: amount of elements (inhalation and exhalation)

3 Elements per second [e/s]: amount of elements over the duration

4 Maximum frequency start [Hz]: maximum frequency of the starting points of the entire elements

5 Minimum frequency start [Hz]: maximum frequency of the entire starting points of elements

6 Maximum frequency end [Hz]: maximum frequency of the entire ending points of elements

7 Minimum frequency end [Hz]: minimum frequency of the entire ending points of elements

8 Mean frequency start [Hz]: arithmetic mean of the frequency of the entire starting points of elements

9 Mean frequency end [Hz]: arithmetic mean of the frequency of the entire ending points of elements

10 Exhalation elements: amount of exhalation elements

11 Inhalation elements: amount of inhalation elements

12-15 1st -, 2nd-, 3rd - and 4th - quarter elements per second [e/s]: amount of elements over the duration of respective quarters

16 Middle part elements per second [e/s]: amount of elements over the duration of the 2nd and 3rd quarter

17-20 1st -, 2nd-, 3rd - and 4th - quarter mean frequency start [Hz]: arithmetic mean of the frequency of the entire starting points of elements
of respective quarters

21 Middle part mean frequency start [e/s]: arithmetic mean of the frequency of the entire starting points of elements of the 2nd and 3rd

quarter

22-23 1st -, and 2nd - quarter mean frequency end [Hz]: arithmetic mean of the frequency of the entire ending points of elements of
respective quarters
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