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Abstract

Background: Changes in gene regulatory networks drive the evolution of phenotypic diversity both within and
between species. Rewiring of transcriptional networks is achieved either by changes to transcription factor binding
sites or by changes to the physical interactions among transcription factor proteins. It has been suggested that the
evolution of cooperative binding among factors can facilitate the adaptive rewiring of a regulatory network.

Results: We use a population-genetic model to explore when cooperative binding of transcription factors is favored
by evolution, and what effects cooperativity then has on the adaptive re-writing of regulatory networks. We consider a
pair of transcription factors that regulate multiple targets and overlap in the sets of target genes they regulate. We
show that, under stabilising selection, cooperative binding between the transcription factors is favoured provided the
amount of overlap between their target genes exceeds a threshold. The value of this threshold depends on several
population-genetic factors: strength of selection on binding sites, cost of pleiotropy associated with protein-protein

their binding sites, and their protein-protein interactions.

interactions, rates of mutation and population size. Once it is established, we find that cooperative binding of
transcription factors significantly accelerates the adaptive rewiring of transcriptional networks under positive
selection. We compare our qualitative predictions to systematic data on Saccharomyces cerevisiae transcription factors,

Conclusions: Our study reveals a rich set of evolutionary dynamics driven by a tradeoff between the beneficial
effects of cooperative binding at targets shared by a pair of factors, and the detrimental effects of cooperative binding
for non-shared targets. We find that cooperative regulation will evolve when transcription factors share a sufficient
proportion of their target genes. These findings help to explain empirical pattens in datasets of transcription factors in
Saccharomyces cerevisiae and, they suggest that changes to physical interactions between transcription factors can
play a critical role in the evolution of gene regulatory networks.

Background

It is often difficult for a population to acquire an adaptive
phenotype that requires simultaneous changes in the co-
expression of multiple genes [1-10]. If selection favours a
change in the way a group of genes are regulated, then
each of the target genes must independently gain novel
binding sites and/or lose existing ones [8,9,11,12]. This
has led to the proposal that adaptive rewiring of a regu-
latory network can be accelerated if pairs of transcription
factors bind their targets cooperatively, through a physical
interaction between the transcription factor proteins
themselves [8,9,11].
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Given the potential adaptive benefit of cooperative reg-
ulation, it makes sense to ask, when will cooperative
binding between a pair of transcription factors be able
to invade a population that lacks such cooperativity? To
answer this we must understand the following tradeoft:
although cooperative binding between a pair of factors
may result in improved regulation at the target genes
shared by both factors, any mutation that results in a
physical interaction between the transcription factors will
effect all of their targets (Figure 1). Thus the advantageous
fitness effects of improved binding at some, shared targets
must outweigh any deleterious effects of misregulation at
other, non-shared targets in order for cooperative binding
to be favored by evolution.

A number of previous studies have explored the mech-
anistic details of cooperative transcription factor binding
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Figure 1 Schematic of the population-genetic model. A schematic cartoon of our population-genetic model. (top) When cooperativity is absent
different transcription factors (gray and red) must bind to sites at each of their targets independently. Each factor has a number of targets, K; and K,
and a number B(K1 + K2) of shared targets (bottom). When cooperativity is present, a physical interaction between transcription factors (blue line)
can mitigate the need to bind independently at shared targets, but may cause misregulation at targets that are not shared, by causing the factor

with which it interacts cooperatievly to misbind. Cooperatively is therefore advantageous between transcription factors that share many targets, but

it may be deleterious at targets that are not shared.

at a given target gene [13-15]. Such biophysical studies
focus on transcription factor binding at a single target
gene and are able, with remarkable accuracy, to account
for a number of the physical properties of binding sites
[14,16,17]. However, the evolution of cooperative binding
occurs through mutations at transcription factor proteins,
and such mutations can alter transcription factor binding
at every binding site across the genome. To understand
the fitness effects of such a mutation therefore requires
that we understand the evolution of the whole ensemble
of binding sites for a transcription factor. The population
genetics of such an ensemble cannot be understood in
a simple way just by focusing on the details of a single
member of the ensemble. They depend critically on the
population-genetic parameters of the ensemble, such as
number of target genes, overall mutation rates and selec-
tion coefficients, and population size. Therefore in this

paper, we do not focus on the details of a cooperative
binding at a single target gene. Instead our analysis is in
terms of these population-genetic parameters, and whilst
we estimate selective coefficients from biophysical studies,
we do not specify the mechanistic details of protein-DNA
interactions that give rise to them.

We use a mathematical model to study the conditions
under which cooperative binding between pairs of tran-
scription factors is favoured. We first determine the evolu-
tionary conditions that favour cooperative binding under
stabilising selection, in terms of the basic evolutionary
parameters of the population: the strength of selection on
binding sites, the rate of mutation, and the population
size. We then study the influence of cooperative regula-
tion on the capacity for a transcriptional circuit to adapt
under positive selection. We calculate the time required
for a target gene to gain a new, adaptive transcription
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factor binding site, in the presence or absence of cooper-
ative interactions among its regulators. We confirm our
analytical results on the evolution of cooperative regu-
lation by comparison to Monte-Carlo simulations of the
Wright-Fisher process associated with our system, and
we compare our qualitative conclusions to systematic
empirical data.

Our population-genetic model describes a pair of tran-
scription factors, each with its own set of target genes,
with some degree of overlap between these sets (Figure 1).
According to our model, which is specified in detail below,
a target gene that is regulated by both factors has two
corresponding binding sites, while a target gene that is
regulated by only one of the factors has a single bind-
ing site. We assume that mutations that result in loss
of function can occur at any binding site, and that non-
functional binding sites can also undergo gain of func-
tion mutations. When there is no cooperative regulation
between the two transcription factors, binding to each of
their targets is determined solely by their binding sites.
If a binding site is not functional, this results in reduced
fitness. When cooperative binding is present, two conflict-
ing effects occur: On the one hand, cooperative binding
partially compensates for the deleterious effects of loss of
function mutations to the binding sites at shared targets.
On the other hand, cooperative binding results in some
degree of mis-regulation at each of the targets that are not
shared, and this has a deleterious impact on fitness. By
constructing our model in terms of these fitness benefits
and costs we are able to study the evolutionary dynam-
ics of the system, and determine the effects of varying
different population-genetic parameters on the evolution
of cooperative gene regulation. This approach therefore
complements the detailed mechanistic models of gene
regulation that have been studied elsewhere [13-15].

Results and discussion

Stabilising selection without cooperative binding

We consider a pair of transcription factors, labelled 1 and
2, that have Kj and Kj targets, respectively. A fraction
B of the binding sites are at shared target genes, so that
the number of binding sites at genes that are co-regulated
by the pair is (K7 + K3), as illustrated in Figure 1. Loss
of function mutations occur at binding sites at a rate uy,
and back mutations, which result in a functional binding
site being gained at a target, occur at rate #,. An individ-
ual incurs a fitness penalty s, where 0 < s < 1, for each
non-functional binding site, and fitness is assumed to be
multiplicative across loci. Therefore the fitness of an indi-
vidual that lacks i < Kj + Ky of its required binding
sites is w; = (1 — s)’. The fitness landscape associated
with our model thus has a single peak at i = 0; and for
each transcription factor binding site that is lost, fitness is
reduced by an additional factor (1—s). Empirical estimates
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of the strength of selection on transcription factor binding
sites suggest that typically Ns ~ 10 [18], suggesting that s
is small. We assume that s is the same for all binding sites,
an assumption which we relax in the Methods section.

We consider a population of N asexual individuals.
The evolution of the population can be described by
keeping track of the relative abundances of each “ham-
ming class” [19-21]. Hamming class i corresponds to
those individuals who currently lack i transcription fac-
tor binding sites. We denote the frequency of indi-
viduals in hamming class i by x;. In an infinitely
large population, the evolution of hamming class i is then
described by the differential equations [20,21]

Ki1+Ky W
. L
% = Z = %Py 1)
Jj=0
where w = ZQJ K ix;, and Pj is the probability

a genotype lacking j functional binding sites mutates
to a genotype lacking i functional binding sites (see
Methods). Previous work [19-21] has shown that at equi-
librium, when rates of forward and back mutations are
identical (#; = ug), the solution to Equation 1 is a binomial
distribution. In the more general case of a finite popula-
tion, with u; # u,, we find that the equilibrium continues
to be well approximated by a binomial distribution, with
mean (Kj + Ky)as. The term a; is the probability that a
binding site will be non-functional in a randomly chosen
individual at equilibrium. The probability a; depends on
the strength of selection against non-functional binding
sites, s, population size, N, and the rates of forward and
back mutation, #; and u, (see Methods and [20,21]).

The equilibrium distribution above describes how sta-
bilizing selection determines the frequencies of functional
binding sites in a population. The associated mean fitness
for a pair of transcription factors that do not bind cooper-
ativelyisw = (1 — ass)X11tK2 (gee Methods), and the mean
fitness contribution of each binding site is 1 — ayzs. We are
typically concerned with the case in which u;, u; < s. In
this case, when 2Ns > 1, a; can be approximated by

1 uj uj

as ~ ——
2Ns u; + ug s

and otherwise by

uj
as ~ (2)
U+ ug

(see Methods). These equations have an intuitive interpre-
tation: When 2Ns > 1 the first term describes the effect
of genetic drift which tends to push the system towards
its neutral equilibrium, ag = u;/(u; + ug), and the second
term describes the effect of selection. In the limit N — oo,
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as equals u;/s, which is the standard result for the fre-
quency of a deleterious allele in an infinite population
under mutation-selection balance. When 2Ns < 1, evolu-
tion is nearly neutral and drift dominates, so the system is
close to the neutral equilibrium ay.

Stabilising selection with cooperative binding

Here we modify our model to account for cooperative reg-
ulation by a pair of factors. This allows us to ask when
cooperative regulation is favored by evolution. A muta-
tion that results in cooperative binding between a pair
of transcription factors has two effects on the fitness of
a transcriptional circuit. For a target that is regulated by
both transcription factors, we assume that cooperative
binding mitigates the effects of deleterious mutations at
transcription factor binding sites [7-9]. This results in a
reduced fitness penalty for a mutation at the B(K; + K>)
shared targets, so that (1 — s) is replaced by (1 — hs) for
some constant 0 < /s < 1. Nonetheless, there are also
(1 — B)(K1 + K3) targets that are regulated by only one
or the other of the transcription factors. We assume that
the cooperative binding of the transcription factors causes
pleiotropic mis-regulation at these targets (since the other
transcription factor, which does not have a binding site
at such sites, now binds to the first transcription factor
through a physical interaction). This results in a fitness
penalty ¢ at each of the (1— ) (K1 +K>) targets that are not
co-regulated. Fitness is again assumed to be multiplicative,
so that the cost of pleiotropy associated with cooperative
binding is (1 — £)1=AE+K),

Provided u;, u; < 1, genes that are co-regulated and
genes that are not co-regulated have equilibrium distri-
butions described by independent binomial distributions
with means ays and a; respectively, which are approxi-
mated by Equation 2 (substituting /s for s appropriately,
see Methods). We can now specify the conditions for
the invasion of cooperative gene regulation. A mutation
resulting in cooperative binding between a pair of fac-
tors will be favoured if the expected fitness of the mutant
is greater than the equilibrium mean fitness. Using the
expressions for mean fitness given above, this occurs when
1- ﬂss)ﬁ(1<1+K2) <(1- t)(l—ﬂ)(K1+K2)(1 _ ashs)ﬂ(KlH@.
Assuming t,s < 1, this expression can be simplified to
give B > m This means that, when the frac-
tion of binding sites at shared targets, B, is greater than
a threshold depending on s, %, t and a5, a mutation that
results in cooperative binding can invade a population at
equilibrium.

Similarly, a mutation that results in the loss of cooper-
ative binding in a population where it is present will be
favoured when (1 —ayes)PE1HK2) o (1 —p)A-AIEKI+HK) (] —
apshs)PE LK) Again assuming ¢,s < 1, this expression
can be simplified to give 8 < m so that, when
the fraction of binding sites at shared targets, 8, is less
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than a threshold depending on s, 4, t and ay;, a mutation
that results in loss of cooperative binding can invade a
population at equilibrium.

Since the first expression in Equation 2 is monotonically
decreasing in s, and the second expression is indepen-
dent of s, it is always true that a;; < g, i.e populations
that have cooperative binding accumulate more deleteri-
ous mutations, that result in weaker transcription factor
binding sites, than populations that lack it. As a result
there is a range of 8 for which both a population that lacks
cooperative binding, and a population that has coopera-
tive binding are not invadable by mutations that gain or
remove cooperative binding respectively. In this range, the
evolutionary dynamics of the system are bi-stable. In this
range, we expect to find some genes that are regulated by
pairs of transcription factors that act cooperatively and
some that don't.

Using the expression for a, given in Equation 2, and
recalling that ao = u; / (u;+u,) is the neutral equilibrium in
a system dominated by drift, the threshold value of g
above which selection favours a mutation causing coop-
erative binding in a population that lacks it, is given by

2Nt .
T if 2Ns > 1
B > . (3)
m otherwise
Similarly, the threshold value of B below which selection
favours a mutation resulting in loss of cooperative binding

in a population that has it, is given by

2Nth .
2Nth+ao(1—h) if 2Nhs > 1
- ' (4)
m otherwise

These equations allow us to make a number of observa-
tions about the evolution of cooperative gene regulation
(Figure 2, and see Methods). Beginning with Equation 3
for a population lacking cooperative binding, we see that
when N and/or s is large, so that 2Ns > 1, the threshold
number of shared targets S above which cooperative bind-
ing becomes advantageous is independent of the strength
of selection s (Figure 2a). However the threshold decreases
as the mutation-buffering effect of cooperative binding
increases (i.e. as /1 decreases, Figure 2b). As population
size N increases, selection becomes more efficient and
the threshold value of B increases (Figure 2c). Finally,
the threshold also increases with the cost of pleiotropy
t (Figure 2d). In contrast, when N and/or s is small, so
that 2Ns < 1, drift dominates and the threshold num-
ber of shared targets 8 is independent of population size
N (Figure 2c). However the threshold decreases with the
strength of selection s (Figure 2a), because when drift
dominates the number of deleterious mutations is at the
neutral equilibrium, and increasing s increases the impact
of each mutation on overall fitness.
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Figure 2 Evolutionary parameters that permit cooperative regulation. Evolutionary parameters that permit the evolution of gene regulation
by cooperative transcription factors. Threshold number of shared targets for gain (black) and loss (red) of cooperative binding to be advantageous
in a population at equilibrium under stabilising selection. The black line shows the value of B above which a new mutation that results in
cooperative binding will invade in a population that lacks cooperative binding. The red line shows the value of 8 below which a mutation resulting
in loss of cooperative binding will invade, in a population that has cooperative binding. For values of 8 that lie in the gray region, the dynamics are
bistable: a population with cooperative binding will preserve it, and one without binding will not gain binding. The threshold fraction of shared
targets varies with (top left) strength of selection, s, (top right) strength of cooperativity in reducing the effects of deleterious mutations 1/h,
(bottom left) the cost of pleiotropy t and (bottom right) the population size, N. Lines show our analytic equations (Equations 2 and 3), and points
show the results of 10 replicate Monte-Carlo simulations. Parameter values (unless stated otherwise) are uy = 2 x 107/, ug = 107/, K; + K, = 100,

s=10"3,h=10"",t=10"*and N = 10*.

Similarly, from Equation 4 for a population with coop-
erative binding, we see that when N and/or hs is large,
so that 2Nhs > 1, the threshold number of shared
targets 8 below which cooperative binding becomes dis-
advantageous is independent of the strength of selec-
tion s (Figure 2a). As before, the threshold decreases
as the mutation buffering effect of cooperative binding
increases (i.e. as /1 decreases, Figure 2b) and the thresh-
old increases with population size N (Figure 2c), and
the cost of pleiotropy ¢ (Figure 2d). In contrast, when N
and/or hs is small, so that 2Nhs < 1, drift dominates
and the threshold number of shared targets g is inde-
pendent of population size N (Figure 2c), but decreases
with the strength of selection s (Figure 2a). The size
of the bistable region is largest when s is large and &
is small, and for intermediate values of N and ¢, as
shown in Figure 2. As this analysis demonstrates, there
is a broad range of possible evolutionary outcomes and,
crucially, cooperative binding can evolve under a wide
range of circumstances despite the deleterious pleiotropic
effects associated with physical interactions among
transcription factors.

Adaptation of transcriptional circuits under positive selection
When cooperative binding is present, under stabilis-
ing selection, transcription factor binding sites at co-
regulated genes are better able to tolerate mutations
(i.e aps > ag). Under positive selection for a novel expres-
sion phenotype, this may speed adaptation, since greater
mutational robustness generates greater genetic diver-
sity and can help speed adaptation (Figure 3a) [22]. This
may occur, for example, when adaptation involves change
in the transcription factor that regulates a target gene
[7-9,11], through turnover of transcription factor bind-
ing sites [23-25]. We use our model to quantify the extent
to which cooperative binding among transcription fac-
tors accelerates the adaptive rewiring of transcriptional
circuits under positive selection.

We study adaptive change that involves replacement of
an existing transcription factor by a new one that con-
fers higher fitness. We assume that the target gene must
first suffer an initially deleterious mutation at its exist-
ing binding site before a newly adaptive binding site can
be acquired (Figure 3) [8,9,11]. The newly adaptive bind-
ing site is produced from binding sites that have already
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Figure 3 A schematic cartoon of rewiring. A schematic cartoon of rewiring with (left) and without (right) cooperative binding. Selection favours a
change in the regulation of target genes from the red TF to the green TF. Rewiring requires an initially deleterious mutation at the red binding site
before a green binding site can be acquired. The fitness of the different states is shown on the left hand side for each case. The reduced fitness of
the intermediate state is less when cooperative binding is present than when it is absent.

mutated at a rate u,. The expected waiting time for such
a gene to produce a newly adaptive binding site therefore
depends on the number of binding sites in the population
that harbor a deleterious mutation, which is proportional
to a; when cooperativity is absent and ajs when it is
present. Since ays > as, this number is greater when
cooperative binding is present than when it is absent.

The ratio of waiting times before a newly adaptive bind-
ing site arises, ¢ /¢, (for populations without, £, or with,
t,, cooperative binding), quantifies the degree to which
cooperative binding of transcription factors accelerates
adaptation under positive selection. This ratio is given
by ays/as (Figure 4, see Methods). As Figure 4 shows,
provided Ns > 1 (i.e. provided deleterious mutations at
binding sites are not nearly neutral), rewiring of transcrip-
tional circuits is significantly accelerated by cooperative
binding among transcription factors. Thus, a population
that has cooperative binding among transcription fac-
tors under stabilizing selection, can also experience an
accelerated rate of adaptation.

Cooperative binding and the fraction of shared targets in
yeast

Our model predicts that, under stabilising selection, coop-
erative binding will be favoured when the fraction of
targets shared by a pair of transcription factors exceeds
a certain threshold. In order to test this prediction, and
to get some idea of the degree of overlap that is required
for cooperative binding to arise in natural systems, we
inspected pairs of transcription factors in Saccharomyces
cerevisiae. A total of 186 pairs are reported as participat-
ing in cooperative binding [26], based on a combination
of ChIP-chip data, transcription factor knockout data,
and direct experimental evidence. Using the set of genes

regulated through a transcription factor binding site for a
total of 204 yeast transcription factors [27,28], we deter-
mined the fraction of overlapping targets, 8, for all pairs
of transcription factors (Figure 5). It is important to note
that, typically, studies that systematically look for coop-
erative gene interactions take into account the number
of targets shared by a gene pair. Therefore, to minimise
the risk of circularity in our analysis, we have used sepa-
rate datasets to determine cooperative gene interactions,
and to determine regulatory targets. The mean fraction
of overlapping targets for genes identified as participating
in cooperative binding was 10-fold greater (0.21) than the
mean fraction of overlapping targets at genes that do not
bind cooperatively (0.02) which is highly statistically sig-
nificant (p < 2 x 1071%, Wilcoxon test). This supports the
prediction of our population-genetic analysis, and it sug-
gests that a sizeable overlap in targets is required before
cooperative binding becomes advantageous.

Cooperative binding in the yeast sex determination
network

The ability of cooperative transcription factors to facili-
tate adaptation also has empirical support, from obser-
vations in the sex determination networks of different
yeast species [7-9]. The acquisition of a protein-protein
interaction between the mating factor MAT«2 and Mcm1
was able to buffer the deleterious effects of mutations
that strengthened Mcml binding sites [7]. Prior to the
emergence of a protein-protein interaction, sex determin-
ing genes were activated only in the presence of Mcml
and MATa2 together [7]. The buffering effects of the
protein-protein interaction allowed Mcm1 binding sites
to acquire strengthening mutations such that sex deter-
mining genes became activated by Mcml alone. As a
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Figure 4 Cooperative binding accelerates adaptation. Cooperative binding accelerates adaptation under positive selection. The ratio of waiting
times before the arrival of novel adaptive binding sites for populations without (t) and with (t;) cooperative binding. Provided Ns > 1, cooperative
binding reduces the adaptation time up to 10-fold, compared to populations that lack cooperative binding. The line shows our analytic expression,

t=10"%N=10%u = 107",

and points show the result of 10° replicate Monte-Carlo simulations. Parameter values u; = 2 x 1077, ug = 1077, Kj + K, = 100,h = 107",

result, MATa2 became redundant and was lost [7]. The
result was a significant upstream reorganization of the
yeast sex determination network without the need for
any parallel changes to the downstream output of the
network. Similar patterns, in which acquisition of coop-
erative binding between transcription factors is followed
by changes to the regulation of their shared targets, are
observed across the yeast transcriptome [8], and support
the prediction of our analysis of positive selection on
transcriptional networks.

Conclusions

We have shown that cooperative binding between a
pair of transcription factors is favoured under stabilis-
ing selection, provided the overlap between their tar-
gets is sufficiently large. The threshold fraction of shared
targets depends upon the strength of selection on bind-
ing sites, the cost of pleiotropy associated with protein-
protein interactions, and the rates of mutations. It also
depends on the population size. Just as in models that
consider the evolution of redundancy [20,29], we find that

Non-cooperative transcription factors

Cooperative transcription factors
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10001
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Figure 5 Number of shared targets. Fraction of targets that are shared between pairs transcription factors in S. cerevisiae [26-28]. (left) The fraction
of targets that are shared among paris of transcription factors that lack cooperative binding and (right) the fraction of targets that are shared among
transcription factors that bind cooperatively. The fraction of targets that are shared is larger among cooperative factors (p < 2 x 10~'6, Wilcoxon test).
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greater redundancy (i.e. cooperative regulation) is more
strongly favoured in smaller populations; and that for
intermediate population sizes the evolutionary dynam-
ics are bistable, such that cooperative binding is main-
tained if it is already present, but cannot evolve if it is
absent. Finally, we found that cooperative binding facili-
tates the rewiring of transcriptional circuits under positive
selection.

This study shows that, even when the deleterious
effects of pleiotropy are taken into account, mutations
that change transcription factor function can play an
important role in the evolution of gene expression.
Taking account of mutations both to regulatory bind-
ing sites and to the transcription factors themselves
reveals a rich set of evolutionary dynamics that helps
explain how complex transcriptional networks can rapidly
rewire large sets of genes in order to adapt to new
environments.

Methods

Equilibrium distribution

To find the equilibrium relative abundances of the ham-
ming classes x; that give the solution to Equation 1,

we follow [20,21] and look for a solution of the form

= (Kl +1 al(1 — ag)f1+K2~i Given this assumed

P = .

i
form, the mean fitness of the population at equilibrium
is@ = Y ;1 — sl Since Y ;x = 1 itis easy to

show that ), (Kl th )pi = (1 + p)". Taking p =

a(l — s5)/(1 — a), this gives a mean fitness of ® =
(1 — ass) &1+ which is the form given in the main
text.

To compute as we follow [20] and write down the gen-
erating function ITy(z) of a random variable V' defined
by the Hamming class after mutation of an individual
chosen from the population according to its relative fit-
ness, where z is a formal variable. The function ITy (2)
may be thought of as a probability generating func-
tion, where the probability distribution associated with
it gives the distribution of Hamming classes in the
population at equilibrium [20]. In the case of non-
identical forward and backward mutation rates, 1; and
ug, this is given by Ily(z) = > ,wixi( + (1 —
u)z) (1 — ug) + Mgz)1<1+1<2_i. Following [20], we analyse
the eigensystem problem associated with the popula-
tion dynamics to determine the equilibrium distribution
of Hamming classes (i.e the distribution of genotypes
in the population under mutation selection balance).
In equilibrium we have Iy (z) = )»Zixiz", where A is
the eigenvalue associated with the system. Using our
assumed form of x; results in the infinite population
equilibrium distribution:
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1 up+ug U+ ug 2 duy
“=3 “S‘”g‘\/(“s‘”g)‘s

(5)

When cooperative binding is present a subset S(K; +
Ky) = Kj; of the target genes have selective coefficient
hs and the remaining (1 — B)(K1 + K3) = K have selec-
tive coefficient s. The hamming class of an individual now
has two indices i and j such that x;; refers to an individ-
ual with i mutations at shared targets and j mutations at
unshared targets. In this case we look for solutions of the

K; ; _i [ K, i i
formxij = < ;ls)a;m(l —ﬂhs)Khs l< ]S)aﬁ(l _ aS)[<S 7,

The generating function of V' is now given by

Ty (zhs 26) = Y Y wiij(ug + (1 — u1)zps)’

i
_ Kis—i _ j
X (1 — ug) + ugzys) (g + (1 — up)zs)
X (1 — ug) + ugzs)K‘_j

and at equilibrium Iy (zps,25) = A Y, Z;’ xjj zzs Z..
Because we are assuming that w;; is just the product of the
two independent fitness landscapes associated with the
different selective coefficients, i.e w; = (1 — hs)i(1 — sy
using our assumed form of x;; results in values of a5 and
ays as given by Equation 5 for the independent distribu-
tions with the appropriate selective coefficients.

The finite N approximation of Equation 5, can be
obtained from the moment equations of Woodcock and
Higgs [21], assuming 1y, ug,5, N~ <« 1. This gives

1 14+ 2(u + Mg)
= |1y
s [ + 2Ns

2
2
3 1+1+2(u1+ug) B 4y
2Ns uj+ug
(6)

Assuming u;, u; < s, we obtain the Taylor expansion
of a; to first order, in terms of 1/(2Ns) (which is relevant
when 2Ns > 1) and in terms of 2Ns (relevant when 2Ns <
1) to obtain Equation 2.

Using the above distributions, the equilibrium mean fit-
ness wj,4, in the absence of cooperative binding is w;,; =
(1—ass)X17%2, and in the presence of cooperative binding,
Weoop 15 Weogp = (1— ) 1=PEIHR) (1 g 6) 1=AIUGHD) (1
ayghs)PK1+K2) which can be Taylor expanded to first order
and, combined with Equation 2, give Equations 3 and 4.
We can also find the conditions for the equilibrium mean
fitness of a population with cooeprative binding to be
greater than that for a population that lacks it, i.e Weogp >
Wing.- When £, s < 1 this can be expressed as

1420 + ug)
2Ns
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m if 2Ns > 1 and 2Nhs < 1
B> -

1 otherwise

According to this inequality, cooperative binding is
advantageous only when the fraction of targets shared by
the pair of transcription factors is greater than a threshold.
Since by definition 8 < 1, Equation 7 says that cooper-
ative binding can only increase population mean fitness
when 2Nhs < 1 and 2Ns > 1, i.e if the benefit of cooper-
ativity, 4, is sufficient to make mutations at transcription
factor binding sites that are deleterious in the absence of
cooperativity nearly neutral when it is present.

Rewiring time

For a given binding site the waiting time T for the arrival
of the first adaptively rewired mutant to arise is given by
the distribution

MT>ﬂ=EP*m}

where ¢t is time, ¢ is the rate at which the rewiring muta-
tions occur and Y is fraction of the population at equi-
librium that is able to undergo rewiring mutations. We
assume rewiring mutations can occur only following an
initially deleterious mutation. In the absence of coopera-
tivity, the fraction of the population with a mutation at a
given site is as, therefore Y o« Nag, and we are able to write

PIT >t} =E [e—”rN“sf],

where u, gives the rate at which rewiring mutations occur
at sites that have already undergone an initially deleterious
mutation. The excepted waiting time for a single gene is
thus

1

T, =
u,Nag

If the gene to be rewired is coregulated by a pair of
transcription factors that bind cooperatively, we similarly
have

1

Ty =
* 7 w,Naps

and the ratio of waiting times T/ T} is therefore simply
ays/as. Finally, if k genes must be rewired before adap-
tation occurs, the waiting time for the first event is T'/k
(where T is the waiting time for 1 gene to rewire), the
waiting time for the second event is 7'/(k — 1) and so on.
Therefore the total expected waiting time, T (k) is

k

1 1
Ts(k) = -
s(k) u,Nag IZ; i

Therefore the ratio of expected waiting times with and
without cooperative binding is independent of the num-
ber of genes to be rewired, and depends only on the ratio

aps/ as.
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Variation in selection strength across sites

Up to this point we have assumed that the selective coeffi-
cients, s and 4, are constant across binding sites. However
it is obviously possible that these parameters may vary
between binding sites. Such a generalization of our model
represents a significant complication, and a full treatment
is outside the scope of this paper. However, it can be ana-
lyzed in the simple case that the coefficients associated
with each binding site i satisfy s; <« 1, such that the fitness
landscape is approximately additive.

We assume that there are a finite set of selective coeffi-
cients, s* and /", where the super-scripts & and y index
the different sets, and that the number of binding sites
with a given coefficient s* or #” are distributed according
to some function F(s) and G(/%). We also assume that the
coefficients s and / are distributed independently of one
another. Each binding site i has a value s; associated with
it, drawn according to F(s). In the quasi-species regime
the probability that binding site i has a mutation is sim-
ply given by ay;, as given by Equation 5. In this case the
distribution of hamming classes, rather than being bino-
mial, is poisson binomial, paramaterized by a,. Similarly,
when cooperative binding is present, the distribution is
poisson binomial with the modification that shared tar-
gets have a mutation with probability ag,, where /; is
drawn independently from the distribution G(%). The sys-
tem is easiest to analyse if we separate binding sites into
sub-classes, «, of binding sites with the same selective
coeflicients, where the size of each sub-class, n, is given
by ny = F(s*)(K1+ K2). The number of mutations in each
subclass is then given by a binomial distribution.

When the fitness landscape is close to additive, the
method of [19] can be applied independently to each sub-
class to determine the expected number of mutations in
the sub-class. This is only true in an additive fitness land-
scape, or in a multiplicative fitness landscape in which
cross terms between subclasses are sufficiently small that
they can be neglected. When this condition holds, the
value of ax associated with each sub-class is given by
Equation 6.

The expected number of mutations in each subclass is
simply aene and the expected fitness of each sub-class
is (1 — axs®)". The expected mean fitness of the pop-
ulation is then @ = [],(1 — a«s¥)". Using our almost
additive assumption, this can be approximated by v =
1 - (K + Kp) ), F(s®)asws®. This is the fitness of the
population when cooperative binding is absent. Similarly,
when cooperative binding is present we have,

Weoop R 1 — (1 — B)(K1 + Kp)t — (1 — B)(K7 + K3)
x Y F(s*)aes® + B(Ky + Ky)

X 3 Y F)GUH Yapy b
oy
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From these the invasion probabilities and threshold values
of B can be calculated in the same way as in the case of
constant s and % above. The only difference in the case
with variable selective coefficients is that the invisibility
criteria for a mutation resulting in gain or loss of cooper-
ative biding dependants on the average of ays across the
distribution F(s), and on the average ajshs across the joint
distribution F(s)G(h). Investigating different forms of the
functions F(s) and G(k) represents an interesting avenue
for further work.
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