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Abstract

Background: Species are considered the fundamental unit in many ecological and evolutionary analyses, yet
accurate, complete, accessible taxonomic frameworks with which to identify them are often unavailable to
researchers. In such cases DNA sequence-based species delimitation has been proposed as a means of estimating
species boundaries for further analysis. Several methods have been proposed to accomplish this. Here we present a
Bayesian implementation of an evolutionary model-based method, the general mixed Yule-coalescent model
(GMYQ). Our implementation integrates over the parameters of the model and uncertainty in phylogenetic
relationships using the output of widely available phylogenetic models and Markov-Chain Monte Carlo (MCMC)
simulation in order to produce marginal probabilities of species identities.

Results: We conducted simulations testing the effects of species evolutionary history, levels of intraspecific
sampling and number of nucleotides sequenced. We also re-analyze the dataset used to introduce the original
GMYC model. We found that the model results are improved with addition of DNA sequence and increased
sampling, although these improvements have limits. The most important factor in the success of the model is the
underlying phylogenetic history of the species under consideration. Recent and rapid divergences result in higher
amounts of uncertainty in the model and eventually cause the model to fail to accurately assess uncertainty in
species limits.

Conclusion: Our results suggest that the GMYC model can be useful under a wide variety of circumstances,
particularly in cases where divergences are deeper, or taxon sampling is incomplete, as in many studies of
ecological communities, but that, in accordance with expectations from coalescent theory, rapid, recent radiations
may yield inaccurate results. Our implementation differs from existing ones in two ways: it allows for the
accounting for important sources of uncertainty in the model (phylogenetic and in parameters specific to the
model) and in the specification of informative prior distributions that can increase the precision of the model. We
have incorporated this model into a user-friendly R package available on the authors’ websites.
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Background
A common challenge faced by empirical researchers in
studies of ecological communities is to identify indivi-
duals at the species level from limited information col-
lected from a broad taxonomic range of organisms. In
many cases, useful taxonomic keys for particular groups
or regions are not available. This is because many di-
verse groups are morphologically cryptic, contain many
undescribed taxa, or existing taxonomic literature is
conflicting, an issue referred to as the “taxonomic im-
pediment” [1]. In these cases, short DNA sequence tags
(the DNA barcode region of the mitochondrial gene
COI or a hypervariable region of the microbial 16S
rRNA gene) are frequently surveyed because they can be
rapidly and inexpensively collected [2,3]. DNA barcoding
initiatives aim to connect these sequence tags to taxa
validated by expert taxonomists [4,5], but at present this
is not possible for most groups. As a result, diversity
must frequently be quantified in the absence of a low-
level taxonomic framework. In order to accomplish this,
observed DNA sequences must be clustered into puta-
tive species. While the delimitation of species is a com-
plex philosophical and biological problem [6], species
concepts widely share the idea that species are inde-
pendently evolving metapopulation lineages [7]. This
provides a justification for using genetic data (such as
DNA barcodes) as the primary data for the diagnosis of
these lineages, as they contain the signal of historical pro-
cesses involved in lineage divergence [8]. As a caveat,
lineages identified in this way will not necessarily meet the
criteria for species status under any given species concept,
such as reproductive isolation from other such lineages, or
exhibit morphological, ecological or behavior divergence.
Methods used for delimitation of species from barcode
data are a subset of those developed for the larger problem
of species delimitation. They can be considered species
discovery methods because they must be functional in the
absence of good a priori taxonomic information [9-11].
This contrasts with validation methods (e.g. [9,12]), which
test specific hypotheses of species status, and assignment
methods, which assign unknown individuals to existing
species (e.g. [13-16]). Of the handful of approaches typic-
ally used to discover species limits using genetic data,
thresholds based on pairwise sequence distances among
individuals are perhaps most commonly applied to cluster
sequences into putative species [5,17]. These methods
identify some level of sequence divergence beyond which
two individuals cannot be considered the same species.
Distance threshold methods have been criticized because
they do not account for evolutionary processes [18], and
the uncertainty in selecting an appropriate threshold [15],
which relies on an observable “barcode gap” between pair-
wise intraspecific and interspecific DNA sequence dis-
tances ([19-22]; but see [23]).

Page 2 of 11

Pons et al. [24] introduced a model-based alternative
to distance threshold methods. The model, the general
mixed Yule-coalescent (GMYC), takes a phylogenetic
tree estimated from DNA sequence data and assumes
that the branching points in the tree correspond to one
of two events: divergence events between species level
taxa (modeled by a Yule process [25]), or coalescent
events between lineages sampled from within species
(modeled by the coalescent [26]). Because the rate of co-
alescence within species is expected to be dramatically
greater than the rate of cladogenesis, the GMYC aims
to find the demarcation between these types of branch-
ing. This model has been shown to be useful in several
empirical studies [24,27-31]. Because it is based on a
Likelihood function that directly models evolutionary
processes of interest, it provides a means to ameliorate
some of the criticisms leveled at threshold methods.
Notably, it has allowed for quantification of uncertainty
in delimitation of species [32] and avoids the use of non-
independent pairwise sequence distances (e.g. in [23]) as
data.

The GMYC model as presently implemented, however,
does not account for three potentially large sources of
error. First, it is widely recognized that a variety of fac-
tors can cause the genealogy from a particular locus to
be discordant with the true history of speciation [33],
and the GMYC, like all methods based on a single locus,
can be mislead by this discordance. Second, there may
be error in the model estimates. Under certain circum-
stances, the transition from speciation events to coales-
cent events may be indistinct (e.g., a combination of
rapid speciation events and large effective population
sizes) causing the model to have a wide confidence inter-
val. A recent implementation by Powell [32] accounts
for uncertainty in the threshold parameter and produces
model-averaged species limits, but uses point estimates
for the other parameters. Finally, phylogenetic error
can diminish the accuracy of delimitation results. The
GMYC model requires the user to input a point estimate
of the phylogenetic tree and inference is premised on
the accuracy of this point estimate. Diversity studies
using sequence tags, however, typically use relatively
short loci that yield estimates of topology and branch
lengths that may have high levels of uncertainty. This
uncertainty could influence the accuracy of the model.

In order to address the second and third potential
sources of error, we introduce a Bayesian implementa-
tion of this model with flexible prior distributions in the
statistical scripting language R [34]. It accounts for the
error in phylogenetic estimation and uncertainty in
model parameters by integrating over uncertainty in tree
topology and branch lengths and in the parameters of
the model via Markov Chain Monte Carlo simulation
(MCMC) [35]. It produces marginal posterior probabilities
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for species that are independent of these factors along
with output characterizing the posterior distribution that
is suitable for downstream analyses of community structure
accounting for uncertainty in species limits and phylogeny
using R packages such as Picante [36], Vegan [37], and APE
[38]. We also conduct simulation tests to evaluate the per-
formance of the model and re-analyze a dataset previously
analyzed with the Likelihood version of the model.

Methods

Model

Given an ultrametric phylogenetic tree estimated from a
set of sequences consisting of multiple species and mul-
tiple individuals within species, the GMYC model
decomposes the tree into its component waiting times
between branching events. These waiting times are the
data to be modeled [21]. The parameter of primary
interest is a threshold parameter before which the wait-
ing times are modeled according to a Yule process and
after which, according to k intraspecific coalescent pro-
cesses, where k is the number of species with more than
one unique sequence sampled. The Likelihood of a wait-
ing time under a Yule model is:

Ly = Anfeilnfx“

where the waiting times (x;) are assumed to be exponen-
tially distributed and a function of: the branching rate
(1), the number of lineages in the interval (#;,), and a rate
change parameter that accounts for the possibility of in-
creasing or decreasing diversification rate with time
(p; Pons et al. [24]). The Likelihood (L) of a waiting time
under the coalescent model is:

L(x,) = Ani(ni — I)Pe—/lni(n;—l)pxi

where the branching rate (\) can be interpreted as 1/N.u
(where p is the per generation mutation rate, or the
number of generations per vyear, depending on the
branch length units of the tree) and the rate change par-
ameter (p) can be interpreted as population size change
over time [24].

The GMYC model combines the above models, and
the Likelihood of the full model is calculated by assign-
ing lineages in each waiting interval to either the Yule
process or one of the coalescent processes such that:

b= Do+ Ny (my — 1))
j=lk

Making the full Likelihood of a waiting time:
L, = be b

where k indexes the branching processes (1:k are intras-
pecific coalescent processes, k+ I is the Yule process),
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Axsz and py,; are the branching rate and rate change
parameters for the Yule process, and A; and p; are the
branching rate and population size change parameters
for the coalescent process. Following Pons et al. [24], we
constrain A; and p; to be identical across coalescent pro-
cesses. The number of lineages assigned to the Yule and
coalescent processes in each waiting interval are n;y,;
and #;j, respectively. Assignment of lineages in this case
is determined by the selection of a threshold.

Because the sequence data employed in these analyses
are typically from short fragments, and thus likely to
yield trees with high levels of uncertainty in topology
and branch lengths we implemented this model in a
Bayesian statistical framework. It eliminates the reliance
on point estimates of the phylogeny and model para-
meters and by estimating the marginal probabilities of
the identity of species, allows one to incorporate that
uncertainty in downstream analyses. Our implementa-
tion operates as follows. First, the posterior distribution
of trees and branch lengths are characterized using
BEAST [39]. Second, a post-burn-in sample of the trees
from that posterior distribution is taken, and for each
tree, an MCMC simulation is conducted to characterize
the posterior distribution of the GMYC model. Follow-
ing Pons et al., we did not allow the A parameters to be
freely estimated, but used a Maximum Likelihood esti-
mator [40]. The non-normalized posterior density func-
tion is as follows:

P(T7/1j7A'k+l7pfp/<+l‘T)°(
P(T7A'j7/“k+lapjpk+l)P(T’TaA']'/l/H»lvp]'pk‘Fl)

where T is the threshold. Because each MCMC evaluates
the posterior of the GMYC conditioned on the tree,
pooled samples from analyses of many trees sampled
from the tree posterior result in a posterior probability
distribution of species delimitations conditioned only on
the sequence data, the phylogenetic model and the
GMYC model.

Simulation testing
We evaluated the utility of this implementation of the
GMYC using three simulation experiments. In each, we
simulated gene trees from species trees using ms [41].
All species trees contained 50 species and were gener-
ated via a Yule process in Mesquite [42], randomly sam-
pling 50 species from a tree of 150 species. This design
was intended to mimic environmental samples of a given
taxon, which would not be expected to contain all spe-
cies in a clade.

In the first experiment we examined the effect of tree
depth on model accuracy. We simulated 50 species trees
as above and scaled them to four different depths (20 N,



Reid and Carstens BMC Evolutionary Biology 2012, 12:196
http://www.biomedcentral.com/1471-2148/12/196

40 N, 80 N, 160 N generations, where N is the effective
number of diploid individuals in the species). When con-
sidering how the results translate to haploid, maternally
inherited organellar DNA, the equivalent tree depths are
halved (e.g. 10 N, 20 N...) and N becomes the effective
number of females in the population. We then simulated
a single gene tree from each species tree at each depth,
sampling five alleles per species. For each of these trees
we sampled from the posterior for 100,000 generations,
discarding the first 10,000 generations as burn-in and
thinning every 100 generations, assessed stationarity by
examining plots of the parameters by eye, and character-
ized the posterior distribution of the threshold param-
eter, which determines the species limits given a tree.
Priors on all parameters were uniform distributions; in
the case of the threshold parameter, from U(2,250) and
for the p parameters U(0,2).

In the second experiment we looked at the influence of
sampling. The species trees with a depth of 80 N from the
first experiment were used with four different sampling
schemes: 2 alleles per species, 5 alleles per species, 10
alleles per species, and a random number of alleles per
species, drawn from a lognormal distribution, with a mean
and standard deviation of 1 (an average of 5 alleles per
species; approximately 17% of species were represented
by singletons). We used the lognormal distribution be-
cause it approximates some real species-abundance distri-
butions [43] that might be observed in actual species
delimitation datasets. We conducted the analyses as in the
first experiment.

In the third experiment, we tested the effect of nucleo-
tide sampling and tree estimation on the accuracy of the
model (in our simulations, sequence length is directly
correlated with the number of variable sites). We
selected 10 of the simulated gene trees from 10 species
trees scaled to 160 N generations for which the confi-
dence intervals in the analysis overlapped the true value
of 50 species. We then simulated DNA sequences on
those gene trees of 300 bp, 600 bp, 1200 bp and 2400 bp
using Seq-Gen [44]. We assumed 6=0.015 (correspond-
ing to an N, of 250,000 and a mutation rate of 1.5% per
million generations) and an HKY + G model. We charac-
terized the posterior distribution of trees using the true
model of sequence evolution and a strict clock model in
BEAST. We pruned all identical sequences and ran
BEAST for 10 million generations, discarding the first
million as burn-in, at which point all parameters for all
replicates had effective sample sizes above 150 and most
above 200. We then ran independent GMYC MCMC
analyses on 100 trees sampled every 50,000 generations
from the BEAST posterior distribution of trees, pooled
the results and characterized the marginal posterior dis-
tribution of the threshold parameter compared to the
distribution produced using the true tree.
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Empirical data analyses

To illustrate how this implementation of the GMYC could
be applied; we downloaded from GenBank and reanalyzed
the dataset from Pons et al, the original publication of
the GMYC (Coleoptera:Carabidae:Rivacindela; AJ617921—
AJ618351, AJ618352-AJ618766, AJ619087—AJ619548; [24]).
We first pruned each alignment to consist only of unique
sequences. Since we are not using a true genealogy sampler
(sensu [45]), identical sequences will result in many zero-
length branches at the tip of the tree, and will cause the
model to over-partition the dataset. We then applied a
phylogenetic clock model to estimate the posterior distribu-
tion of ultrametic trees using BEAST. We partitioned mo-
dels of sequence evolution by codon, and also by gene when
multiple genes were used, applying models of sequence
evolution selected by DT ModSel [46]. We accepted that
runs converged when all parameters reached ESS values
greater than 200 and checked that posterior distributions
differed from priors. We explored the use of different tree
priors as it is conceivable that in cases where branch-length
information is lacking, the prior could strongly influence
the posterior. For Bayesian GMYC MCMC analyses, we
ran each tree for 10,000 generations, discarding the first
1000 as burn-in and sampling every 100 generations. Using
100 trees sampled from the BEAST posterior distribution
of trees, this resulted in 9000 samples. We selected this
length of Markov-chain because preliminary analyses sug-
gested that stationarity was usually achieved by 1000 gen-
erations. We compared the posterior distribution from
sampling multiple trees to that from the maximum clade
credibility tree and examined the effect of changing the
prior on the Yule rate change parameter (p,;). We com-
pared the posterior distribution to the point estimate pro-
duced by the Likelihood version of the model, and to the
Akaike weights [47] of each threshold point.

Results and Discussion

Simulation tests

We first tested the influence of tree depth on model per-
formance. When deeper trees are simulated, coalescent
and Yule branching processes are expected to occur on
more distinct time scales, and thus in general the model
should perform better. The influence of tree depth is ac-
tually confounded by two issues, however. First, as the
tree depth becomes shallower the implied rate of speci-
ation increases because all trees contain 50 species. If
the rate of speciation approaches the rate of coalescence
within species, then a sharp transition between processes
should not be detectable. Second, as the implied rate of
speciation increases, more species originate relatively re-
cently. The expected time to coalescence for a diploid,
panmictic population is 4 N generations. Cladogenic
events occurring more recently than this are expected to
be increasingly difficult to delimit for two reasons: they
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are more likely to yield species that are not monophyletic
and thus impossible to accurately identify under this
model, and the most recent common ancestor (MRCA) of
the daughter species is more likely to occur more recently
than the threshold point. Assuming species monophyly,
the expected time to the MRCA for two species that
diverged 4 N generations ago is 6 N generations. There-
fore all probability should be on thresholds older than 4 N
generations, and most on thresholds older than 6 N gen-
erations. Again, when considering maternally inherited,
haploid, organellar DNA, equivalent times in N genera-
tions are halved, and N becomes the effective number of
females in the population. This would give an expected
time to MRCA of 3 N generations.

The results of this test are dramatic (Figure 1, Additional
file 1: Figure S1). There is a clear increase in accuracy as
well as a decrease in the range of the 95% highest posterior
density interval (HPD) with increasing tree depth. At
shorter tree depths, the model’s performance diverged from
expectations. When trees are short, larger numbers of spe-
cies have divergence times younger than 4 N generations
and thus should not be detectable under the model. There-
fore we expected the number of species delimited to be
smaller than for deeper trees. We did not observe this.
Instead, replicate posterior means became widely scattered
around the true value of 50 species. 95% HPDs also did
not uniformly increase with decreasing tree depth, instead,
a wide distribution of HPDs were observed. We also
expected threshold times to have a minimum value of ap-
proximately 4 N generations. At deeper tree depths this is
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observed, with 0.13% and 1.6% of MCMC steps sampling
thresholds younger than 4 N generations for tree depths
of 160 N and 80 N, respectively. However, at 40 N and
20 N tree depths, 20% and 40% of MCMC steps sampled
thresholds younger than 4 N generations.

These results indicate that the model performs well
under demographic or sampling conditions that result in
coalescent and Yule processes occurring on very differ-
ent time scales. It does not, however, perform optimally
when those conditions are not met.

Ideally one would hope that as inference of the thresh-
old point became more difficult, that the 95% HPDs
would increase, but still encompass the true value 95%
of the time. This is not the case at the 20 N and 40 N
tree depths. HPDs generally become broader, but for in-
creasing numbers of simulation replicates, they fail to
encompass the true value. 50 species arising in 40 N
generations constitutes a very rapid radiation, with an
average of 89% of branches in the species tree shorter
than the expected population coalescence time of 4 N
generations. Failure to accurately assess credibility inter-
vals in this case is likely because in this area of parameter
space, the GMYC is no longer an accurate approximation
of the real branching process in the gene tree. Rather than
there being a threshold between coalescent and speciation
branching processes, the two processes are intermixed be-
cause there is little time for the independent evolution of
lineages prior to speciation. Note that these conditions will
cause any DNA barcode-based method of species discovery
to fail and will also challenge more realistic models
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utilizing multilocus data and prior information on popula-
tion assignment.

Next we examined the effect of intraspecific sampling.
Because the data points used by the model are waiting
times between branching events, we expected that with
50 species, we would not need extremely high sampling
to accurately characterize the model, and that the distri-
bution of samples among species would not be particu-
larly important. Our expectations were met. We found
that sampling of 2 individuals per species yielded poor
results (Figure 2, Additional file 1: Figure S2). Replicate
posterior means showed a strong bias towards inference
of a large number of species. Sampling of greater than 2
individuals per species provided an improvement in the
accuracy of the posterior means, but no change in the
95% HPD range. All sampling schemes greater than 2
individuals per species appeared to yield similar results,
including the more realistic condition of a lognormal
distribution of alleles among species in which a large
number (~17%) of species are represented by singletons.
While delimiting rare species, particularly from single
specimens, is a challenge faced by taxonomists [48], our
results suggest that the GMYC method may efficiently
delimit species represented by singletons by calibrating
the divergence threshold using data from better repre-
sented species.

Finally, we tested the effects of nucleotide sampling
and the incorporation of phylogenetic uncertainty. We
expected to find wider HPDs with less sequence data, as
uncertainty, particularly in branch lengths should be
greater. We found a mild reduction in accuracy of the
posterior means with up to 600 bp of sequence, but after
that, posterior means converged on those of the true

Page 6 of 11

tree. The 95% HPDs improved with the addition of more
sequence, but had not quite converged on those estima-
ted from the true tree, even at 2400 bp (Figure 3,
Additional file 1: Figure S3). This suggests that uncertainty
in phylogenetic estimation, particularly in typical DNA
barcode datasets of ~650 bp will contribute substantially
to uncertainty in species delimitation.

Three factors that could influence the accuracy of the
model that were not explored here: migration, population
substructure and selection. Papadopoulou et al. [49] exam-
ined the effects of migration on the formation of detect-
able GMYC clusters. They simulated datasets under an
island model and found that even very low levels of migra-
tion (far less than the Nm =1 typically invoked as the limit
for neutral population divergence) caused likelihood ratio
tests to fail to reject the null model of a single branching
process. They interpreted this as evidence that the likeli-
hood implementation of the model is conservative and will
not infer species at all unless they are strongly isolated.

Papadopoulou et al’s simulations assumed complete
demic sampling, but Lohse [50] conducted simulations
showing that under moderate migration rates (Nm =
0.07) and with a large proportion (95%) of demes
unsampled that spurious, significant clusters could be
inferred from the true gene genealogies. In his simula-
tions, Lohse showed that when 10 demes were sampled
from a metapopulation consisting of 200 demes, that an
average of 13 species were inferred, and 80% of repli-
cates rejected the null model. Wakeley [51] described
the genealogical pattern resulting from such a process as
having two phases that occur on very different time scales:
a scattering phase, in which there is rapid coalescence and
migration in local demes, and a collecting phase that
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HPD overlapped the true number of species, black ones that it did not.
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begins when each remaining lineage is in its own deme
and takes a very long time. In this case the GMYC might
see the scattering phase as the “coalescent process” and
the collecting phase as the “Yule” process. Further explor-
ation of this issue is likely to be important, particularly if
the GMYC is applied to phylogenetic samples with deep
phylogeographic sampling.

While Lohse shows convincingly that this interaction
of parameter space with sampling can mislead the
GMYC, it is not clear to what extent these problematic
areas of parameter space exist in real datasets. We simu-
lated 10 genealogies using ms under the conditions
above and observed that the average time to coalescence
of all lineages was 3,940 N generations (N is the size of a
population in one deme), with the scattering phase tak-
ing the first 4-6 N generations. If we assumed that these
200 demes were species level taxa, each with 6=0.01, we
would expect to observe GMYC clusters with MRCAs at
a depth of 0.01-0.015 substitutions per site and the
MRCA for all lineages at 9.85 substitutions per site. It is
unlikely that the collecting phase would have the time to
play out under this scenario, as it would take nearly 500
million years at a mutation rate of 0.02 substitutions per
site per million years. If, by contrast, we assume that
these demes represent populations at a smaller scale, each
with a theta of 0.01/200, then we would expect MRCAs of
delimited clusters to be at a depth of 0.00005-0.000075
substitutions per site. With a typical DNA barcode or
short mitochondrial DNA set of 650-2000 bp, the scatter-
ing phase would be undetectable. The MRCA for all
lineages would occur at 0.049 substitutions per site. Unless
this process was considered in the context of a larger

species tree, it is unlikely that the GMYC would identify a
significant branching threshold.

Empirical analyses

We reanalyzed the empirical data used by Pons et al. to
illustrate the original formulation of the GMYC so as to
provide a direct comparison of the implementations
using representative data. The BEAST run converged
after 27 million generations and we discarded 2.7 million
trees as burn-in. The estimate of the standard deviation
of the lognormal distribution of rates did not overlap 0,
so we could not use a strict clock with these data. When
using samples of trees from the BEAST posterior distri-
bution, the mean number of species estimated by the
Bayesian GMYC was 44 and the 95% HPD ranged from
34 to 57. The rate change parameter for the Yule process
ranged as high as 1.9. In this model, the fold change in
speciation rate from the root to the last speciation event
is equal to #”/n where n is the estimated number of spe-
cies and p is the Yule rate change parameter. In this case,
given 44 species, p = 1.9 allows for a 30-fold speciation rate
increase. We thought this might be unrealistically high (A
sampling of three recent papers examining diversification
rate shifts yielded a maximum increase from the back-
ground rate of approximately 8-fold [52-54]), and thus re-
ran the analysis with the prior distribution set to U(0,1.2),
or a maximum 2-fold increase. This minimally influenced
the results. We also analyzed the maximum clade credibil-
ity tree under both priors, and using the likelihood imple-
mentation of the GMYC. We compared the results of
Likelihood and Bayesian analyses by calculating Akaike
weights for each possible threshold in the Likelihood
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analysis. Akaike weights are the relative likelihoods of a
set of models and thus suited for qualitatively comparing
results among these analyses. The Bayesian GMYC ana-
lysis of the maximum clade credibility tree yielded a mean
of 44 species and a narrower 95% HPD of 38-55 species.
When applied to the maximum clade credibility tree, the
U(0,1.2) prior did change the results, yielding a posterior
mean of 43 species and a 95% HPD of 38 to 51. The Max-
imum Likelihood analysis resulted in 44 species with a
95% confidence interval of 39 to 51 species. The results of
the Likelihood and Bayesian analyses of the maximum
clade credibility tree are very similar (Figure 4a), particu-
larly when the prior U(0,2) is placed on the Yule param-
eter, but when sampling trees, the posterior distribution is
substantially broader (Figure 4b). At least some of this un-
certainty stems from variation in topology. Plots of pair-
wise probabilities of conspecificity demonstrate this (via
off-diagonal variation in probability when ordered by a
single tree; Figure 5). The probability distribution of the
number of species in the sample is also wider for the pos-
terior distribution than for the Akaike weights ([47],
Figure 4). Our Bayesian approach is similar in spirit to the
model-averaging approach of Powell [32] in that its goal is
to make the inference of species limits and analyses based
on them more robust to uncertainty. There are, however,
three major differences. First, we take into account phylo-
genetic uncertainty. As indicated by our results, this is
perhaps the most influential difference, although in theory
it could also be accounted for using model averaging. Sec-
ond, our Bayesian method requires the specification of
prior knowledge. Depending on a researcher’s comfort
with assigning prior probability distributions to the rate
and threshold parameters, this is either an advantage or
a disadvantage. Finally, the treatment of nuisance
parameters (here, the rate change parameters) is
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fundamentally different. While in the model-averaging
approach, inferences are conditioned on Maximum-
Likelihood point estimates of nuisance parameters, the
Bayesian approach integrates out nuisance parameters,
giving marginal probabilities of species limits. These final
two differences are intrinsic to Bayesian inference, and
researchers choosing among methods will need to con-
sider their choice of statistical paradigm. We note that our
confidence intervals in all analyses (including from the
Likelihood method) are far wider than those of Pons et al.,
which were 46-51 species. This is most likely because of
the difference in obtaining ultrametric trees. Pons et al.
used non-parametric rate smoothing [55] on a Maximum
Likelihood estimate of the tree. While they achieved sens-
ible results with narrower confidence limits than ours, we
nevertheless advocate an approach that samples trees and
fits them to a clock model using a parametric method. This
allows for a full accounting of uncertainty associated with
phylogenetic estimation, albeit at the cost of some
precision.

Conclusions

Our results demonstrate that the Bayesian implementa-
tion of the GMYC model is reasonably reliable given
two caveats. First, the length of the DNA sequence is
important. We found that when we sampled only
300 bp, or only 2 alleles per species, that the perform-
ance of the model declined strongly. Second, the model
is only useful when the underlying history of the species
under consideration lies in particular regions of param-
eter space. Species that have recently diverged, or clades
undergoing rapid radiation are unlikely to be identifiable
under the model. In the latter case, the model may pro-
vide misleading estimates and confidence. Cases such as
these, however, may be recognizable because the results
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p<09 | p<095 | p<l

Figure 5 Summary of empirical analyses. Legend: We compare the results of Likelihood and Bayesian analyses of the Pons et al. Rivacindela
dataset. The phylogenetic tree is the maximum clade credibility tree from BEAST and the clades highlighted in red represent the Maximum
Likelihood species limits. The colored table is a sequence-by-sequence matrix. Cells are colored by the posterior probability that the
corresponding sequences are conspecific, and this allows for the visualization of uncertainty in species limits. Off-diagonal color patterns indicate
that some uncertainty in species limits owes to uncertainty in the topology of the phylogeny.

may be highly unexpected in the context of other
sources of data such as morphology or geography.

Our implementation of the model provides two main
improvements over the original. First, it allows the speci-
fication of prior probabilities on model parameters. It is
our experience that very high values of the Yule process
rate change parameter sometimes have high likelihood
and result in high uncertainty in the threshold parameter
(unpublished empirical data). These high values may be
biologically unrealistic, and the specification of an in-
formative prior can reduce the posterior probability of
those areas and produce a more accurate estimate of di-
versity. Second, it allows for the characterization of spe-
cies limits without use of a point estimate of the
phylogeny. We know that many datasets are associated
with substantial uncertainty owing to limited sequence
data collection. The Bayesian GMYC method provides
marginal probabilities of species identities and will allow
downstream estimates of species diversity and commu-
nity structure (which are often the goal of environmental
sequencing studies; [32]) to account for uncertainty
underlying species designations.

An important future direction for this work is to im-
plement the multiple-threshold version of the model
proposed by Monaghan et al. [28], which can account
for greater variation in divergence times and effective
population sizes than the model implemented here. It
has been shown to provide a better fit to some datasets
[32], but will require implementation of a more complex
reversible-jump MCMC that allows proposals that
change the number of parameters in the model.

It is widely acknowledged that single-locus data are
not optimal for the inference of phylogeny, historical
demography, or species limits [56-59]. Nevertheless, vast

amounts of biological diversity remain undescribed at
the level of species, and this limits our ability to under-
stand the evolutionary history of our planet and its
current ecological functioning. Available alternative
means of describing species diversity, either from mo-
lecular or morphological data have major drawbacks in
that they are time consuming, expensive, or subject to
their own biases and inaccuracies. Single-locus data for
many groups are currently being generated on a large
scale, and we advocate making the best of this data. We
believe that under certain conditions, the GMYC model
can be useful, and that a Bayesian framework accounting
for uncertainty is most appropriate for these data.
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the results from the nucleotide sampling simulation.
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