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Abstract

abilities.

functional work with these proteins.

Background: The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their
ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and
function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding

Results: To investigate these relationships, we defined the domain architecture of each of the 5 members followed
by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available
databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary
ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication
events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein
structures and functions of this family. Despite variation in domain structure, there are highly conserved regions
across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs.

Conclusions: We have shown with significant evidence that the 5 members of the class A scavenger receptors form
a protein family. We have indicated that these receptors have a common origin which may provide insight into future

Keywords: Class A scavenger receptor, Innate immunity, Scavenger receptor, Pattern recognition receptor,
Scavenger receptor cysteine rich domain, Comparative evolution

Background

The scavenger receptors (SRs) are a structurally diverse
group of pattern recognition receptors (PRRs) which were
originally defined based on their ability to bind and sub-
sequently internalize acetylated low-density lipoprotein
(acLDL). These receptors have since been shown to have
the ability to bind some (but not all) polyanions [1-4]
including ligands on modified host proteins and apoptotic
cells [5]. Since their initial discovery in 1979 [1], a vari-
ety of proteins have been included in the SR family based
on their ligand binding capabilities and/or similarities in
their secondary structures, resulting in a diverse fam-
ily of seemingly unrelated proteins [6,7]. Consequently,
in 1997 Krieger suggested that the SRs be divided into
8 distinct classes, termed A through H, on the basis of
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protein sequence comparisons and domain architecture
[6]. The class A scavenger receptors (cA-SRs) consist of
2 original members, namely Scavenger Receptor class
A I (SRAI) and MAcrophage Receptor with COllage-
nous domain (MARCO) [6]. Three additional members
have been subsequently added: Scavenger Receptor class
A, member 3 (SCARA3)/CSR (Cellular Stress Response),
SCARA4/SRCL (Scavenger Receptor with C-type lectin
domain), and SCARA5 [8-10]. The cA-SRs are type II
glycoproteins consisting of an intracellular N-terminal
domain and extracellular C-terminus [11]. All 5 members
form homotrimers that are thought to be stabilized via
a-helical coiled-coil motifs in addition to their collage-
nous regions [12-14]. In general, the cA-SRs have similar
domain structures with some obvious exceptions at the C-
terminal end (Figure 1; Additional file 1: Table S2). These
proteins vary considerably in the length of their collage-
nous domains, ranging from approximately 75 residues
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Figure 1 The protein domain architecture of the class A scavenger receptors. Structures are scaled based on the length of each domain. The
cytoplasmic and transmembrane domains were determined using TMHMM software; a-helical domains were determined using the JUFO Server
and PSIPRED. The boundaries of the collagenous, SRCR, and C-type lectin domains were determined using NCBI's CDD. Heptad coiled-coil motifs of
the a-helical domains were identified based on the definition put forth in [3,4]. Domain boundaries are supported by Additional file 1: Table S2.

100 amino acids

in SCARA5 to 250 amino acids in MARCO [10,15].
Importantly, the C terminus domain varies between the
members of this group. SRAI, MARCO, and SCARA5
possess a terminal Scavenger Receptor Cysteine Rich
(SRCR) domain [5], whereas SCARA3 terminates at the
collagenous domain [8], and SCARA4 possesses a C-type
lectin domain [9].

Alongside the C-type lectin domain of the collectins
[16] and the leucine-rich repeat of the Toll-like recep-
tors (TLRs) [17], the SRCR domain is one of the most
ancient pattern recognition domains associated with
innate immunity [18]. This domain possesses 6 highly
conserved cysteine residues resulting in a distinctive pat-
tern of disulfide bonding [18].

The SRCR domain is not restricted to the cA-SRs and
is instead part of many other proteins across deutero-
somes. These other SRCR-containing proteins have been
implicated in a wide variety of functions, including
pathogen recognition, endocytosis, and immune response

homeostasis (reviewed in [18]); however, the role of the
SRCR domain in the cA-SRs remains unclear. Studies
of MARCO and SRAI implicate a region of the SRCR
domains as a potential ligand binding motif [19,20]. In
contrast, other mutagenic studies have shown that the
collagenous region is sufficient for the binding of acLDL
[13,21]. Whether this discrepancy is due to the partic-
ular ligands examined and/or multiple binding motifs is
unknown.

While SRAI and MARCO are primarily expressed on
macrophages [15,22], SCARA3, SCARA4, and SCARAS5
are expressed on a variety of other cell types, includ-
ing epithelial cells [10], and cells of the placenta, lungs,
heart, and small intestine [9]. SRAI is primarily impli-
cated in homeostatic functions such as the uptake of
modified lipids and proteins, in addition to having a role
in pathogen clearance [12,14]. In contrast, MARCO has
been primarily implicated in host defense via the direct
recognition and subsequent endocytosis of pathogens
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and the modulation of cytokine production [23,24]. Both
SCARA4 and SCARAS5 have been documented in vitro
to bind bacteria [9,10], although this ability has not been
established in vivo. Conversely, SCARA3 has been asso-
ciated with the protection of cells from reactive oxygen
species during oxidative stress [8]. This combination of
diverse patterns of expression and function raise ques-
tions regarding whether these proteins are related to one
another.

The scavenger receptors were originally grouped based
on their ability to bind acLDL as a ligand, even if this bind-
ing ability can have very low affinity [25]. This broad and
imprecise definition, which ignores the diversity of their
biological functions and expression patterns, raises the
question of whether these proteins share any evolutionary
relatedness. In this study, we present multiple evolution-
ary and phylogenetic analyses of the cA-SRs by mining
publicly available genomes for these receptors. We discov-
ered that there is no evidence of cA-SRs in non-vertebrate
species, suggesting that the domain architecture of this
protein family is unique to that of vertebrates. To our
knowledge, these are the first examples of thorough evo-
lutionary analyses of this family. Our results confirm that
an evolutionary relationship exists between all 5 mem-
bers of the cA-SRs. We postulate that 4 unique gene
duplication events, followed by domain fusions, internal
repeats, and deletions, shaped the current architecture
of this family to include some diversity in structure and
function.

Results and discussion

The cA-SRs share similar domain architectures

Sixteen SRAIL, 21 MARCO, 21 SCARA3, 25 SCARA4,
and 22 SCARAGS full-length mRNA and protein sequences
were identified and analyzed in this study (Additional
file 2: Table S1). An exhaustive bioinformatic search was
undertaken in order to identify these receptors, including
searches of all SRCR-containing proteins for transmem-
brane, «-helical, and collagenous domains using various
bioinformatic tools. These extensive methods were used
in order to best identify any ancient homologs, pseu-
dogenes, or related proteins that had undergone vari-
ous domain swap or fusion events. Many of the cA-SRs
examined have not been previously annotated and there-
fore represent novel cA-SR sequences. Previous analy-
ses of the domain structures of the cA-SRs have been
inconsistent; therefore, we re-examined these predictions
using current bioinformatic tools. Although the domain
architectures were resolved for each scavenger receptor
sequence, those from the Homo sapiens genome were
used as representatives to visualize the relative lengths
and composition of these domains in Figure 1 and
explained in detail in Additional file 1: Table S2. Cytoplas-
mic and transmembrane domains were established using
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the TMHMM software [26] and were determined to be
approximately 30-55 and 20 amino acids long, respec-
tively, in each receptor.

Previous work indicated the region between the trans-
membrane and collagenous domains to be a combina-
tion of a spacer and «-coiled-coil region dependent on
the receptor in question (reviewed in [5]). Our analy-
ses using the JUFO Server (www.jens-meiler.de/jufo.html)
and PSIPRED [27] indicated that this region is primarily
a-helical in all 5 receptors and includes multiple coiled-
coil motifs (Figure 1, black boxes). The coiled-coil motifs
are based on heptad motifs of the form HxxHcccH [3,4],
where hydrophobic residues (H) appear at the first and
fourth positions of a seven amino acid sequence, with
positions five to seven tending to be charged (c). Vari-
ations on this 3-4 separation pattern of hydrophobic
residues include 4-4, 3-3, and 3-1 repeats [4]. These motifs
have been shown to be necessary for oligomerization in
other proteins [3] and thus are likely to contribute to the
trimerization of the cA-SRs.

The boundary between this «-helical domain and the
collagenous region was determined using the character-
istic Gly-Xxx-Yyy repeat (reviewed in [5]), which appears
over the full-length of the collagenous domain. The C-
terminal domains have been previously annotated in
NCBI and were confirmed using NCBI's CDD. The result-
ing domain architecture shows strong similarities across
the cA-SR protein family.

Classification of known and novel cA-SRs

Bayesian and maximum likelihood phylogenies were con-
structed for each of the 5 protein family members using
full-length protein sequences of the known and novel cA-
SRs gathered from available genomes present in the NCBI
and Ensembl databases. Novel cA-SRs were identified
based on domain structure, synteny analyses, and pairwise
sequence identity scores as compared to known cA-SRs.
Phylogenies of these sequences were created to examine
and confirm the within group relatedness of these proteins
across vertebrate species.

The molecular phylogeny of full-length MARCO pro-
tein sequences (Additional file 3: Figure Sla) details the
conservation of MARCO across mammalian and avian
species. A partial transcript of a MARCO-like gene cov-
ering the SRCR and a piece of the collagenous domain
was found in the Xenopus tropicalis genome, indicating
that a functional MARCO gene might also be present
in amphibians (Additional file 2: Table S1). However,
the sequence was excluded from further analyses since
the full-length protein sequence spans multiple con-
tigs and could not be reliably constructed. Similarly,
SRAI is present in mammalian and amphibian genomes
(Additional file 3: Figure S1b), yet there appears to be a
secondary loss of SRAI in avian species since it is absent
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from the Gallus gallus and Meleagris gallopavo genomes.
SCARAS appears to be the most abundant of the SRCR-
containing cA-SRs, as the gene is conserved in mammals,
birds, amphibians, reptiles, and fish (Additional file 3:
Figure Slc).

Both of the non-SRCR-containing cA-SRs, SCARA3
and SCARA4, are also present in mammalian, avian,
amphibian, reptilian, and fish genomes. Of the 2 pro-
teins, SCARA3 (Additional file 3: Figure S1d) was found
in Ostariophysian and Salmonidae fish species, while
SCARA4 (Additional file 3: Figure Sle) is present in these
genomes as well as the bony Acanthopterygii fishes.

MARCO, SRAI, and SCARAS share a highly conserved SRCR
domain

Three of the cA-SRs (MARCO, SRAI, and SCARAS5) pos-
sess an evolutionarily conserved SRCR domain. The SRCR
domain is present in many proteins and is highly con-
served across various deuterosome species [18]. Phyloge-
netic analysis of the SRCR domains from these 3 cA-SRs
were conducted in order to determine the evolutionary
relations between them. By both Bayesian and maximum
likelihood methods, the SRCR domains of each receptor
cluster together, with those domains from SRAI grouping
closer to those of SCARA5 when compared to MARCO
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(Figure 2), indicating that the SRCR domains of SRAI and
SCARAS5 are more similar to each other than to those
of MARCO and are likely to have diverged from a more
recent common ancestor.

The non-SRCR containing cA-SRs - SCARA3 and SCARA4 -
are evolutionarily related to each other

Of the 5 cA-SRs two, SCARA3 and SCARA4, do
not possess the conserved SRCR domain at their C-
terminus. Instead, SCARA4 has a C-type lectin domain
and SCARA3 terminates after its collagenous region. Per-
mutation tests of Homo sapiens SCARA3 and SCARA4
confirmed that their full-length amino acid sequences
are statistically similar to each other (Table 1). Further
phylogenetic analyses of the domains shared between
these 2 cA-SRs determined the clustering of SCARA3 and
SCARAA4 sequences across vertebrate species (Figure 3).

A common ancestry is shared between all 5 members of
the cA-SRs

Permutation tests performed using the PRSS software
established that each Homo sapiens cA-SR amino acid
sequence is statistically similar to each other, establishing
a strong evolutionary relationship connecting all members
of this family (Table 1). Additional analyses of similarities
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Figure 2 The SRCR domain is highly conserved across the SRCR-containing class A scavenger receptor protein sequences. A phylogeny
built using both Bayesian and maximum likelihood methods demonstrates the relatedness of the protein SRCR domain sequences across MARCO
(blue), SRAI (yellow), and SCARAS (red). Node labels indicate both posterior probabilities generated from the Bayesian analysis and bootstrap values
of the maximum likelihood tree [ML/BY]. Phylogeny is midpoint rooted; scale bar indicates the number of substitutions per site.




Whelan et al. BMC Evolutionary Biology 2012, 12:227
http://www.biomedcentral.com/1471-2148/12/227

Table 1 Percent identity and permutation test scores
between the full-length Homo sapiens cA-SR amino acid
sequences

SRAI MARCO  SCARA3 SCARA4  SCARA5
SRAI 25.0% 13.5% 14.7% 32.3%
MARCO 5.37e-18 12.9% 21.8% 25.0%
SCARA3  4.26e-13 1.04e-12 26.6% 18.5%
SCARA4  3.66e-17 1.34e-16  7.23e-54 15.7%
SCARA5  4.88e-52 1.06e-26  8.70e-15 5.34e-25

The percent identity (top right) between each cA-SR was calculated using EBI's
EMBOSS Needle global alignment algorithm to quantify the amount of
sequence similarity shared amongst these receptors. Additionally, permutation
tests were measured using the PRSS algorithm part of the FASTA package. The
probabilities displayed here (bottom left) are the probability that these
receptors share sequence similarity with each other by chance.

across the cA-SR Homo sapiens amino acid sequences
confirmed significant sequence similarity amongst these
proteins. Analyses identified 4 conserved motifs including
a cluster of negatively charged amino acids in the cyto-
plasmic domain of the 5 cA-SRs (Figure 4, orange boxes).
Furthermore, in addition to the plethora of coiled-coil
heptad motifs, a conserved motif in the a-helical domains
of each receptor, excluding MARCO [13], was established
(Figure 4, teal boxes). A previously predicted ligand-
binding motif of MARCO [19] was not found in the SRCR
domains of SRAI and SCARAS5 (Figure 4, yellow box);
however, the lysine-rich region in the collagenous domain
of SRAI hypothesized to be necessary for ligand binding
was found in all other cA-SRs (Figure 4, pink boxes). These
similarities in domain structure and conserved motifs
support a common evolutionary relationship between all
5 cA-SRs.

Further support for a common evolutionary origin
is seen in shared exon features in cA-SR members
(Additional file 4: Table S3). Each of the 5 cA-SR types
contains similar overall architecture and exon order,
including (in order) a cytoplasmic region, transmembrane
domain, a-helical region, and collagenous region. The sin-
gle exon containing a portion of the cytoplasmic region
plus the transmembrane domain is conserved across all 5
cA-SR types. Exons corresponding the a-helical and col-
lagenous regions are also present in all types, and have
undergone expansion and/or contraction in various family
members. Notably, the collagenous region of MARCO has
expanded considerably and contains numerous additional
exons. The a-helical region has also undergone expansion
and contraction, with expansion likely occurring within
an existing exon in the SCARA3/SCARA4 branch and
reduction occurring within MARCO.

The evolutionary history of the cA-SRs
In order to specify the exact relationships amongst the
members of the cA-SR gene family, a phylogeny was
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established using the 4 domains shared across these recep-
tors (Figure 5). This phylogeny suggested a strong rela-
tionship amongst SCARA3 and SCARA4 in addition to
between SRAI and SCARAS5, and that MARCO amino
acid sequences cluster between the non-SRCR contain-
ing receptors and SRAI and SCARAS. Pairwise identity
scores were calculated between each full-length Homo
sapiens cA-SR protein sequences (Table 1) which identify
a higher level of similarity between MARCO and the other
SRCR-containing receptors when compared to between
MARCO and the non-SRCR-containing proteins.

Discussion

Since their discovery in 1979, scavenger receptors have
been defined by their ability to ‘scavenge’ modified LDL
from their environment for internalization and subse-
quent degradation [1]. As more proteins were discovered
that fit this definition, the SRs came to represent a poly-
phyletic group of receptors with varying domain archi-
tectures and protein structures that appear to have arose
independently (for example, although CD36, a class B SR,
also binds modified lipids, permutation tests show that it
is unrelated to SRAI (data not shown)). This prompted
the introduction of subclasses to group structurally simi-
lar proteins [6]. However, even within the class A subclass
there is considerable variability. Functionally, for exam-
ple, MARCO can bind acLDL [23], SRAI can bind both
oxLDL and acLDL [28], and SCARA5 can bind neither
[10]. Structurally, the cA-SRs differ at their C-terminal
region and in the lengths of their other domains (Figure 1).
There is very little justification for grouping the cA-SRs
together based on the original definition of ligand binding
unless there is an evolutionary relationship amongst the
members.

To investigate the evolutionary connection within the
cA-SRs, we first needed to definitively characterize the
domain architecture of these proteins. Domain bound-
aries had been previously defined for the individual mem-
bers of the cA-SRs, but usually in comparison to SRAI and
were not based on current tools. Our findings (Figure 1,
Additional file 1: Table S2) suggest that there are 4
domains - cytoplasmic, transmembrane, a-helical, and
collagenous - shared by all members of the cA-SRs. Con-
served motifs in these domains common across the cA-
SRs suggest not only a common origin of these proteins,
but also that they may share significant functionality with
each other (Figure 4). While the lengths and consistency
of the cytoplasmic and transmembrane domains remain
mostly fixed, the a-helical and collagenous domains vary
in length across the receptors in a manner consistent
with the possibility of repeats brought about by recom-
bination or duplication events [29]. In contrast, the fifth
terminal domain differs or is absent in the cA-SRs. While
SRAIL, MARCO, and SCARAS5 share a SRCR domain at
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Figure 3 Phylogenetic analysis of the domains shared by SCARA3 and SCARA4 protein sequences. A phylogeny built using both Bayesian
and maximum likelihood methods demonstrates the clustering of SCARA3 (orange) and SCARA4 (green) proteins across vertebrate species. Node
labels indicate both posterior probabilities generated from the Bayesian analysis and bootstrap values of the maximum likelihood tree [ML/BY].
Phylogeny is midpoint rooted; scale bar indicates the number of substitutions per site.

their terminus, SCARA4 possesses a C-type lectin domain
and SCARA3 terminates at its collagenous region. The
SRCR and C-type lectin domains are both able to recog-
nize pathogens [18,30], suggesting that the radiation in
this region may be due to a domain swapping event that
may have allowed for the diversification of host pathogen
recognition [31].

Data mining was used to identify known and novel
cA-SRs in publicly available databases. Conservation of
these proteins across vertebrate species was examined
via phylogenetics. No cA-SRs were identified in available
non-vertebrate genomes, implying that although the indi-
vidual domains that make up these receptors - specifically
the SRCR and C-type lectin domains - are ancient, the
modern cA-SR domain architecture likely arose after the
divergence of vertebrates from other species. Using these
sequences, the relationships between the 5 members of
the cA-SRs were analyzed.

To determine a shared evolutionary ancestry amongst
all 5 members of the cA-SRs, permutation tests were per-
formed using the representative Homo sapiens protein
sequences, which revealed significant sequence similar-
ity between all of these proteins (Table 1). Additionally,
notable motifs shared amongst all or most recep-
tors were identified (Figure 4), lending definitive rea-
son for these proteins to be classified as a protein
family.

Phylogenetic analyses allowed us to hypothesize regard-
ing the evolutionary history of this protein family. First,
analyses presented in Figures 2, 4, and 5 indicate that SRAI
and SCARAS5 are most closely related to each other than
to the other cA-SRs. This finding is further supported in
the fact that the highest amount of sequence similarity
is shared between SRAI and SCARAS5 (Table 1). This is
unsurprising given what is known biologically about these
2 proteins. Although little research has been completed on
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SCARADS, it is known that both it and SRAI bind Gram-
positive and -negative bacteria [10,28,32] and are both
hypothesized to be involved in host defense [10,33]. Sec-
ond, SCARA3 and SCARA4 were also identified as closely
related proteins. Not only are their domain lengths simi-
lar (Figure 1), but these proteins are also presented as an
independent cluster in the phylogenetic analysis of all cA-
SRs (Figure 5). Although they are not well studied, from
what we know these 2 proteins do not share much func-
tionality. From what little is known regarding SCARAA4,
this receptor appears to function in a similar fashion to the
SRCR-containing cA-SRs by binding Gram-positive and -
negative bacteria and being expressed on cells involved in
host defense [9,34]. In contrast, SCARA3 is expressed on
fibroblasts and has been proposed to protect against reac-
tive oxygen species by binding and internalizing oxidative
molecules [8]. However, the lengths and general compo-
sition of SCARA3 and SCARA4 proteins are very similar
as indicated by a shared percent identity of 26.6% across
the full-lengths of their proteins (Table 1). Perhaps the
differences in their biological functions are restricted to
the presence of a C-terminal C-type lectin domain in
SCARA4 and the potentially lost terminal domain in
SCARA3.

Lastly, the positioning of MARCO is intermedi-
ate between the SRAI/SCARA5 and SCARA3/SCARA4

clusters. The phylogenetic evidence presented in Figure 5
suggests that this protein sequence is most similar to
SCARA3/SCARA4 with high posterior probabilities and
bootstrap support. However, percent identity measures
(Table 1) as well as functional evidence suggests that it
is most similar to the other SRCR-containing receptors.
For example, research conducted by Arredouani et al.
demonstrates that both SRAI and MARCO are essential
for clearance of bacteria and inert particles from the lungs
[24,35], indicating that even though MARCO is more evo-
lutionarily related to SCARA3 and SCARA4, it is more
functionally related to the SRCR-containing receptors.
Further analysis of the exon gene structures of the cA-SRs
or further functional analyses of all 5 members may help
resolve this inconsistency.

This data supports the hypothesis of a single ancestral
cA-SR from which duplication events occurred allow-
ing for the diversification of this group. We propose that
4 independent gene duplication events occurred allow-
ing for the presence of 5 cA-SRs in vertebrate species.
This common ancestor likely included most of the com-
mon features of the cA-SRs including the transmembrane,
a-helical, and collagenous domains, and may have also
contained the SRCR domain shared by 3 of the 5 cA-SRs.
This ancestral cA-SR may have duplicated (Figure 4, Event
1) into 2 distinct proteins (labelled 1.1 and 1.2) which
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Figure 5 Phylogeny of all the common domains shared by the class A scavenger receptor protein sequences. Bayesian and maximum
likelihood phylogenetic analyses of SRAI (yellow), SCARA5 (red), MARCO (blue), SCARA3 (orange), and SCARA4 (green) protein sequences show a
possible evolutionary history of this protein family. Node labels indicate both posterior probabilities generated from the Bayesian analysis and
bootstrap values of the maximum likelihood tree [ML/BY]. Phylogeny is midpoint rooted; scale bar indicates the number of substitutions per site.

would have contained the domain structure typical of this
group (i.e. cytoplasmic, transmembrane, collagenous, and
C-terminal domains). A second duplication event of puta-
tive proto-gene 1.1 (Figure 4, Event 2) would have resulted
in the genes that differentiated into SRAI and SCARAS5.
The putative 1.2 gene would have contained an SRCR cod-
ing domain, and possibly an extended collagenous region
(as compared to 1.1). This SRCR encoding region would
likely have been lost in the predecessor of SCARA3 and
SCARA4 upon a third duplication event, which would
have resulted in the ancestral gene encoding MARCO
(Figure 4, Event 3). The SRCR domain may have been
replicated by a C-type lectin domain in the predecessor of
SCARA3 and SCARA4 and later lost in SCARA3 when a
fourth duplication event resulted in the divergence from
SCARA3 and SCARA4 (Figure 4, Event 4), or may have
simply replaced the C-type lectin of SCARAA4.

Conclusions

Despite the broad, general definition that brought the 5
members of the cA-SRs into the same subclassification of
proteins capable of recognizing modified lipoproteins, we
have shown significant evidence here that these 5 proteins
are indeed a protein family. There is considerable evidence

of a common origin for these proteins, which may in turn
provide insight when performing functional studies on
members of this family.

Methods

Mining and annotation of class A scavenger receptor
mRNA and amino acid sequences

Deuterosome genomes from NCBI's GenBank (http://
www.ncbi.nlm.nih.gov/genbank/) and EBI’s Ensembl
(http://www.ensembl.org) databases were analyzed for
novel cA-SR amino acid sequences. First, the protein
sequences of known cA-SRs were used as queries to
the Basic Local Alignment Search Tool (BLAST) [36]
with an initial E-value cut-off of 1073 in order to iden-
tify orthologs. From this list of proteins, cA-SRs were
identified as consisting of a C-terminal SRCR domain in
the case of MARCO, SRAIL and SCARAS5, or a C-type
lectin domain in the case of SCARA4, connected to a
collagenous region, consisting of at least 70 amino acids
in length. Additionally, significant sequence similarity
between the identified ortholog and known cA-SRs had
to be shared as defined by a percent identity score greater
than 20% using the Needleman—Wunsch algorithm. In the
case of SCARA3, proteins were annotated based solely on
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full-length sequence similarity to known SCARA3
sequences. Further, Position-Specific Iterated BLAST
(PSI-BLAST) [37] and the BLAST-like alignment tool
(BLAT) [38] tools were used with default values (PSI-
BLAST threshold of 0.005) to ensure all novel cA-SRs
were discovered from publicly available genome informa-
tion. Additional gene synteny analyses were conducted
with the aid of the UCSC Genome Browser [39] when
only partial sequences were available. When appropriate,
publicly available predicted transcript data were man-
ually edited to reflect known cA-SR exon structure. In
the case where only partial sequences were available, the
sequences were omitted from further analyses. Multiple
sequence alignments of the cA-SR mRNA and amino
acid sequences were generated using MUIitple Sequence
Comparison by log-exception (MUSCLE) [40] and viewed
using JalView 6.7.1 [41]. Known and newly annotated
cA-SR sequences are presented in Additional file 2:
Table S1.

Domain characterization and similarity measures

In order to determine the domain architecture of each
cA-SR, the boundaries of each domain were calculated
using bioinformatic software. The cytoplasmic and trans-
membrane domains were determined with TMHMM2.0
[26]. The «-helical regions were identified with the JUFO
Server (www.jens-meiler.de/jufo.html) and PSIPRED [27].
The collagenous, SRCR, and C-type lectin domain bound-
aries were determined via NCBI’'s Conserved Domain
Database (CDD) [42]. Additionally, permutation tests to
compare each of the Homo sapiens cA-SR amino acid
sequences were generated using PRSS with 1000 itera-
tions [43,44]. Percent identity measures calculated for the
same sequences were based on pairwise distance scores
calculated using EBI's EMBOSS Needle global alignment
algorithm using default settings [45].

Construction of phylogenetic trees

Molecular phylogenies of the cA-SR mRNA and amino
acid sequences were created using both maximum like-
lihood and Bayesian probabilistic methods of evolution.
These methods were implemented using the RAXML-
VI-HPC v7.2.8 [46] and MrBayes 3.1.2 [47,48] software
packages, respectively. The appropriate substitution mod-
els for each phylogeny were determined by jModelTest
[49] and ProtTest [50]. The MARCO mRNA data were
estimated to fit most appropriately with the Generalized
Time-Reversible (GTR) model including both invariable
sites (I) and a discrete gamma (G) distribution. All other
mRNA data were estimated to be best represented by the
GTR + G model. To create the phylogenies for gene trees
based on full-length mRNA sequences, MrBayes analyses
were run for 3 million generations; for all other compar-
isons, MrBayes was run for 10 million generations. All
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Bayesian phylogenies were sampled every 1000 genera-
tions and a 25% burn-in period was used. Convergence
was confirmed by use of the AWTY [51] software package
and variation in likelihood values were visualized using
Tracer v1.5 [52]. Maximum likelihood phylogenies were
also created using the appropriate substitution models
and were subject to 100 bootstrap replicates. All trees
were mid-point rooted using FigTree v1.3.1 [53].

Additional files

Additional file 1: Table S2. Domain boundaries of the representative
class A scavenger receptors in Homo sapiens. Probabilities for the
cytoplasmic and transmembrane domains were determined using the
TMHMM software tool. The a-helical domain with coiled-coil motifs was
determined using the JUFO Server and PSIPred JUFO;PSIPRED]. The
collagenous, SRCR, and C-type lectin domains were determined using
NCBI's CDD. A indicate that probabilities were measured by the
corresponding software for each amino acid in the domain and a range is
given. P(H) and P(C) represent the probability of a helix or coil at each
amino acid (aa) in the domain. * indicate that there were multiple hits in
NCBI's CDD, for which a range of E-values is presented.

Additional file 2: Table S1. Class A scavenger receptor mRNA and
protein sequence information. Novel sequences are indicated with bold
font; those sequences marked as only predicted in GenBank and Ensembl
databases are labeled with an asterisk. Proteins for which only partial
sequence information is available is indicated with italics.

Additional file 3: Figure S1. Phylogenetic trees of known and novel class
A scavenger receptors indicate conservation of these receptors in a subset
of vertebrate genomes. Phylogenies were created based on full-length
cA-SR protein sequences. Novel sequences are indicated with bold font;
those sequences marked as only predicted in GenBank and Ensembl
databases are labeled with an asterisk. MARCO (a) was discovered in avian
and mammalian genomes. SRAI (b) was found in organisms from Xenopus
to mammals; no SRAI sequences were found in publicly available avian
genomes. SCARAS (c) was more phylogenetically diverse as 3 additional
instances of this receptor were found in fish genomes. SCARA3 (d) was
found in 2 Teleost fish genomes, Danio rerio and Tetraodon nigroviridis.
SCARA4 (e) is the most phylogenetically widespread of the cA-SRs, present
in 4 distinct fish species including the early bony fish of the superorder
Acanthopterygii. Tree topologies were determined using both Bayesian and
maximum likelihood methods and are supported by posterior probabilities
and bootstrap values as indicated on node labels [BY/ML]. All phylogenies
are midpoint rooted; scale bar indicates the number of substitutions per
site.

Additional file 4: Table S3. Exon structure for 3 representative species
(human Hs, mouse Mm, and opossum Md) containing each of the 5 class A
scavenger receptors. Exons are annotated as 5'UTR (untranslated region),
CYTO (cytosolic), TM (transmembrane), AH (a-helical region), COL
(collagenous region), SRCR (SRCR domain), LEC (Lectin domain), and 3'UTR
(untranslated region). Accession numbers are from Ensembl Transcripts or
mapping of MRNA to NCBI genomic sequence for XM_001370497.
Numbers represent exon length in nucleotides, with values in brackets
representing identified untranslated regions.
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SCARA: Scavenger Receptor class A; SRCR: Scavenger Receptor Cysteine Rich;
acLDL: acetylated low density lipoprotein; oxLDL: oxidized low density
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