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Abstract

Background: Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency
oscillations, with important implications for ecological and evolutionary processes. However, direct empirical
evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of
ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of
negative frequency-dependence.

Results: Here, we show that another factor – non-genetic inheritance, mediated for example by epigenetic
mechanisms – can completely eliminate oscillations in the presence of such negative frequency dependence, even if
only a small fraction of offspring are affected. We analytically derive the threshold value of this fraction at which the
dynamics change from oscillatory to stable, and investigate how selection, mutation and generation times differences
between the two species affect the threshold value. These results strongly suggest that the lack of phenotype
frequency oscillations should not be attributed to the lack of strong interactions between antagonistic species.

Conclusions: Given increasing evidence of non-genetic effects on the outcomes of antagonistic species interactions,
we suggest that these effects should be incorporated into ecological and evolutionary models of interacting species.
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Background
The phenotypes of species are generally assumed to be
adapted to their environment by natural selection. A
change in an environment can therefore lead to an evo-
lutionary change in phenotypes as species adapt to new
circumstances. Environments comprise both biotic and
abiotic elements, and evolutionary change in one species
is often driven by evolutionary change in another species.
Indeed, ecology is dominated by species interactions such
as predation, parasitism, mutualism and competition. If
species interactions are antagonistic (i.e., one species ben-
efits at the expense of another), the resulting patterns
of adaptation and counter-adaptation can lead to cyclical
dynamics typical of predator-prey or host-parasite sys-
tems. Understanding the causes and consequences of such
fluctuating population dynamics is crucial in a number
of biological phenomena, and particularly also in applied
fields such as conservation biology and pest management.
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The population dynamics of antagonistic species inter-
actions can be captured with well-establishedmodels such
as the Lotka-Volterra model [1], the Nicholson-Bailey
model [2], or the Red Queen model [3]. The Red Queen
model stands out as a coevolutionary model because it
does not primarily focus on fluctuating population den-
sities, but rather on fluctuating genotype and phenotype
frequencies of the interacting species. The causes and
consequences of fluctuating genotype and phenotype fre-
quencies in host-parasite, host-parasitoid and predator-
prey interactions [4] are increasingly well understood at
least in two-species systems, but direct empirical evidence
of long-term dynamics is rare [5], not at least because
long-term dynamics are inherently difficult to measure
[6,7].
Phenotypic adaptations to changing environments need

not be driven by natural selection alone. This is because
many phenotypes are plastic and can change due to
adverse environmental conditions, a property generally
referred to as phenotypic plasticity. Interestingly, phe-
notypic change can be stably transmitted across gener-
ations at various levels of specificity. Transgenerational
induction of defences has been reported in animals and
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plants [8-10]. The maternal transfer of antibodies in ver-
tebrates is a well known phenomenon, and in recent years,
it has become clear that both vertebrates and inverte-
brates exhibit transgenerational immunity (see [11,12] and
references therein). In the context of host-parasite coevo-
lution, one of the most remarkable demonstrations has
been given by [13] who have provided evidence for strain-
specific immunity transmitted from mother to offspring
in Daphnia magna infected with the pathogenic bacte-
ria Pasteuria ramosa. Also, transgenerational phenotypic
inheritance of virulence traits has been demonstrated in
the malaria parasite Plasmodium falciparum [14]. In the
microbial world, phenotypic switching has been reported
both as a direct response to environmental change [15]
and as a stochastic event [16] anticipating environmental
change, and phenotypic states are often inherited stably
across generations [17,18]. For a recent review of non-
genetic inheritance and its evolutionary implications see
[19].
Our goal here is to understand the effect of non-genetic

inheritance on patterns of antagonistic coevolution. We
develop a simple model where two species (e.g., host and
parasite) are interacting, and each species has two alterna-
tive phenotypes. If their phenotypes match, the outcome
of the interaction has negative fitness consequences for
one species (host) and positive for the other species (par-
asite). As a result of this, the phenotypes harmed by the
interaction may switch to the alternative phenotype in
the offspring. We are purposefully ignorant about the
nature of the phenotype (e.g., molecular, developmental,
behavioral) and about the underlying form of non-genetic
inheritance responsible for the phenotype switch in the
offspring. In the absence of non-genetic inheritance, this
model reduces to the most basic model of antagonis-
tic coevolution exhibiting negative frequency dependence
and resulting in the classical Red Queen dynamics (i.e.,
oscillations of phenotypes). We find that non-genetic
inheritance can strongly affect cycling behavior typical of
Red Queen dynamics by dampening the phenotype fre-
quency oscillations. To examine this in detail, we derive
analytical expressions of the threshold rate at which this
elimination occurs.

Methods
In order to understand how non-genetic inheritance
affects the patterns of antagonistic coevolution, we con-
sider a simple, discrete-generation, coevolutionary model
of two species X and Y which interact antagonistically,
e.g., hosts and parasites or predators and their preys. Each
species is represented as a haploid, single-locus genotype
with two possible alleles. The locus can be a genetic
factor (gene or genotype) encoding for a given pheno-
type, or simply a phenotype itself. The two populations,
X (host or prey) and Y (parasite or predator) thus carry

two alternative phenotypes, 1 and 2, and the model tracks
the frequency of each phenotype in every generation. We
assume both populations to be infinitely large and initi-
ate their phenotype frequencies at random. To approach
its long-term dynamics, coevolution of X and Y proceeds
for 11000 generations, and only during the last 1000 gen-
erations are the measurements taken. At each generation,
both species undergo selection and reproduce; the cru-
cial feature of the latter process is the ability to switch
phenotypes due to antagonistic interaction.
Antagonistic interactions induce fitness costs on both

species: successful interactions come at a cost for species
X while unsuccessful interactions come at a cost for
species Y. We assume that successful interaction occurs
between the corresponding phenotypes. We denote the
frequencies of phenotypes 1 and 2 from species X as x1
and x2, and phenotype frequencies from species Y as y1
and y2. Only individuals from species Y with phenotype
1 successfully attack individuals from species X with phe-
notype 1, and only individuals from species Y with pheno-
type 2 successfully attack individuals from species X with
phenotype 2. This results in selection against thematching
phenotypes in X and the non-matching phenotypes in Y,
such that only a fraction 1−sX and 1−sY , respectively, sur-
vive in the next generation (see Table 1); the frequencies in
the two population are changed accordingly. Both species
then undergo reproduction, which may involve induced
phenotype switching and stochastic phenotype switching.
Induced switching is induced by the antagonistic inter-
action: individuals which are harmed by the interaction
transmit the opposite phenotype to the next generation
in the following proportions: αX for species X and αY for
species Y. The phenotype frequencies after selection and
induced switching read

x′ = x(1 − sX y) + αX(1 − sX)(1 − x − y)
1 − sX

[
xy + (1 − x)(1 − y)

] ,

y′ = y[ 1 − sY (1 − x)]+αY (1 − sY )(x − y)
1 − sY

[
x(1 − y) + (1 − x)y

] , (1)

where we have assumed that x1 + x2 = y1 + y2 = 1,
x = x1, and y = y1. Equation (1) can be derived in
three steps. First, one calculates the proportion of indi-
viduals of species X which are matched by species Y,
here equal to xy. Second, this proportion of individuals
undergoes selection, which means that the frequencies
of the matched individuals are multiplied by (1 − sX)/w̄,
while the frequencies of the unaffected individuals are
multiplied by 1/w̄, where w̄ is the species X mean pop-
ulation fitness. Third, the matched individuals undergo
induced switching, meaning that the proportion αX of
them switches to an alternative phenotype. This yields the
first equation in (1), and the calculation for species Y is
analogous. As those individuals which undergo induced
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Table 1 The fitness values resulting from the antagonistic interaction between X and Y

rel. fitness rel. fitness

of species X y1 y2 of species Y x1 x2

x1 1 − sX 1 y1 1 1 − sY

x2 1 1 − sX y2 1 − sY 1

switching are also those which have undergone selection,
the selection coefficient sX becomes equivalent to a cost of
induced switching, as seen in equation (1) above (see also
Discussion).
In contrast, stochastic switching occurs independently

of antagonistic interactions, and in proportion μ in both
species X and Y. Therefore, the frequencies after stochas-
tic switching (and thus after one generation) are given
by

x′′ = (1 − μ)x′ + μ(1 − x′)
y′′ = (1 − μ)y′ + μ(1 − y′). (2)

This step can be also interpreted as mutation, and we
generally assume that μ = 10−8 unless mentioned other-
wise.
Finally, we allow for asymmetry in the generation time

between the two species by defining a parameter g, which
denotes the number of generations that species Y under-
goes in a single generation of species X. During one
generation of Y, a fraction 1/g of the population X is
updated according to the equations given above, while the
fraction 1 − 1/g remains unchanged. This process is then
repeated g times, and the resulting frequencies x′′ and y′′
yield the phenotype frequencies after an entire generation
of species X [20]. By default, we assume g = 1 unless
mentioned otherwise.

Results
It is generally expected that antagonistic interactions
can result in cyclic allele frequency dynamics, reflect-
ing a continuing arms race between the two species
[21]. In the absence of induced phenotypic switching
(αX = αY = 0) our model reveals such a pattern
(see Figure 1A). In this situation, if the common phe-
notype of species X (say phenotype 1) is more likely to
interact antagonistically with the corresponding match-
ing phenotype of species Y (phenotype 1), then another
phenotype 2 of species X has a selective advantage caus-
ing a gradual increase of the frequency x2 and a decrease
of the frequency x1. Such change will in turn drive the
frequency change in species Y by selecting for pheno-
type 2, causing y2 to increase, and so on. These oscil-
lations are, in the absence of random genetic drift and

mutation, expected to continue indefinitely, otherwise fix-
ation or extinction of one of the two phenotypes occurs
[22].
Consider now a situation where induced phenotypic

switching is possible in a single species. Figure 1B-C
shows the impact of such a process on the frequency
dynamics between species X and Y. We see that as the
switching rate increases in speciesX (αX > 0, αY = 0), the
cycles become faster and of lower amplitude, eventually
leading to a stable state (x∗, y∗) = (1/2, 1/2); (Figure 1C).
This happens when the switching rate αX exceeds a cer-
tain threshold value, α∗

X , such that when αX < α∗
X the

cycles are maintained (even though with altered ampli-
tude and frequency), and when αX > α∗

X , cycles dampen
and reach a stable equilibrium. The changes in speed and
amplitude of cycles are directly measured in Figure 1D-
E, and show that as αX increases the amplitude gradually
decreases to zero and the speed increases until the cycles
disappear. This already illustrates that induced switching
can fundamentally affect the oscillatory dynamics in the
system.
In order to examine the persistence of cyclic dynamics

in more detail, we derive an analytical expression for the
stability of the cyclic behaviour as a function of αX , αY , sX ,
and sY .
In the case of the model considered here, the stability

requires that x′′ = x and y′′ = y, where x′′ ≡ x(t + 1),
x ≡ x(t), y′′ ≡ y(t + 1), and y ≡ y(t). It can be shown
that the four trivial equilibria of this system are (x∗, y∗) =
(0, 0), (x∗, y∗) = (0, 1), (x∗, y∗) = (1, 0), (x∗, y∗) = (1, 1),
and that (x∗, y∗) = (1/2, 1/2) is a non-trivial equilibrium
with the Jacobian of the form

J|(1/2,1/2) = (1−2μ)

⎛
⎝ 1 − 2(1−sX)αX

2−sX − sX+2αX−2αXsX
2−sX

sY+2αY−2αY sY
2−sY 1 − 2(1−sY )αY

2−sY

⎞
⎠.

(3)

The corresponding eigenvalues are

λ± = (1 − 2μ)

(
a ±

√
b − 2c

(2 − sX)(2 − sY )

)
, (4)
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Figure 1 Impact of induced phenotypic switching on the cyclic phenotype frequency dynamics. (A): Coevolutionary dynamics between
antagonistic phenotypes are predicted to continue indefinitely when no induced switching occurs due to time-lagged, negative frequency
dependent selection (αX = 0). (B): When induced switching occurs (here in only in species X , thus αY = 0) at a low rate (0 < αX < α∗

X ), allele
frequency cycles persist in time but at an altered amplitude and speed. (C): When the switching rate exceeds a threshold value α∗

X , cycles begin to
dampen and reach a stable equilibrium. (D-E): Increased levels of induced switching also decrease the amplitude and increase the speed of the
cycles. Note that α∗

X in panels A-C and the one in panels D-F is different because of different selection coefficients used; the relation between the
strength of selection and the persistence of cycles is examined in detail in the subsequent figure. The following parameter values were used:
(A-C) sX = sY = 0.3, (D-E) sX = sY = 0.65; (A) αX = 0, (B) αX = 0.03, (C) αX = 0.1; In all panels we used αY = 0. Period is defined as a number of
generations during which the phenotype frequency cycles around to its original value.

where

a = 1 − αX(1 − sX)

2 − sX
− αY (1 − sY )

2 − sY
,

b = (2 − sY )2(1 − sX)2α2
X + (2 − sX)2(1 − sY )2α2

Y ,
c = (2 − sX)(2 − sY ) [sXsY /2 + sX(1 − sY )αY

+ sY (1 − sX)αX + 3(1 − sX)(1 − sY )αXαY ] .

This has been derived under the assumptions of 0 ≤
sX , sY ≤ 1, 0 ≤ αX ,αY ≤ 1, and 0 ≤ μ < 0.5. The condi-
tion for the stability at (x∗, y∗) = (1/2, 1/2) requires that

the absolute value of both eigenvalues be smaller than one,
or

|λ+| < 1 and |λ−| < 1. (5)

The inequality (5) yields constraints on the values of
αX and αY for which, given sX and sY , the equilibrium
(x∗, y∗) = (1/2, 1/2) is unstable, resulting in persisting
phenotype frequency oscillations, or for which the equi-
librium is stable, resulting in the cessation of the cycles.
The induced switching values for which the stability of

the system is lost or regained can be calculated analytically
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for special cases of the stability condition (5), and other-
wise either numerically or estimated from the simulation
results. For example, when αX = αY = α, sX = sY = s,
and μ = 0, the condition (5) is equivalent to

2
(2 − s)2

[
2 − 4α(1 − s)2 + 4α2(1 − s)2 − (2 − s)s

]
< 1.

(6)

It can be shown that the left-hand side of the inequal-
ity (6) is an increasing function of s in the range of α for
0 ≤ s ≤ 1, and 0 ≤ α ≤ 1. Therefore, an increasing
selection strength will tend to induce cycles rather than
destroy them. It can be also shown that the left-hand side
of inequality (6) is an decreasing function of α for 0 ≤
α < 0.5, and an increasing function of α for 0.5 < α ≤ 1.
Therefore, as induced switching α increases, cycles can be
lost at low values of α and regained at high values of α.
The inequality (6) can also be expressed as

α >
1
2

−
√
2 − (4 − s)s
8(1 − s)2 and α <

1
2

+
√
2 − (4 − s)s
8(1 − s)2 ,

(7)

which allows a precise calculation of the threshold lev-
els of induced switching at which cycles disappear and
reappear in this particular example.
To examine the persistence of cycles for a general case of

αX �= αY , we solve the relation (5) numerically and com-
pare it with the simulation results. Figure 2A shows the
combinations of induced switching values αX and αY for
which oscillations dampen, with different combinations of
selection coefficients, based on the stability condition (5).
Figure 2B shows the analogous results which are extracted
from the simulations. The presence or absence of allele
frequency cycles in simulations is measured by the ampli-
tude of the cycles after 11000. We define the presence of
cycles if such amplitude exceeds the threshold of 5×10−2,
and otherwise we consider the cycles to be absent. A com-
parison between Figure 2A and 2B shows that simulation
results and analytical predictions are in good accordance,
and we see this in all examined regions of the parameter
space. We also see that the results are largely independent
of the value of the threshold used to measure the presence
of allele cycles, provided the simulations run long enough.
The results in Figure 2 illustrate a few important points.

First, when both species undergo induced switching,
lower rates of switching are needed to destroy the cyclic
behaviour (cf. Figure 2A2). Second, as shown above, when
the two species switch phenotypes at the same rate α =
αX = αY , the cycles can reemerge as α → 1. Finally,
as also shown above, an increased selection pressure
makes the cyclic dynamics more robust to higher levels of
induced switching. In fact, as our calculations reveal, this
dependence is so strong that for selection coefficient of

0.1 in both species as little as 0.5% of induced switching in
speciesX is enough to eradicate the cyclic dynamics, while
for selection coefficient of 0.9 induced switching will never
dampen the cycles. The results for asymmetric selection
coefficients are qualitatively identical.
Interestingly, the nature of cycles for low and high

levels of induced switching is very different. In the case
of αX = αY = 0, the oscillatory behaviour will per-
sist due to time-delayed negative frequency-dependent
selection (being rare is advantageous, being common is
disadvantageous), whereas for αX = αY = 1 oscilla-
tions will occur even in the absence of a selective force.
The reason for this is that the latter situation represents
the case where the phenotype frequency of one species in
the next generation will be fully determined by the fre-
quency of the phenotype of the other species. This will
result in one species being constantly adapted to the other
species population in the previous generation. However,
since the other species does exactly the same, the two
species will constantly cross-react even in the absence
of any evolutionary force, leading to oscillatory “mirror
dynamics” (see Discussion). Interestingly, in the parame-
ter regime where these dynamics are dominant, increasing
induced switching increases the amplitude of the allele
cycles, while in the parameter regime where selection-
induced cycles are dominant, increasing induced switch-
ing decreases the amplitude of the allele cycle, as seen in
Figure 2B1-B4.
Stochastic switching can also destroy cyclic frequency

dynamics. This is illustrated in Figure 3A1-A4. As the
stochastic switching rate μ increases, the parameter space
with persistent phenotypic cycles shrinks down. This
result is not surprising. Mathematically speaking, the
absolute value of eigenvalues (4) decreases as μ increases,
and therefore the stable state can be sometimes reached
for high values of μ. This argument has been formulated
some time ago in earlier theoretical host-parasite studies
when discussing the potential impact of genetic mutation
on antagonistic coevolution (see e.g., [23] and references
therein). However, as genetic mutation rates are usually
thought to be small (with some notable exceptions), they
are typically not expected to cause any dampening effects
in natural populations. Stochastic switching rates, how-
ever, can be orders ofmagnitude higher [16], and therefore
the disappearance of cycles due to stochastic switching is
likely to be more pervasive in nature than the disappear-
ance of cycles due to genetic mutation.
Finally, we examined the effect of asymmetric gener-

ation times between species X and Y, a situation that
is certainly to be expected in host-parasite systems, and
not uncommon in predator-prey systems. The results,
shown in Figure 3B1-B4, illustrate that an increased
speed of evolution of species Y again makes the cyclic
dynamics more sensitive to increased levels of induced
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Figure 2 Impact of the strength of selection on the persistence of cyclic phenotype frequency dynamics (A1–A4): Persistence of
phenotype oscillations (black regions) for increased selection coefficients based on analytical predictions.When selection is weak (A1)
cycles will continue indefinitely only for minimal or maximal levels of induced switching in both species. As selection becomes stronger (A2–A3),
cyclic dynamics become more difficult to destroy and persist at higher levels of induced switching. For exceptionally high values of selection
coefficients (A4), allele frequency oscillations will become unaffected by induced switching, including their speed and amplitude. As explained in the
main text, the nature of cycles for minimal and maximal values of induced switching is different because of being driven by different evolutionary
forces. (B1–B4): Numerical calculation of the amplitude of cycles from computer simulations confirms the analytical calculations in panels A1-A4. It
also reveals that the amplitude of cycles decreases as the cycles reemerge at high values of induced switching in both species X and Y. The following
parameter values were used: (A1,B1) sX = sY = 0.30, (A2,B2) sX = sY = 0.57, (A3,B3) sX = sY = 0.60, (A4,B4) sX = sY = 0.90; panels A1-A4 were
made in resolution 101× 101; in panels B1-B4 were made in resolution 51× 51, and cycles of amplitude 0.5× 10−2 where considered non-existent.
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A2 A3 A4A1

B2 B3 B4B1

Figure 3 Impact of stochastic phenotypic switching and asymmetric generation times on the persistence of phenotype oscillations.
(A1–A4): Persistence and amplitude of cycles for different stochastic switching values. Subsequent panels show the results for increased values of
μ, illustrating that high levels of stochastic switching can also destroy the persistence of the cyclic phenotype frequency dynamics.
(B1-B4): Persistence and amplitude of cycles for different asymmetric generation times between species X and Y. Subsequent panels show the
results for increased values of g (number of Y generations per X generation). Rapid adaptation of one species also destroys cyclic dynamics,
although the impact on cycles at high values of induces switching (especially αX ) is much less prominent. The following parameter values were
used: (A1-A4) sX = sY = 0.66, (B1-B4) sX = sY = 0.75; (A1) μ = 10−8, (A2) μ = 2 × 10−2, (A3) μ = 3 × 10−2, (A4) μ = 4 × 10−2; (B1) g = 1, (B2)
g = 2, (B3) g = 3, (B4) g = 10; all panels were produced in resolution 51 × 51, and cycles of amplitude 0.5 × 10−2 where considered non-existent.

switching. Interestingly, in this case the oscillatory “mir-
ror dynamics” described above do not emerge for very
high values of αX and αY . This is because when one
of the species evolves faster (here Y ), the symmetry of
these dynamics is violated: species Y will always react
more quickly, thereby immediately adapting to the other
species. Furthermore, induced switching in the species
which adapts more slowly (here X) has now a minor
impact on the phenotype frequency dynamics observed in
the model.

Discussion
Antagonistic coevolution is pervasive in nature, and oscil-
latory dynamics are generally thought to be one of its key
signatures. The stability of this pattern is of fundamental
importance in biology because the dynamics of pheno-
types and genotypes are central to evolutionary and eco-
logical processes. Furthermore, the absence of oscillations
could be interpreted as the absence of an antagonistic
interaction. We have shown here that in a simple model of
antagonistic coevolution between two species, phenotypic
switching – transmitted to the next generation through
non-genetic inheritance – can have a dramatic effect on

the patterns of antagonistic coevolution. Minimal levels
of induced phenotypic switching can completely elimi-
nate oscillatory dynamics and result in stable frequencies.
This therefore suggests that even in the presence of strong
links between the two species (i.e., strong selection, high
specificity, etc.), antagonistic coevolution need not result
in fluctuations of genotypes and phenotypes.
We have identified three parameters that affect the

threshold level of induced switching at which cycles disap-
pear. The first is the strength of selection in an antagonis-
tic species interaction. For the threshold level to be high,
both species need to suffer large fitness costs, to the extent
that when selection is strong enough cycles will never
be affected. Parasites may indeed pay such costs because
their reproduction often depends on a successful antago-
nistic interaction with a host (see e.g., [24]). On the other
hand, while both hosts and predators suffer fitness costs
from being infected, or not being able to predate, their
costs are arguably much lower. Second, an increase in g,
the number of generations of the faster evolving species
(e.g., the parasite) per generation of the other species (e.g.,
the host), typically reduces that threshold value. This is
particularly relevant in the case of microparasites whose
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A

B C

Figure 4 Impact of the three evolutionary forces of our model on the change in phenotype frequency x and y during a single time step
(one generation), as given by equations (1), and (2). The beginning and end of each arrow marks the phenotype frequencies before and after
the respective step. As can be seen, selection tends to produce oscillations, whereas both induced and stochastic phenotypic switching tend to
dampen these oscillation. Parameters used are (A) sX = sY = 0.5, (B) αX = αY = 0.2, and (C) μ = 0.1.

generation times can bemany orders ofmagnitude shorter
than that of their hosts. Finally, stochastic events affecting
phenotypic switching can also reduce the threshold value.
As stochastic switching events are increasingly being dis-
covered in the microbial world, this effect might again be
most relevant in the case of host-parasite interactions.
What makes the cycles disappear? Fundamentally,

cycles depend on time-lagged, negative frequency-
dependent selection (see e.g., [25]). Any factor that acts
to reduce the time-lag will act to reduce the amplitudes
of cycles. In the absence of induced phenotypic switch-
ing, the speed at which the rare phenotype with a fit-
ness advantage will increase in frequency depends on
the strength of the antagonistic interaction. Lower fit-
ness costs, higher discrepancy in generation times (i.e.,
higher g) and higher mutation rates all act to reduce
the realised strength of interaction. For example, fast
evolution in one species can lead to dampened cycles,
masking interactions such that even though two species
might be tightly linked (i.e., under strong selective pres-
sure), the realized strength of interaction is low [26].
In the presence of induced phenotypic switching, there

is limited scope for selection to reduce the frequency
of the disadvantaged (common) phenotype; for exam-
ple when induced switching occurs, counter-adaptation
occurs instantly at rate α, without the action of natural
selection.
A more formal way to describe this phenomenon is

to realize that under selection, the change of pheno-
type frequency in a single generation in one species, say
X, depends on the variance of phenotype frequencies,
x(1 − x). This leads to a certain inertia characteristic of
natural selection that produces the time-lags in counter-
adaptation and thus the cyclical dynamics. Imagine a
very common phenotype of X that is confronted with its
equally common matching phenotype of Y, reducing its
fitness. While this matching is obviously detrimental to
this phenotype, the change in x in the next generation
will be relatively small because individuals with this phe-
notype are mostly competing against individuals of the
same phenotype (see upper right and lower left corners of
Figure 4A). Under induced switching, however, this is not
the case: under the same scenario, the change in x does
not depend on the variance in phenotypes frequencies: a
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proportion α of the common X phenotype that is matched
by Y will immediately switch to the other phenotype in
the next generation (which is why the arrows are so much
longer in the corners of Figure 4B). As a consequence, the
time-lag will be reduced and oscillations of phenotype fre-
quencies x will gradually vanish. Similarly, high levels of
stochastic switching will destroy oscillations in phenotype
frequencies (Figure 4C).
Overall, one of the most striking findings of this

study is just how little phenotypic switching, especially
interaction-induced, is necessary to completely eliminate
cycles. One is tempted to speculate that such a process
could be one of the reasons why evidence of dynamic poly-
morphisms is so rare, apart from the fact that long-term
observations are difficult [7]. However, there are a num-
ber of caveats to consider. First, some antagonistic systems
are characterised by strong selection [24], in which case
we would expect that cycles would be maintained even
in the presence of induced phenotypic switching. Second,
evidence for induced phenotype switching as envisioned
in this model is still rare, despite the fact that the number
of demonstrations of strain- or pathogen-specific immu-
nity has been steadily increasing. Third, not every type of
induced switching fits the implementation in our model.
For example, maternal transfer of antibodies can make the
offspring resistant to a pathogen strain encountered by
the mother, but it does not come at the cost of becom-
ing susceptible to another strain. However, such a tradeoff
assumption is necessary for oscillations to appear in the
first place – the model simply argues that if these trade-
offs do exist such that oscillations could be expected all
else being equal, then phenotypic switching can dampen
the oscillations altogether. Fourth, to what extent phe-
notype switching is stable across generations is currently
largely unknown, and its adaptive value is an open ques-
tion as well. Fifth, antagonistic fitness interactions are
often resulting in fluctuating population densities, which
may in turn affect themselves evolutionary dynamics
[26-30]. In order to understand the nature of the dynamics
of phenotype frequency oscillations, we have purpose-
fully ignored such population dynamics. Furthermore,
how these results extend to complex communities of mul-
tiple species currently remains unknown. Finally, costs
of induced switching may further reduce its dampening
effects, provided that these costs are paid only by those
individuals who are actually switching. Since we assume
that only individuals affected by the interaction transmit
the opposite phenotype, the impact of such costs can by
easily calculated by multiplying relative fitness coefficient
1 − s by 1 − c, where c is the cost of switching. In the
case of species X, the selection coefficient in eq. (1), sX ,
would by substituted by sX + c − sXc. In contrast, in the
presence of a general cost of maintaining a sensory mech-
anism for an antagonistic interaction, every individual

would pay the same cost, and relative fitness would not be
affected.
One of the important assumptions of this study is that

the model underlying the antagonistic interaction is of a
‘matching-alleles’ type. Such a model is mostly applica-
ble in the case of hosts with a specific immune system,
and antigenic parasites, which have to specifically match
the host in order to infect it. By contrast, interactions in
many plant-pathogen systems are usually thought to be
of a ‘gene-for-gene’ type, where a host needs to recog-
nise specific ‘effectors’ of the parasite in order to launch
its defence [31]. In spite of this difference, the impli-
cations of this study bear similarity to the studies of
plant-pathogen models, where the conditions for the per-
sistence of oscillatory dynamics and polymorphisms were
thoroughly investigated. In particular, it has been pre-
viously noted that uncoupling of host and parasite life
cycles in time or space can lead to a stabilization of allele
cycles [32]. One good example is a high level of polycyclic-
ity in a parasite life cycle, which was shown to induce
stable polymorphism over time [33], in analogy to the
results of our study (cf., Figure 3B). Analogously, high
mutation rates can lead to stable equilibria of allele fre-
quencies in plant-pathogen systems [34,35]. Altogether,
the analogies between the ‘matching allele’-based systems
and the ‘gene-for-gene’-based systems point to the impor-
tance of empirical studies of non-genetic inheritance in
both plant-pathogen as well as animal-parasite systems.

Conclusion
Environmentally induced phenotypic change that is stable
across generations has recently been demonstrated in a
number of cases, many of them involving stable epigenetic
modifications [36,37]. Given the recent advances in this
field, we expect many more demonstrations of these phe-
nomena, and we see no obvious reason why they should
not be observed in the realm of antagonistic interactions,
especially since all species are likely to suffer severe fit-
ness consequences if they are at the losing end of these
interactions.
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