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Abstract

complex interference dynamics.

local maxima that exist in rugged fitness landscapes.

Background: When beneficial mutations present in different genomes spread simultaneously in an asexual
population, their fixation can be delayed due to competition among them. This interference among mutations is
mainly determined by the rate of beneficial mutations, which in turn depends on the population size, the total
error rate, and the degree of adaptation of the population. RNA viruses, with their large population sizes and high
error rates, are good candidates to present a great extent of interference. To test this hypothesis, in the current
study we have investigated whether competition among beneficial mutations was responsible for the prolonged
presence of polymorphisms in the mutant spectrum of an RNA virus, the bacteriophage Qp, evolved during a large
number of generations in the presence of the mutagenic nucleoside analogue 5-azacytidine.

Results: The analysis of the mutant spectra of bacteriophage QB populations evolved at artificially increased error
rate shows a large number of polymorphic mutations, some of them with demonstrated selective value.
Polymorphisms distributed into several evolutionary lines that can compete among them, making it difficult the
emergence of a defined consensus sequence. The presence of accompanying deleterious mutations, the high
degree of recurrence of the polymorphic mutations, and the occurrence of epistatic interactions generate a highly

Conclusions: Interference among beneficial mutations in bacteriophage Q@ evolved at increased error rate permits
the coexistence of multiple adaptive pathways that can provide selective advantages by different molecular
mechanisms. In this way, interference can be seen as a positive factor that allows the exploration of the different
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Background

Beneficial mutations are the substrate upon which nat-
ural selection acts to drive adaptive evolution. For a
beneficial mutation to fix in a population it is necessary
that it survives genetic drift and that under the influence
of selection displaces the rest of genomes. This means
that any beneficial mutation remains as a polymorphism
for a certain period of time, which in asexual popula-
tions lacking recombination is determined not only by
its selective coefficient but also by the probability that
other beneficial mutations are present at the same time
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in the population [1,2]. When beneficial mutations are
scarce, they can be fixed before a secondary mutation
arises, and adaptation takes place through the sequential
fixation of mutations [3]. In contrast to this, when bene-
ficial mutations are frequent, their fixation usually does
not take place before one or more secondary beneficial
mutations are generated. Genomes carrying the second-
ary mutations spread simultaneously with the genomes
containing the primary one, delaying its fixation, and oc-
casionally causing its elimination [4-10]. This competi-
tion among beneficial mutations is known as dynamics
of interference. Whether a secondary mutation will dis-
place a previously spreading one depends, among other
factors, on the frequency reached by the first mutation
when the second one arises, and on their relative
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selective values, which in the last term are determined
by the distribution of beneficial mutation effects.

The frequency of beneficial mutations, and thus the
intensity of interference, depends on several factors,
among which some of the most relevant are the popula-
tion size, the error rate, and the degree of adaptation of
the population [11,12]. In large populations a high num-
ber of genomes replicate simultaneously, increasing the
probability of generating beneficial mutations that can
compete for fixation. In addition, the time necessary to
fix any substitution is longer in large populations than in
smaller ones, which also increases the opportunities for
interference [13,14]. The increase of the error rate is
associated with higher numbers of both deleterious and
beneficial mutations per genome. In this situation, the
fixation of beneficial mutations can be delayed not only
by the coexistence of several lines carrying different
mutations but also because at high error rate beneficial
mutations arise in deleterious backgrounds, thus ham-
pering the action of selection [14-16].

The dynamics of interference has been the focus of a
number of theoretical and experimental studies. Theor-
etical studies establish different assumptions concerning
the fitness effects of beneficial mutations and the genetic
backgrounds where they can arise. The clonal interfer-
ence model [13,14] assumes that most beneficial muta-
tions have different selective values and always appear in
the previously fixed background. The assumption that
secondary mutations never appear in the genomes bear-
ing a mutation that is in the process to fixation means
that in this model competition takes place among gen-
omes differing in a single beneficial mutation. By con-
trast, the multiple mutations model [17-19] assumes
that beneficial mutations have a single characteristic se-
lective value and can appear in any genetic background,
including those containing beneficial mutations gener-
ated previously and still not fixed. In this way, competi-
tion can also occur among genomes differing in the
number of beneficial mutations. Finally, the full interfer-
ence model [20,21] tries to eliminate the limitations
above by considering that beneficial mutations of differ-
ent selective values can arise in any genetic background.

Each of the theoretical approaches predicts a particular
dynamics of adaptation as a function of the population
size and the error rate, and experimental studies have
been designed to verify whether the behaviour of real
populations of bacteria [11,22,23], yeast [17], or viruses
[24] fit the theoretical predictions. Interference has also
been studied at the genetic level by tracing specific
mutations with particular labels [20,25], and by sequen-
cing ensembles of individual genomes isolated from
adapting populations [23,26-30]. This latter scenario
allows analyzing the variation in the frequency and dis-
tribution of particular beneficial mutations along the
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adaptation process, which can shed much light about
how interference affects the fate of beneficial mutations.
In this work we analyze the results of a previous evo-
lution experiment carried out with a population of an
RNA virus, the bacteriophage Qf, evolved for a large
number of generations in the presence of the mutagenic
nucleoside analogue 5-azacytidine (AZC) [31] which
increases the virus error rate [32]. The initial objective
of the experiment was to characterize the possible
mechanisms providing resistance to AZC in bacterio-
phage Q. It is important to note that during adaptation
to mutagens, the same agent that acts as selective pres-
sure also can interfere with the fixation of adaptive
mutations, due to the increased number of errors gener-
ated in its presence. The analysis of the populations
obtained at different points of the evolutionary process
showed the fixation of two substitutions, A2187C that
has a general beneficial effect, and A1746U with a select-
ive advantage in the presence of AZC and a fitness cost
in its absence [31]. In addition to these, six other muta-
tions were detected as polymorphisms that, despite the
demonstrated selective value of at least two of them, did
not reach fixation after a large number of transfers in
the presence of AZC. Since the conditions under which
bacteriophage QB was propagated in this experiment
(high mutation rate and large population sizes) favour
the coexistence of multiple beneficial mutations, we
thought that interference among beneficial mutations
could be one of the reasons underlying the prolonged
presence of polymorphisms. To further study whether
this process operates during the evolution of bacterio-
phage Qp at increased error rate, we have analyzed how
polymorphic mutations are distributed in individual
virus genomes isolated at different points of the evolu-
tionary series. This approach has allowed us to identify
several competing lines carrying different combinations
of polymorphic mutations which differ in their fitness
values and in their ability to fix when present in a sim-
pler mutant spectrum. The presence of additional muta-
tions accompanying the polymorphic ones, the high
frequency of recurrent mutations, and the occurrence of
epistatic interactions contribute to generate a highly
complex dynamics that would likely require improved
theoretical models to be successfully described.

Methods
Viruses and bacteria. Standard procedures for infection
Bacteriophage Qf} was routinely propagated by infecting
log-phase cultures of Escherichia coli, strain Hfr (Hayes)
in NB medium (8 g/l Nutrient Broth from Merck and
5 g/l NaCl). The virus was adapted to replication in li-
quid culture medium in our laboratory as described [32].
Infections in liquid medium were always carried out
using fresh exponential phase E. coli cultures (with an
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optical density at 550 nm between 0.6 and 0.8) that were
infected with the virus at the multiplicity of infection (moi)
indicated in each experiment. After 2 h of incubation at
37°C with good aeration, cultures were treated with 1/20 vol
of chloroform for 15 min at 37°C with shaking (300 rpm).
Virus supernatants were harvested upon centrifugation at
13000 x g for 10 min and maintained at 4°C for short-term
use (less than 15 days) or at -80°C for long-term storage.
Virus titres were determined by plaque assay and expres-
sed as the number of plaque forming units (pfu) per ml of
the phage suspension.

Virus populations were used to obtain biological clones
that correspond to lytic plaques obtained in semisolid agar.
Virus clones were isolated by punching and removing the
top and the bottom agar around well-separated lytic pla-
ques. The agar containing the lytic plaque was transferred
into an eppendorf tube with 1 ml of phage buffer (1 g/l gel-
atine, 0.05 M Tris—HCl, pH 7.5, and 0.01 M MgCl,) and
50 pl of chloroform, and incubated for 1 h at 28°C with
shaking (300 rpm). After centrifugation at 13000 x g for
15 min to clarify the supernatant, the latter was stored over
25 ul of chloroform.

Serial transfers of bacteriophage Qp

Prior transfers: A population of bacteriophage Qp, previ-
ously adapted to replicate in our laboratory (population
QPo), was used to infect two parallel cultures of E. coli in
exponential phase at an initial moi = 1 pfu/cell in a vol-
ume of 10 ml either in the absence of AZC (population
Qp-control) or in the presence of a gradually increased
AZC concentration (population QB-AZC) (Figure la).
After 2 h of incubation at 37°C with good aeration, the
virus supernatants were collected as described above, and
1 ml of each phage suspension was used to infect a fresh
E. coli culture. Virus titres were determined each 10 trans-
fers, which allowed us to estimate the number of viruses
used to initiate each subsequent transfer. This procedure
was repeated for a total of 70 transfers in both the control
population and in the AZC-exposed population. Virus
populations were isolated throughout the transfer series
and the number of transfers experienced by each of them
was indicated in brackets beside the name of the popula-
tion (Figure 1a) [31].

New transfers: The population QB-AZC(t70) was sub-
jected to 20 additional transfers, the first 10 in the presence
of 80 pg/ml of AZC and the last 10 in the presence of
100 pg/ml of AZC (Figure 1b). Transfers were carried out
as described above. The number of viruses used to initiate
each subsequent transfer was always above 107 pfu.

RNA extraction, cDNA synthesis, PCR amplification and
nucleotide sequencing

Virus RNA was prepared following standard procedures
[31,32] from both complex populations, to determine
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the consensus sequence (from nucleotide 180 to nucleo-
tide 4180), and biological clones, to determine individual
virus sequences (from nucleotide 1485 to nucleotide
4028). Sequences were deposited in NCBI GenBank with
accession numbers KC137648- KC137682.

RNAs were amplified by RT-PCR using Avian Myelo-
blastosis Virus RT (Promega) and Expand High Fidelity
DNA polymerase (Roche). The ¢DNAs were purified
with a Qiagen purification kit and subjected to cycle se-
quencing with Big Dye Chemistry (Applied Biosystems;
Perkin Elmer). The following pairs of oligonucleotide
primers were used for RT-PCR: P1 forward (5CGAAT
CTTCCGACACGCATCC3') with P1 reverse (5’AAACG
GTAACACGCTTCTCCAG3') to amplify from nucleo-
tide position 150 to 1497; P2 forward (5’CTCAAT
CCGCGTGGGGTAAATCC3') with P2 reverse (5'CA
GAAAATCGGCAGTGACGCAACAS3') to amplify from
nucleotide position 1407 to 2817; P3 forward (5GTGC
CATACCGTTTGACT3)) with P3 reverse (5'TCGTG
CCCTGGAAGACC3') to amplify from nucleotide pos-
ition 2254 to 4095; and P4 forward (5GCGGCAAG
CACTACTATTCTS3') with P4 reverse (5GATCCCC
CTCTCACTCGTS3') to amplify from nucleotide position
3541 to 4195. Sequences were aligned with the consen-
sus sequence of the wild type phage with Clustal W.
Mutations relative to the consensus sequence were iden-
tified using the program BioEdit. Nucleotides were
numbered according to the sequence of a cDNA of
bacteriophage QP cloned in the plasmid pBR322 [33].

Preparation of virus clones through directed mutagenesis
of an expression vector of bacteriophage Qf8

The plasmid pBRT7Qp, which contains the cDNA of the
bacteriophage QP cloned in the plasmid pBR322 [33] was
used to express the wild type virus (Qp,) and also mutant
viruses containing specific substitutions. Mutagenesis
was carried out using a QuickChange II Site-Directed
Mutagenesis Kit from Stratagene. Primers 5CTTAGAC
TCGTCTGAGGTGACTGTTTACGGAGACGA3/, 5'CC
TCTTAGGGGTCCATCGAGTTGCGATTCTGCGG3/,
5'CCATCGATCAGCTTATCTGCAGGAGTAATCCTA
CGAAG3/, and their complementary were used to
introduce the substitutions C3413G, G3945A, and
U3989C respectively. The primers used to build the
mutants containing A1746U, A2982G, and U3582C
had been described previously [31]. The procedures
to isolate the site-directed mutant viruses were as
detailed in [31]. Each of the experiments carried out
with viruses obtained upon expression of the muta-
genized infectious clone was initiated with a single
lytic plaque whose sequence had been previous-
ly analyzed to check the presence of the desired
mutation.
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a) Previous transfers

10 ug/ml AZC 20 ug/ml AZC 30 ug/ml AZC
QB, —— |QB-AZC(t20) — | QB-AZC(t30) —__, QPB-AZC(140)
20 transfers 10 transfers 10 transfers
50 ug/ml AZC 60 ug/ml AZC 80 pg/ml AZC
——+ QPB-AZC(t50)] ——— QPB-AZC(t60) ———  QB-AZC(t70)
10 transfers 10 transfers
No AZC
QB, >

10 transfers p2187¢ (Fixed at transfer 30)
A1746U (Fixed at transfer 40)
6 polymorphisms

Qp-control(t70)

70 transfers

b) New transfers

80 ug/ml AZC

—_—

QB-AZC(t70)
10 transfers

100 ug/ml AZC
—_—

10 transfers

A2187C (Fixed at transfer 20)
G1773A (Fixed at transfer 50)

1 polymorphism

QB-AZC(t90)

A2187C (Fixed at transfer 30)
A1746U (Fixed at transfer 40)

15 polymorphisms

Figure 1 Scheme showing the serial transfers experienced by bacteriophage Q. a) Populations obtained in our previous work [31] that
have also been used in the current work. b) Progression of the transfers series to obtain the new population QB-AZC(t90). The procedure
describing how transfers were carried out is described in Methods. Populations were named QB-AZC(tx) or QB-control(tx) , where x indicates the
number of transfer at which they were isolated. The mutations fixed and the number of polymorphic mutations at the end of each transfer series
are also indicated. Boxes filled in yellow enclose populations where both the mutant spectrum and the consensus sequence have been analyzed.
Non-filled boxes enclose populations analyzed only at the level of consensus sequence. Consensus sequences were analyzed from nucleotide 180

to 4180. Sequences from individual viruses spanned from nucleotide 1485 to 4028.

Determination of relative fitness values of bacteriophage
QB mutant viruses

Growth rate values were used as a surrogate of fitness.
To determine them, liquid cultures containing 10® bac-
teria growing in exponential phase were inoculated with
10* pfu of the site-directed mutant indicated in a final
volume of 1 ml. After two hours at 37°C with good aer-
ation, the virus supernatants were collected as described
above and titrated to estimate the virus yield. Prelimin-
ary assays showed that the virus used as reference (the
wild type virus, QP obtained upon expression of the
infectious clone of bacteriophage QP described in the
previous section) grew exponentially during this time
interval. Growth rate determinations for each virus were
carried out in triplicate in an assay which always

included the reference virus. Absolute fitness for a given
mutant was calculated as the change in log, of the virus
titre, and relative fitness was defined as the ratio be-
tween the absolute fitness of the mutant assayed and the
absolute fitness of the reference virus.

Competition between bacteriophage Qp virus clones

Competitions between bacteriophage Qpf virus clones
(QPwt and the site-directed mutants indicated in each
experiment) were carried out by mixing equal amounts
of each competitor virus (10° or 10’ pfu from each of
them) which were used to infect 10° bacteria in a final
volume of 10 ml. Each new transfer was initiated with
1 ml of a dilution of the previous virus supernatant to
maintain a moi about 0.01. All the competitions were
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carried out in duplicate. Evolution took place either in
the presence (60 pg/ml) or in the absence of AZC. The
population obtained after the number of transfers indi-
cated was sequenced to determine whether one of the
viruses had become dominant.

Results

Previous results

In our previous work [31] a population of bacteriophage
QP was evolved during 70 transfers under two parallel
transmission regimes that differed in the presence of the
mutagenic nucleoside analogue AZC. In this way we
obtained the population Qp-control(t70) evolved at the
standard error rate of the virus, and the population Qp-
AZC(t70) evolved at artificially increased error rate
(Figure 1a). These populations had in common the fix-
ation of substitution A2187C, and differed in the presence
of substitutions A1746U, which was only fixed in popula-
tion QP-AZC(t70), and substitution G1773A, which was
exclusive of population Qp-control(t70) (Figure 1a). Popu-
lation QB-AZC(t70) showed a statistically significant
higher mutation frequency in the mutant spectrum than
population Qp-control(t70) (3 x 107 versus 2.5 x 10™*
substitutions per nucleotide). In addition, 6 polymorphic
mutations (U1520C in the coat protein gene, and
A2982G, C3413G+U, U3582C, G3945A, and U3989C in
the replicase gene) were detected in population QB-AZC
(t70). In contrast to this result, population Qp-control
(t70) showed no polymorphisms in its consensus se-
quence, and only one substitution was represented at a
frequency of 0.2 when the mutant spectrum was analyzed
through sequencing of 10 biological clones.

Competition experiments between the wild type virus
and two single-directed mutants containing the replicase
polymorphic substitutions A2982G and U3582C showed
that both could fix in only five transfers in the presence
of AZC, which clearly demonstrates that they have a se-
lective advantage under this condition, and can fix when
the complexity of the mutant spectrum is reduced.
These results motivated us to investigate how the com-
plexity of the mutant spectra generated at increased
error rate interferes with the fixation of beneficial
mutations.

Extended evolution of population QB-AZC(t70) in the
presence of AZC leads to a further increase in the
number of polymorphims

Population QP-AZC(t70) described in the previous sec-
tion was subjected to 20 additional transfers, the first 10
in the presence of 80 pg/ml of AZC and the last 10 in
the presence of 100 pg/ml of AZC (Figure 1b). In this
way we obtained the population QB-AZC(t90), evolved
during 90 transfers in the presence of AZC. The analysis
of the consensus sequence of this population revealed
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that none of the polymorphic mutations previously iden-
tified was fixed at transfer number 90. Moreover, the
analysis of 15 biological clones isolated from population
QB-AZC(t90) revealed the presence of 9 additional sub-
stitutions that were represented at high frequency (> 0.2)
in the mutant spectrum (Table 1).

To study how polymorphic mutations distribute in
individual virus genomes along the evolutionary series
carried out in the presence of AZC, we also analyzed
the mutant spectrum of two previous populations
[QB-AZC(t60) and QB-AZC(t70), see Figure 1]. We
isolated 10 biological clones from each population and
sequenced the genomic region where polymorphic
substitutions had been identified in our prior work
[31]. We sequenced biological clones instead of mo-
lecular clones to ensure the analysis of viable viruses
and to identify possible associations among mutations
in the same genome. The whole list of polymorphisms,
as well as their distribution in the virus genomes ana-
lyzed is shown in Table 1. All the genomes listed in
Table 1 also carry substitutions A2187C, which was
fixed a transfer number 30, and A1746U, which was
fixed at transfer number 40, together with a number
of additional mutations that were exclusive of each of
them (see Additional file 1). All sequences were sub-
mitted to NCBI GenBank. Their accession numbers
are KC137673-KC137682 (virus clones from popula-
tion QB-AZC(t60), KC137663-KC137672 (virus clones
from population QB-AZC(t70), and KC137648-KC137662
(virus clones from population QB-AZC(t90)).

Another criterion to identify polymorphic mutations is
their presence as double bands, consisting of a mixture
of the mutated and the wild nucleotides, in the chroma-
tograms of the consensus sequences of the correspond-
ing virus populations. In good agreement with this
expectation, all substitutions represented at a frequency
> 0.2 in the mutant spectrum of a given population
appeared also as double peaks in the chromatogram of
the consensus sequence of the same population. This ap-
proach was also used to identify the transfer number at
which polymorphisms could be first detected. To this
end we examined the chromatograms corresponding to
the consensus sequences of populations QB-AZC(t20),
QPB-AZC(t30), QB-AZC(t40), and QB-AZC(t50). We
observed that some polymorphisms could be detected as
double bands in the chromatograms at transfers as early
as 30, whereas others could not be detected until trans-
fer number 90 (Table 2). Substitution U3989C which in our
previous work [31] was identified as a polymorphism at
transfer number 40 together with A3945G, was actually
already present as a double band at transfer number 30.

The location of polymorphic substitutions in the gen-
ome of bacteriophage Qp shows a clear preference for
the replicase gene (Table 2). However, we must take into
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Table 1 Distribution of polymorphic mutations in individual viruses isolated from bacteriophage QB populations
evolved in the presence of AZC

Nt' 1520 1604 2059 2277 2378 2384 2471 2982 3413 3545 3582 3879 3945 3989 4006
we U C C A C C C A C C u C G u A
Population QR-AZC(t60)*
G C G
G C
G C
G, C
Gs

Gs . . . . . . . . G . . . . . G
G A ‘ . G G

G

Co . . . . . G G

Co . ‘ . . . . . . . . . ‘ . C
Population QB-AZC(t70)°

G C . . . . , . G , . . . A

G C ‘ G

G C A . A A G . G G

O O O o
> > > >

O N NN

Population QR-AZC(t90)*
¢ C

G
G
G
Gs
C6
G
Ce

O O 0O 0O 0O 0O N
[

O O O o 60 o o O

> > > > > > >

O O 0O N0 0O 0O NN

O C o C

"Nucleotide positions where polymorphisms were detected.

2Nucleotides present at the positions indicated in the wild type virus.

3Nucleotides present at the positions indicated in the virus clones (indicated as C,, where x is a number arbitrarily assigned) isolated from that populations. The
region sequenced comprises from nucleotide 1485 to nucleotide 4028.
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account that the lysis gene and the starting of the coat
protein gene were only analyzed at the level of consen-
sus sequences. Although we did not observe any double
band in the chromatograms corresponding to these
regions, we cannot exclude that some polymorphism
could have been detected upon the analysis of the mu-
tant spectrum.

Polymorphic mutations differ in their effects on fitness
and in their ability to fix when present in a simple mutant
spectrum

An explanation for the abundance of polymorphic muta-
tions is that they have a selective advantage that permits
them to increase their frequency thanks to the action of
selection. To check this assumption we determined sep-
arately the ratio ds/dn for the polymorphic and non
polymorphic mutations present in each population ana-
lyzed (Table 3). When mutations repeated in several
genomes of the same population were counted only
once, we found that the average ratio ds/dn was larger
than 1 in both cases, rejecting the action of positive selec-
tion. However, the average ds/dn value obtained for the
polymorphic mutations was significantly lower (p < 0.05,
Student’s ¢ test for the difference of means) than that esti-
mated for the non polymorphic substitutions. A similar
analysis carried out counting the repeated mutations the

Table 2 Substitutions that remain as polymorphisms at
transfer number 90 in the bacteriophage Qp evolved in
the presence of AZC

Substitution Gene' change? First detected®
U1520C Coat Syn 50
C1604G Coat Syn 60
C2059G Read-through T/5 60
A2277G Read-through K/E 90
(C2378G Replicase N/K 90
(C2384(G+U) Replicase Syn 60
C2471G Replicase Syn 30
A2982G Replicase T/A 50
C3413(U+G) Replicase Syn 50
C3545A Replicase Syn 70
U3582C Replicase Y/H 50
(C3879G Replicase Y 70
G3945A Replicase G/S 40
U3989C Replicase Syn 30
A4006G Replicase K/R 60

'Location of each substitution in the genome of the bacteriophage QB.

2Type of change produced by each nucleotide substitution. In the case of non
synonymous changes, the amino acid substitution is indicated.

3Transfer number at which each substitution was first detected as a double
band in the chromatogram corresponding to the consensus sequence of that
population. The genomic region analyzed comprised from nucleotide 180 to
4180.
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number of times that they appear in each population led to
different results. In this case the average ds/dn obtained for
the polymorphic substitutions was reduced to a value close
to 1, whereas the average for the non polymorphic was kept
almost unaltered (p > 0.05, Student’s ¢ test for the difference
of means) (Table 3). These findings suggest that positive se-
lection acts at a higher extent in the substitutions repre-
sented as polymorphisms than in the non polymorphic.

There are, however, two particular situations in which
deleterious or neutral mutations can also reach high fre-
quencies. The first one is the occurrence of population
bottlenecks, a circumstance that reduces the genetic di-
versity, leading to the fixation of mutations independ-
ently of their selective value [2,36-38]. The second one is
hitchhiking with beneficial mutations. Since the bac-
teriophage QP populations analyzed in this work were
propagated using large population sizes (above 107 pfu,
see Methods), we can discard the first possibility. We
neither found clear evidences of hitchhiking for most of
the substitutions analyzed. If a mutation had reached
high frequency because of its presence in the same gen-
ome where a beneficial mutation is generated, both
mutations should appear always linked and should have
been first detected at the same transfer number. The
only two substitutions that meet these two requirements
were U1520C and A2982G (see Tables 1 and 2). Since
A2982G is beneficial in the presence of AZC [31], the
only mutation that seems to have reached high fre-
quency in our experiment because of hitchhiking is
U1520C. However, as we will explain in the discussion,
we cannot discard that some neutral or deleterious
mutations could have achieved high frequency due to
hitchhiking, even in the absence of a perfect association
with a beneficial mutation.

To ascertain whether some of the polymorphic substitu-
tions shown in Table 1 have selective advantages we pre-
pared single site-directed mutants containing A1746U and
the polymorphic substitutions that had been identified in
population QB-AZC(t70) (QPai7asu, QPBazes2c: QPusssac
QBc3aize QPassasa, and QPusgsoc), and calculated their
relative fitness values using the wild type virus, QP as
reference (see Methods). We observed that, with the only
exception of QPgsossa, all the mutants assayed had lower
fitness than the virus QP in the absence of AZC (Table 4).
In contrast to this, mutant viruses QPaz9s26, QPusss2c, and
QPgsoasa had higher fitness than the virus QP in the
presence of AZC (Table 4). To check whether the muta-
tions contained in the site-directed mutants assayed can fix
when present in a simple mutant spectrum, we carried out
competition experiments of these viruses with the virus
QP After a number of transfers either in the presence or
in the absence of AZC we determined the consensus
sequences of the new populations generated to check the
status of the substitutions analyzed (Table 4). In good
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Table 3 Ratio ds/dn for the nucleotide substitutions found in the bacteriophage QB populations evolved in the

presence of AZC

Repeated mutations counted once

ds/dn’

Repeated mutations counted all the times they appear

Population Non polymorphic substitutions?> Polymorphic substitutions> Non polymorphic Substitutions®> Polymorphic Substitutions?
QR-AZC(t60) 57 4.0 53 1.7
QR-AZC(t70) 57 27 6.9 1.5
QB-AZC(t90) 72 32 7.1 16
Average3 62 +09 33+£07 6410 16+ 0.1

'The value ds/dn indicates the ratio of synonymous to non synonymous substitutions corrected by the potential number of synonymous and non synonymous
positions. The genomic region analyzed comprised from nucleotide 1485 to nucleotide 4028, excluding the non coding region (from nt 2331 to nt 2351). The
number of synonymous and non synonymous positions was evaluated using the program SNAP [34,35].

2Polymorphic substitutions (those shown in Table 1 together with the fixed substitutions A1746U and A2187C) and non polymorphic substitutions (those shown
in Additional file 1) were analyzed separately. All these mutations were placed in coding regions.

3Average value of the ratio ds/dn for the 3 populations analyzed. The difference between the average values obtained for non polymorphic and polymorphic
substitutions was significant (p < 0.01 in both analysis, Student’s t test for the difference of means).

agreement with their relative fitness values, mutants
QPaz9s2c: QPusssacy and QPgzoasa fixed in the presence of
AZC, whereas only QPgzessa fixed in the absence of AZC.
These results indicate that substitution G3945A has a gen-
eral beneficial fitness effect that is independent of the pres-
ence of AZC. Taking into account that A2982G and
U3582C were fixed in only five transfers in the presence of
AZC, whereas G3945A needed 15 transfers (Table 4), we
can state that the last substitution has lower selective ad-
vantage under this condition than the first ones. Substitu-
tion C3413G remained as a polymorphism after 15
transfers in both the presence and the absence of AZC,
which agrees with their fitness values close to neutrality.
There is a disagreement between the relative fitness value
of QPa1746u in the presence of AZC (lower than 1) and the
fact that this virus was able to displace the virus QP when
both competed under this condition. This discrepancy sug-
gests that the growth rate of a virus cannot always be a
good predictor of its behaviour when it propagates in the
presence of competitor genomes.

The results showing that substitution U3989C was
deleterious (Table 4) were puzzling since this substitu-
tion reached high frequency in the absence of apparent
hitchhiking with any other substitution (Table 1). A pos-
sibility is that substitution U3989C is a compensatory
mutation that raised high frequency because it reduces
the fitness cost of another mutation previously selected.
U3989C was generated in the genomic context of
A2187C and A1746U. Since A1746U had a fitness cost
in the absence of AZC (Table 4) [31], this substitution
was the most probable candidate to be compensated by
U3989C. To investigate this point we built a site-
directed double mutant containing both substitutions
A1746U and U3989C (QPai746u+usesoc), and deter-
mined its relative fitness in the presence and in the ab-
sence of AZC. The value obtained in the presence of
AZC (0.89 + 0.2) was significantly higher than those
obtained for the single mutants QPai746u and QPusesoc
(p < 0.05, Student’s ¢ test for the difference of means).
However, the relative fitness value obtained in the

Table 4 Relative fitness of bacteriophage Qp site-directed mutants

Site-directed mutant Relative fitness’ Relative fitness’

Dominant virus in competition with QB2,

+AZC -AZC +AZC -AzC
QBa17460 071+002" 058 + 003 QBa17460 QB

QBprosac 124 + 008 089 + 005 QB 082G QB

QBusssac 131+ 003 089 + 006" QBussaac QP

QB33 095 + 0.04" 092 + 007 QBcs4136 + QB (transfer 15) QBcs4136 + QB (transfer15)
QB3040 1.1+ 006 1.02 + 0.05 QBgaa4sn (transfer15) QBg30454 (transfer15)
QBu3osac 0.79 + 0.04" 0.88 + 0.05" QB QB

'Relative fitness was evaluated with respect to the virus QP either in the absence or the presence of AZC (60 ug/ml). The absolute fitness value estimated for
QB Was 15.42 + 0.50 in the absence of AZC and 9.68 + 0.22 in its presence. The asterisk indicates that the difference between the fitness values of the site-
directed mutant and the virus Q.. was significant (p value < 0.05, Student’s t test for the difference of means).

2Competition between the site-directed mutants indicated and the virus Q. was carried out as described in Methods during 5 transfers either in the absence or

the presence of AZC (60 ug/ml).

3Since no virus became dominant at transfer number 5, competitions carried out with viruses QBcs4136 and QBg3sasa Were extended until transfer number 15,

yielding the results shown in the table.
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absence of AZC (0.80 + 0.1) was only significantly higher
that that obtained for the single mutant Qa1746u. Compe-
tition experiments of the double mutant with the virus
QP showed that after five transfers, the wild virus again
dominated in the absence of AZC, indicating that under
this condition substitution U3989C was not able to com-
pensate the fitness cost of A1746U (Figure 2a). In contrast
to this, the double mutant was selected in the presence of
AZC, showing that in this case the combined effect of both
substitutions was beneficial. Only with this result we cannot
distinguish whether the advantage provided by A1746U in
the presence of AZC is strong enough to cause the hitch-
hiking of U3989C or the double mutant QP a1746UU39s0cC IS
more advantageous than the single mutant QBa;746u. TO
test the last possibility we performed another competition
experiment between the double mutant QPa1746u+Uses9C
and the single mutant QBa1746u (Figure 2b). After 10 trans-
fers in both the presence and the absence of AZC, both
viruses remained in the population. The result indicates
that the effect of substitution U3989C was less deleterious
in populations where substitution A1746U was previously
fixed than in the mutational context of the wild type virus.

Some polymorphic substitutions appear in multiple
mutational contexts whereas other ones cannot coexist in
the same genome

The analysis of the virus sequences displayed in Table 1
shows that most polymorphic substitutions are found in
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multiple mutational contexts, which can be indicative of
a high frequency of recurrent mutations in bacterio-
phage Qf. In contrast to this result, substitutions
A2982G and U3582C were never located in the same
genome. This finding is even more surprising if we take
into account that A2982G and U3582C have selective
advantages in the presence of AZC and, hence, their
combination in the same genome could lead to a better
adapted virus. Therefore, we were interested in analyzing
how the behaviour of the double mutant would be. To
this end, we introduced both mutations in the infectious
clone of bacteriophage QP (see Methods), and tried to
recover the viruses expressed. Sequencing of the plasmid
DNA extracted from five E. coli transformed colonies
showed that the site-directed mutagenesis had been suc-
cessful. However, using the same conditions that let us
obtain viruses when transformation took place with the
infectious clone containing any of the two single muta-
tions, we were not able to recover virus from any of the
bacteria transformed with the infectious clone contain-
ing both substitutions. This result strongly suggests that
the presence of both A2982G and U3582C in the same
genome either is lethal for the virus or highly deleteri-
ous, a conclusion that agrees with the absence of any
mutant containing both substitutions in the mutant
spectrum of the populations analyzed in this work
(Table 1), and also with the fitness costs that both sub-
stitutions have in the absence of AZC (Table 4) [31].

Competitor Virus clones in the
virus clones evolved population
a) 5 transfers QB

QBwt =+ QBA1746U +U3989C

o o B

-AZC

5 transfers

A\

o

QBA1746U +U3989C

o

\4

QBA1746U + C)BA1746U +U3989C

o o

+AZC
b) 10 transfers QBat74su + QBat746u + usssac
-AZC O O

10 transfers

QBA1746U + QBA1746U+U39890

+AZC

Figure 2 Competition between different bacteriophage Qp virus clones. a) Q3. and QBa174su+u39s9c: B) QBa1746u aNd QBa1746u+U3980c. The
experiment was carried out as described in Methods. The populations obtained after the number of transfers indicated were sequenced to
determine whether one of the competitor viruses had become dominant.

\4

o o




Cabanillas et al. BMC Evolutionary Biology 2013, 13:11
http://www.biomedcentral.com/1471-2148/13/11

Bacteriophage Qf populations evolved in the presence of
AZC are composed by genomes that can be grouped into
multiple evolutionary lines

The observation that the combination in the same gen-
ome of substitutions A2982G and U3582C, both with
clear selective advantages in the presence of AZC, is le-
thal or highly deleterious, and, hence, they are never
associated in the same genome suggests that during the
evolution of bacteriophage QB under mutagenic condi-
tions, at least two evolutionary lines that evolve inde-
pendently are generated. The first line would comprise
virus clones C; to C4 in population QB-AZC(t60), C; to
Cs in population QB-AZC(t70), and C; to Cg in popula-
tion QB-AZC(t90) (Table 1). Genomes from these viruses
have in common the presence of substitution A2982G, ac-
companied by U1520C, G3945A, and U3989C. The sec-
ond line would contain the virus clones C, to Cg in
population QB-AZC(t70), and Co to C;; in population
QPB-AZC(t90), all carrying substitution U3582C (Table 1).
Finally, a third line could be established containing the
remaining genomes, which lack a clear set of polymorphic
mutations in common.

A phylogenetic analysis carried out with the 35 genomes
analyzed in this work (Figure 3) shows that all the genomes
that we had previously included in line 1 (those carrying
substitution A2982G, together with U1520C, G3945A, and
U3989C) group into a cluster with a high bootstrap value
(cluster a). This cluster is a part of another one (cluster b)
that contains some additional genomes carrying substitu-
tion U3989C. The rest of genomes groups into 4 independ-
ent clusters differing in their polymorphic substitutions
(Figure 3). It is remarkable that whereas all the genomes
containing substitution A2982G are grouped into the same
cluster, genomes containing substitution U3582C are
placed in different ones, suggesting that this substitution
has appeared repeatedly in different evolutionary lines.

Taking into account the transfer number at which each
polymorphism was first detected (Table 2), a feasible se-
quence of events for the generation of the different lines
can be established. Genomes containing A2187C (fixed
at transfer number 30) and A1746U (fixed at transfer
number 40) evolved through the acquisition of add-
itional substitutions that can become represented at high
frequency. One of the mutations appearing first was
U3989C, which spreaded giving rise to the genomes
included in clusters a and b (Figure 3). The remaining
genomes continued replicating, and in this process they
acquired some of the other polymorphic mutations listed
in Table 1. Genomes belonging to different lines can
compete among them, delaying the fixation of their
mutations and allowing for the prolonged presence of a
high number of polymorphisms. Moreover, genomes
within each line can differ in additional polymorphic
substitutions (see Table 1), and also in mutations that
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are exclusive of each of them (Additional file 1), which
can modify their selective advantages adding further
complexity to the competition process.

The presence in different genomes of mutations having a
selective advantage in the presence of AZC interferes
with their fixation

To demonstrate whether the coexistence of multiple evolu-
tionary lines carrying different mutations with selective
advantages in the presence of AZC interferes with their fix-
ation, we compared the results of competition experiments
carried out between different site-directed mutants
(Q|3A1746U» QBA2982G, and QBUSSSZC) and between each one
of the mutants and the virus Q.. (Table 5).

Our results show that the virus QPa;1746u became domin-
ant after 5 transfers when it competed with either QBa»9s2G
or QPusssac, as it happened when the competitor was the
wild type virus (Table 5). In contrast to this result, competi-
tion between the site-directed mutants QPasesog and
QPusssac rendered polymorphisms at both positions after
20 transfers in the presence of AZC (Table 5), indicating
that no virus was dominant in the population at this point.
This result represents a clear delay relative to the fixation
of both mutations in only 5 transfers when the site-directed
mutants competed with the wild type virus.

We also analyzed the behaviour of the site-directed
double mutants, QBai7a6u+azos26 and QPai7asususssac
in competition experiments with the single mutant
QPa174su- In both cases the double mutant completely
displaced the single mutant after 5 transfers in the pres-
ence of AZC (Table 5). However, similar competition
experiments carried out by mixing the two double
mutants or the two double mutants together with the
single mutant QPai746» showed that no virus became
dominant after 20 transfers in the presence of AZC
(Table 5). This result reinforces the view that the spread-
ing of the genomes containing substitution A2982G
interferes with the spreading of the genomes carrying
U3582C.

Discussion

In this work we analyze how beneficial mutations spread
in a virus population when replication takes place at
increased error rate. To carry out this study we have
chosen an RNA virus, the bacteriophage Qf, which as a
consequence of its high error rate [40,41] constitutes ex-
tremely heterogeneous populations composed by a com-
plex mutant spectrum [42]. The presence of AZC in the
growing medium increased the mutation frequency in
viable viruses about an order of magnitude relative to
that observed in virus populations evolved in the ab-
sence of AZC [31]. The mutation excess (Table 1 and
Additional file 1) probably distributes among deleterious,
beneficial and neutral mutations, although the much
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higher frequency of errors having a negative effect on fit-
ness suggests that many of them must be deleterious.
Thus, it is expected that beneficial mutations generated
in the presence of AZC arise in unfavourable genomic
contexts, which can reduce their selective advantages
[14-16]. In addition, when the error rate is high enough
several beneficial mutations can expand simultaneously,
which constitutes another important factor delaying
their spreading in the population [12,13]. Thus, although
replication at high error rate provides important adap-
tive advantages to RNA viruses [43,44], it is also true
that when subjected to increased mutagenesis, they are
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frequently pushed to the edge of extinction [45-47], as a
result of both the increase in the number of deleterious
mutations and the difficulties for the expansion of the
beneficial ones.

The analysis of the consensus sequences and the mu-
tant spectra of the AZC-evolved populations showed the
fixation of two mutations and the presence of a number
of polymorphisms (Table 1) higher than that found dur-
ing the evolution of the same virus in the absence of
AZC (see the two first subsections of Results). It should
also be noted that, given the relatively low number of
genomes analyzed in each population, the frequency of
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Figure 3 Phylogenetic analysis of the virus genomes isolated from bacteriophague QB populations evolved in the presence of AZC.
Different colours are used to distinguish the genomes from each population included in the analysis: green for QB-AZC(t60), pink for QB-AZC
(t70), and orange for QB-AZC(t90). Virus genomes corresponded to those shown in Table 1 and Additional file 1, and are identified using the
same notation. The tree was derived by maximum likelihood methods (PhyML, program seaview 4) [39] using the sequence of the wild type virus
to root the tree. Numbers at each node represent the bootstrap value (carried out with 100 replicates). Clusters described in the main text are
highlighted, and the mutations common to all the genomes included in each one are also indicated.
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Table 5 Competition among different site-directed mutants of bacteriophage Qp in the presence of AZC

Competitor viruses

Viruses present in the final population’

Transfer number 5

Transfer number 20

QB + QBar746u QBa1746u ND?
QBwt + QBazosac QBzos2c ND
QB + QBusssac QBuszssac ND
QBar7a6u + QBazosac QBar746u ND
QBar7asu + QBu3ssac QBar746u ND
QBp2ss26 + QBusssac QBhzesac + QBhzssac +
QBuszssac QBuszssac
QBar7asu + QBa17asu + A20826 QBa1746U + A29826 ND
QBi746u + QBar7asu + U3ssaC QBar746u + U3ssac ND

QBA1746U + A2082G T QBA1746U + U3582C

QBa1746U + 20826 +

QBA1746U + A2082G T QBA1746U + U3582C

QBa1746U + U3s82C

QBAWAGU + QBAWAGU + A20826 T QBA]746U + U3582C

(QBA1746U)3 +

QBa1746U + 20826 +

(@B 746u)3 +

QBA1746U + A2982G +QBA1746U + U3582C

QBa1746U + U3s82C

'Competitions were carried out as described in Methods. The viruses present in the populations obtained at the transfer indicated were identified through the
determination of the consensus sequences at the nucleotide positions that distinguish the competitor viruses.

2ND means not determined.

3In this case, the determination of the consensus sequence do not allow distinguishing whether QBa;746u is present in the populations analyzed or not. We show

this virus in brackets to indicate this uncertainty.

polymorphic mutations could be even higher than we
have reported. Adaptation of bacteriophage MS2 to dif-
ferent selective pressures in the absence of mutagenic
conditions also led to the presence of polymorphisms,
although to a lower extent to that reported in the
current study [26,29]. The findings obtained in studies
performed with DNA viruses, which replicate with lower
error rate than RNA viruses, are more difficult to com-
pare to our results [30]. Nevertheless, evolution of bac-
teriophage T7 in the presence of a mutagen also showed
a dramatic increase in the number of polymorphic sub-
stitutions [48]. Therefore, the high frequency of poly-
morphisms  observed during the evolution of
bacteriophage Qp in the presence of AZC seems to be
due, at least in part, to the increase of the error rate.

The high population sizes used for the transmission of
the virus (above 107 pfu) together with the absence of
clear evidences of hitchhiking suggests that most poly-
morphic mutations provide a selective advantage, at least
in the selective environment provided by the mutagen.
The lower values of the ratios ds/dn obtained for the
polymorphic mutations than for the non polymorphic
ones (Table 3) also supports that selection can be re-
sponsible, at least in part, of the high frequency reached
by some substitutions. In addition, synonymous changes
can also have a fitness effect mediated through cis inter-
actions that may be significant in the case of highly
compacted genomes, as it is the one of bacteriophage
QP [49-51]. In contrast to our assumption that most
polymorphic mutations are beneficial, there are some

studies showing that in natural populations of RNA
viruses many high frequency mutations are deleterious,
and will be later purged by natural selection [52]. The
easiest way for these deleterious mutations to reach high
frequency is their linkage with a beneficial mutation. In
the absence of clear associations among mutations, this
explanation could still be possible if mutations recur fre-
quently as it seems to happen in bacteriophage Qf (see
below).

We have demonstrated that one of the mutations fixed
(A2187C) and at least one of the polymorphic substitu-
tions (G3945A) are beneficial in both the presence and
the absence of AZC (Table 4) [31], whereas others
(A2982G, and U3582C) only provide an advantage in
the selective medium, having a fitness cost under stand-
ard replication conditions [31]. The results obtained
with mutant QPai746u deserve particular attention. This
mutant has lower fitness than the virus QP when they
grow independently. However, QPa1746u fixes in only 5
transfers when both viruses propagate together in the
presence of AZC (Table 4). Fitness is a complex param-
eter that involves many traits, among which some of the
most relevant are the lysis time, the adsorption rate, the
burst size, and the stability of the particles outside of the
host [53]. It is possible that some of these features influ-
ence differently the performance of a virus when it
grows isolated or in competition. In good agreement
with these considerations Springman et al. [48] reported
fitness gains in a population of bacteriophage T7 that,
however, showed a clear decline in the burst size.
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Our results also showed that the fitness advantages
provided by the substitutions assayed were of different
magnitude (Tables 4 and 5), which is in disagreement
with the proposal of the multiple mutations model
which posits a single characteristic value for the coeffi-
cient of selection of all beneficial mutations [17,18]. The
situation becomes more complex due to mutations
whose effects are context dependent. This is the case of
substitutions A2982G and U3582C which were benefi-
cial when present in separate genomes, and, however,
were lethal or highly deleterious when present in the
same genome, providing a clear example of antagonistic
epistasis. Another substitution whose effect varied de-
pending on the mutational context and on the competi-
tor genomes was U3989C. This substitution behaved as
deleterious in both the presence and the absence of AZC
when it was present in the mutational context of the
wild type virus (Table 4), and, however, it could be pro-
pagated when it was present in the mutational context
of substitution A1746U (Figure 2b). These findings sup-
port the notion that epistatic interactions among muta-
tions are very frequent in RNA viruses [6,54-58] and can
influence the adaptive trajectories followed and the in-
tensity of interference. The increase of the error rate
may exacerbate the frequency of this type of interac-
tions, which are not included in any of the current mod-
els developed to explain the fixation of beneficial
mutations in asexual populations.

The fixation of substitution A1746U was not delayed
by the presence in different genomes of either A2982G
or U3582C (Table 5). As a consequence, this substitu-
tion was probably little affected by interference and
could get fixed in population QB-AZC(t40). By con-
trast, substitutions A2982G and U3582C that fixed in 5
transfers when they competed with the wild type virus
remained as polymorphisms during at least 20 transfers
when they competed with each other (Table 5). A simi-
lar competition could be established among the differ-
ent mutants present in the populations analyzed in this
work, supporting that interference among mutations is
one of the reasons underlying the sustained presence of
polymorphisms.

A phylogenetic analysis carried out with the complete
set of genomes obtained at different stages of the evo-
lutionary series allowed us to group them into several
clusters that represent independent evolutionary lines
that may compete among them (Figure 3). In addition
to the mutations representatives of each line, genomes
can also contain different mutations among those
represented at high frequency, and others that are ex-
clusive of each virus. These mutations can modify the
fitness of the genomes where they appear, adding fur-
ther complexity to the process of interference, and
making it difficult to fix any beneficial mutation and
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the emergence of a defined consensus sequence. The
generation of new beneficial mutations in genomes car-
rying others still not fixed, together with the different
magnitude of the effects of beneficial mutations, is
more in line with the model of complete interference
[21] than with the models of clonal interference [13,14]
or multiple mutations [17,18].

Another important finding is that most polymorphic
mutations were present in different genomic contexts,
suggesting that they were generated repeated times.
Results obtained in two adaptation experiments carried
out with the bacteriophage MS2 also showed a high
number of beneficial mutations in different mutational
contexts [26,29]. A theoretical analysis demonstrated
that this repeated presence of mutations was more prob-
ably due to their generation multiple times than to re-
combination [26]. The low capability of Qp replicase to
switch between templates does not allow for homolo-
gous recombination to be observed in most of the
systems assayed [59], as it would be masked by the
much higher frequency of punctual mutations [60].
Therefore, we think that the presence of polymorphic
mutations in different mutational contexts is more likely
due to a high recurrence of punctual mutations than to
recombination. This fact would allow combining several
beneficial mutations in the same genome, alleviating in
this way the costs of interference [61]. However, our
results showing that two of the mutations having high
selective value in the presence of AZC (A2982G and
U3582C) cannot coexist in the same genome suggest
that the fitness landscape for bacteriophage QP is highly
rugged, with the existence of several local maxima where
the virus could be trapped without reaching the best
adaptive solution.

The high incidence of recurrent mutations could also
account for the few hitchhiking mutations found in this
study. Given the high mutation frequencies of the bac-
teriophage Qp populations evolved in the presence of
AZC, it would seem reasonable that almost each genome
with a beneficial mutation in the process to fixation will
also carry a set of hitchhiking mutations. However, the
repeated occurrence of the beneficial mutations on dif-
ferent backgrounds also means that no single set of ac-
companying mutations gets fixed. A similar result was
reported for bacteriophage MS2 adapting to cold tem-
peratures [29], and was also supported by theoretical cal-
culations [62].

Although at a first glance the interference among
mutations can be seen as a negative feature that delays
adaptation, there are also positive consequences that de-
serve to be pointed out. Maybe one of the most relevant
is the coexistence in the population of multiple adaptive
possibilities that can provide selective advantages by dif-
ferent molecular mechanisms. Population bottlenecks
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occurring during the propagation of the virus can lead
to the fixation of different adaptive solutions. In this
way, interference could be seen as a positive factor con-
tributing to the diversification of populations, and per-
mitting the exploration of the different local maxima
that exist in rugged fitness landscapes, such as those
described for RNA viruses [63,64].

Interference among mutations can also play a relevant
role in the extinction of viruses through lethal mutagen-
esis, a new antiviral strategy that derives from theoretical
considerations [65-67] and that consists in the treatment
of virus infections through the artificial increase of the
virus error rate [46,47,68,69]. Our results show that virus
replication under mutagenic conditions can lead to the
simultaneous presence in the mutant spectrum of mul-
tiple mutations conferring different advantages in the
presence of the mutagen. The fixation of these muta-
tions in particular individuals upon transmission of the
virus through population bottlenecks, as indicated above,
can lead to the co-circulation of viruses differing in their
adaptive properties, jeopardizing in this way the efficacy
of further treatments. Given the high error rates of RNA
viruses, similar situations could also occur during the
treatment with some replication inhibitors. Therefore, it
is expected that future research on the evolutionary con-
sequences of the interference among mutations also pro-
vides significant benefits to clinic and epidemiologic
virology.

Conclusions

Evolution of bacteriophage QP at artificially increased
error rate by means of the use of a mutagenic nucleoside
analogue leads to the prolonged permanence of multiple
polymorphisms which could be detected in both the
consensus sequences and the mutant spectra.

Polymorphic mutations have different effects on fit-
ness. Some of them provide selective advantages in both
the presence and the absence of AZC, whereas others
only are beneficial under selective conditions, having a
fitness cost under standard replication conditions. Epi-
static interactions also play a role in deciding whether a
particular mutation will reach high frequency or not.

Polymorphic mutations distribute into multiple evolu-
tionary lines that compete among them making it diffi-
cult the emergence of a defined consensus sequence.
Each evolutionary line can provide a selective advantage
by a different molecular mechanism leading to the coex-
istence of multiple adaptive pathways in the same
population.

Antagonistic epistasis determines that two of the rep-
licase mutations providing selective advantages in the
presence of AZC cannot associate in the same genome.
As a consequence, genomes carrying each of these
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mutations spread simultaneously delaying the fixation of
any of them.

The variety of mutational contexts in which most of
the polymorphic mutations have been detected indicates
that beneficial mutation recur frequently in bacterio-
phage Qp. This circumstance could alleviate the disad-
vantages caused by interference. However, the fact that
some of the adaptive substitutions cannot be combined
in the same genome limits the potential benefits of the
repeated generation of beneficial mutations.

The fixation of mutations in bacteriophage QP evolved
in the presence of AZC is better approached by the
model of complete interference than by the models of
clonal interference or multiple mutations. However, the
presence of epistatic interactions and the high frequency
of recurrent mutations contribute to generate a highly
complex interference dynamics, which would require
further improvements of the theoretical models to be
successfully described.
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