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Abstract

Background: Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000
described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite
their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven
families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has
been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the
family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous
molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most).
Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed
in the context of bee evolution.

Results: We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA
sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned
nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas
the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15%
of the matrix is populated with data. The placement of the root as well as relationships between Andrenidae and
other bee families remain ambiguous, as several alternative maximum-likelihood estimates fall within the statistically
credible set. However, we recover strong bootstrap support for relationships among many families and for their
monophyly. Ancestral geographic range reconstruction suggests a likely origin of bees in the southern hemisphere,
with Melittidae ancestrally located within Africa, and Halictidae, Colletidae, and Apidae within the New World.

Conclusions: Our study affirms the monophyly of each bee family, sister-taxa relationships between Apidae and
Megachilidae (the ‘long-tongued bees’), between Colletidae and Stenotritidae, and between Colletidae + Stenotritidae
and Halictidae. Our analyses reject a Colletidae-basal hypothesis for family-level relationships and instead support
Melittidae as sister to the remaining bees. Southern hemisphere vicariance likely played an important role in early
diversification within many bee families.
Background
Bees (Hymenoptera: Apoidea: Anthophila) provide a rich
system for exploring the evolutionary consequences of a
wide variety of life history characteristics. Bees provision
larvae with pollen and nectar, a trait that evolved in the
early- to mid-Cretaceous from carnivorous, wasp ances-
tors [1-5]. It has been suggested that this transition from
carnivory to pollenivory led to rapid diversification and
expansion of bee lineages as a result of the exploitation of
pollen as a novel resource (i.e., a key innovation [6,7]).
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Within bees, a number of life history traits have evolved
multiple times both within and among bee families, in-
cluding diet specialization, eusociality, and social parasi-
tism (reviewed in [8]). A robust phylogeny is fundamental
to determine how changes in these life history traits have
affected behavior, geographic range, phenology, suscepti-
bility to habitat loss or pathogens, and gene or genome
evolution.
Over 60 molecular phylogenies of bees have been pub-

lished to date, and yet phylogenetic relationships among
the seven families of bees remain highly controversial,
with conflicting results obtained among and even within
studies (reviewed in [8]). Morphological analyses have
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Figure 1 Previously published hypotheses for relationships among bee families. A. Andrena crataegi (Andrenidae) [photo credit: Phil
Huntley-Franck], B. Habropoda tarsata (Apidae) [photo credit: Jelle Devalez], C. Hylaeoides concinna (Colletidae) [photo credit: Kristi Ellingsen],
D. Halictus sp. (Halictidae) [photo credit: Nicolas Vereecken], E. Lithurgus chrysurus (Megachilidae) [photo credit: Nicolas Vereecken], F. Dasypoda
hirtipes (Melittidae) [photo credit: Nicolas Vereecken], G. Ctenocolletes smaragdinus (Stenotritidae) [photo credit: Laurence Packer, York University:
Bee Tribes of the World photographic project]. H-O. Alternative topologies for relationships among bee families, including the placement of
the root.
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placed the plasterer or cellophane bees, family Colletidae
(Figure 1C), as sister to the remainder of the bee families
(Figure 1H), or basal together with Stenotritidae (Figure 1I),
a small family with limited Australian distribution
(Figure 1G). This result is largely driven by a single mor-
phological characteristic shared by apoid wasps and
colletid bees: a bilobed (or bifid) tongue or glossa [9]. Sub-
sequent molecular and morphological analyses have not
supported a Colletidae-basal hypothesis, and the bilobed
glossa may be an independently-derived character
associated with the application of the cellophane-like
lining to cell and burrow walls [10-13].
The families Megachilidae (including leaf-cutter bees,

carder bees, mason bees, and others; Figure 1E) and the
family Apidae (including honey bees, bumble bees, orchid
bees, and others; Figure 1B) clearly form a monophyletic
group (the “long-tongued” bees), supported by the shared
possession of highly modified first and second labial palpal
segments [3]. The remaining bee families (Andrenidae
[Figure 1A], Colletidae, Halictidae [Figure 1D], Melittidae
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[Figure 1F], and Stenotritidae) form the loosely-defined
“short-tongued” bees. Relationships among short-tongued
bees are unclear. Monophyly of short-tongued bees has
not been supported by most previous morphological or
molecular studies, although one analysis of three nu-
clear genes supported a tree in which short-tongued
and long-tongued bees are reciprocally monophyletic
(Figure 1J; [14]). The family Andrenidae has been sug-
gested to be sister to a clade containing Colletidae,
Stenotritidae, and Halictidae (Figure 1K; [12,14,15]),
sister to Melittidae (Figure 1L; [16]), or sister to all
bees except Melittidae (Figure 1M; [16]).
Molecular studies have proposed Melittidae as monophy-

letic and sister to the remainder of the bees (Figure 1K, M;
[16,17]) or sister to the long-tongued bees (Figure 1N; [18]).
Both morphological and molecular [9,12,15,17] studies
have supported a tree in which Melittidae is a paraphy-
letic group at the base of bee phylogeny (Figure 1O).
Such a topology would lend support to elevating the
three melittid subfamilies (Dasypodainae, Melittinae,
and Meganomiinae) to families (as suggested by [9]).
An obvious strategy to improve our ability to distinguish

among alternative hypotheses is to increase both taxo-
nomic sampling and the number of genes sampled for
phylogenetic analysis ([19-24]). Increased taxon sampling
can improve statistical support for accurate phylogenetic
estimates even when the taxa added have incomplete
information [25-27]. We estimate phylogenetic relation-
ships among an unprecedented number of apoid taxa by
combining publically-available data from multiple, inde-
pendent sources. We confined our analyses to DNA
Table 1 Number of species sampled per gene

Taxon abdA AK bub3 cad camkii dnk ecrb1 ef1af1 e

Apoid wasps

Sphecidae 1 1 2 8

Crabronidae 10 3 1

Ampulicidae 1

Total apoid
wasps

1 11 5 2

Anthophila
(bees)

Andrenidae 12 11 5

Apidae 2 443 24 35 12 18 4 79 6

Colletidae 17 8 8 1

Halictidae 13 17 1

Megachilidae 206 5 2

Melittidae 21 9 4

Stenotritidae 1 1 4

Total
Anthophila

2 460 24 296 12 18 4 130 1
sequences of nuclear protein-coding genes, which have
more power than mitochondrial genes in recovering older
relationships [28-30] and are considerably more straight-
forward to align compared to ribosomal genes. We tested
alternative phylogenetic relationships from the literature
for statistical significance. Finally, we provide the first
global biogeographic analysis to explore bee historical
biogeography at the level of family and subfamily.

Results and discussion
The bee tree of life
We have assembled the largest molecular data set for
analyzing higher-level (family, subfamily, tribal) relation-
ships among bees to date. Our data set includes 349 of
the approximately 500 currently recognized bee genera
[31], including over 17,000 sites concatenated from
DNA sequences of twenty nuclear protein-coding genes
(Table 1). Although the alignment contains a substantial
amount of missing data (~85%), we returned a phy-
logeny with high bootstrap proportions for the mono-
phyly of each bee family (Figure 2, Table 2). We
obtained strong bootstrap support for several additional
clades: the long-tongued bees (Apidae + Megachilidae),
Colletidae + Stenotritidae, and a clade containing
Halictidae + Colletidae + Stenotritidae. Melittidae is
weakly supported as sister to all other bees, consistent
with the hypothesis that the root of bee phylogeny falls
near Melittidae rather than Colletidae (Table 2).
Andrenidae is sister to Colletidae + Stenotritidae +
Halictidae (Figure 1K), but with a bootstrap proportion
of only 0.47 (Table 2, Additional file 1).
f1af2 fem gk nak or2 pepck rho polII usp vas white wg

3 4 3 11

6 13 11 12 22

1

5 11 15 15 34

0 43 43 48 10

13 5 21 157 6 259 547 223 4 5 12 157

66 19 126 29 171

57 18 163 29 126

09 109 209 30 24

0 36 42 41 9

2 1 2 4

273 5 21 348 6 259 1149 408 4 5 12 501



Figure 2 Maximum-likelihood estimate of relationships among bee species. Circles at nodes represent bootstrap proportions after 100
nonparametric bootstrap replicates: black >=0.8, grey >=0.5. Nodes with bootstrap proportions less than 0.5 are without circles. Tips are
unlabelled to reduce visual complexity; the labelled species tree is available in Newick format in Additional file 1.
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At the subfamily and tribal levels, our phylogeny is
broadly congruent with molecular phylogenies published
for particular families, and where it is not, bootstrap
support values fall below 0.75. Within Apidae, dis-
crepancies between this study and that of Cardinal et al.
[32] include the placement of Anthophorini, Caeno-
prosopidini, Ammobatoidini, Manuelini, and Apini/
Euglossini. Our phylogeny is consistent with their fin-
ding that Apinae is not monophyletic: we recovered a
large clade composed of the majority of cleptoparasitic
species of Apinae and Nomadinae. Our inferred relation-
ships among megachilid tribes differs from Litman et al.
[33] only in the placement of Lithurgini as basal to,
rather than sister to, Pararhophitini. Our phylogeny
lacks resolution within Colletidae, but all well-supported
nodes are also found in the estimate of Almeida et al.
[34]. Within Halictidae, Thrincostomini is sister to
Halictini, in contrast to Danforth et al. [35], but our
phylogeny is otherwise congruent with theirs. Finally,
the only discrepancy between relationships recovered
within Melittidae in this study and that of Michez et al.
[17] is that we do not recover Dasypodaini as
monophyletic.

Hypothesis testing
Many of the family-level relationships in our tree are rea-
sonably well-supported based on bootstrap proportions.
Despite this, we could not reject five of our plausible alter-
natives to rooting the bee tree with high statistical support
(Table 3). The placement of Colletidae as basal to the re-
mainder of the bees and the monophyly of long-tongued
bees + Melittidae can confidently be rejected as failing to
fit our data, even after Bonferroni correction for multiple
testing (p < 0.01). The remaining possible topologies all
fall within the confidence set of both the approximately
unbiased and weighted Shimodaira-Hasegawa tests. The
BIC places only one hypothesis within this 95%, in agree-
ment with the maximum-likelihood estimate (Figure 2).
Phylogenetic inference based on DNA sequence data

can be affected by saturation—when phylogenetic signal
among sequences is stochastically lost over time.
Saturation occurs more rapidly in fast-evolving sites,



Table 2 Effects of subsampling on bootstrap proportions for select clades

Hypothesis 20 genes (species) 20 genes (genera) 10 genes (species) 7 genes (species)

Andrenidae monophyletic 0.99 1 0.99 1

Apidae monophyletic 0.86 1 0.97 1

Colletidae monophyletic 0.98 0.999 0.99 1

Halictidae monophyletic 0.9 1 1 1

Megachilidae monophyletic 1 1 1 1

Melittidae monophyletic 1 0.964 0.98 1

Stenotritidae monophyletic 1 1 1 1

Colletidae + Stenotritidae 0.98 1 1 1

Apidae + Megachilidae (long-tongued bees) 0.87 0.998 0.97 1

Halictidae + Colletidae + Stenotritidae 0.88 0.985 0.99 0.97

Andrenidae + Halictidae + Colletidae + Stenotritidae 0.47 0.578 0.52 0.59

Short-tongued bees monophyletic 0.37 0.108 0.24 0.36

Melittidae + long-tongued bees 0 0.16 0.03 0.04

Melittidae + Andrenidae 0.1 0.034 0.07 0.1

Melittidae (paraphyletic or monophyletic) basal 0.57 0.861 0.79 0.57

Melittidae monophyletic and basal 0.57 0.845 0.68 0.57

Dasypodainae basal 0 0.011 0.02 0

Melittidae, (Andrenidae,(other bees)) 0.33 0.362 0.31 0.57

Colletidae basal 0 0 0 0

Colletidae + Stenotritidae basal 0 0 0 0
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such as the third codon position, and removal of these
sites may increase phylogenetic accuracy [19]. We
estimated phylogenetic relationships after excluding the
third codon position from our DNA sequence alignment.
The resulting maximum-likelihood estimate was unre-
solved, suggesting that third codon positions do contain
phylogenetic signal (Additional file 1).
Several genes are relatively sparsely sampled across

bee families (Table 1; Additional file 2), and phylogenetic
analyses of individual genes returned poorly-supported
topologies (Additional file 1). While even incomplete
data are often informative in concatenated analyses
Table 3 Statistical tests of alternative topologies

Hypothesis

K*: Andrenidae + Halictidae + Colletidae + Stenotritidae

M: Melittidae, (Andrenidae, (other bees))

J: Monophyly of short-tongued and long-tongued bees

O: Dasypodainae basal

I: Colletidae + Stenotritidae basal

L: Melittidae + Andrenidae

H: Colletidae basal

N: Melittidae + long-tongued bees

Probabilities that a given topology falls within the 95% confidence set (reject after Bon
(WSH), approximately unbiased test (AU), and Bayesian Information Criterion (BIC). Lett
the topology falls within the 95% confidence set are in bold. * = maximum-likelihood
[25-27], particularly when parameterizing the model of
sequence evolution [26], missing sequences could in-
stead decrease statistical support for particular nodes, or
cause an increase in bootstrap support due to systematic
error. Our data set was not phylogenetically decisive
[36]: some taxonomic triplets in our concatenated data
set were not sequenced for the same gene. Partial tree
decisiveness based on 1,000 simulated, equiprobable
trees [36] was relatively high (0.946). We examined the
subtrees generated by pruning taxa from the maximum-
likelihood estimate to match taxon sampling for each
data partition. The number of trees that could be built
WSH AU BIC

0.990 0.841 1.0

0.677 0.453 >0.001

0.413 0.181 >0.001

0.447 0.215 >0.001

0.263 0.118 >0.001

0.216 0.097 >0.001

0.001 0.001 >0.001

0 >0.001 >0.001

ferroni correction when p < 0.01) under the weighted Shimodaira-Hasegawa test
ers refer to the topologies in Figure 1. For each hypothesis, values that indicate
estimate.
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from these observed subtrees, or the terrace size [37], is
huge (~1 billion). When terrace size is high and phy-
logenetic decisiveness is inadequate, the pattern of taxo-
nomic overlap among partitions may affect phylogenetic
accuracy. However, the BUILD tree, which is an Adams
consensus of trees in the terrace [38], did return the
same family-level relationships as the maximum-
likelihood estimate (Additional file 1). This suggests that
incomplete taxonomic overlap across data partitions
may be more problematic when examining species rela-
tionships within families.
We assessed the effects of reducing the proportion of

missing data on our analysis by excluding poorly-sampled
genes. When we concatenated only those genes sampled
for at least two bee families (10 genes with 78.4% missing
data, partial tree-wise decisiveness 0.979) or at least four
families (7 genes with 71.7% missing, partial tree-wise
decisiveness 0.981), the resulting maximum-likelihood
estimates supported the same family-level relationships as
for the complete data set (Table 2; Additional file 1). We
also reduced the empty cells in our matrix by combining
data within genera, such that each genus was represented
by one randomly-selected species per gene (an average of
77% missing over 10 replicate alignments, partial tree-wise
decisiveness 0.987). These maximum-likelihood estimates
all returned either the same topology as the species-level
tree, or a topology in which Andrenidae is sister to all bees
except Melittidae (Additional file 3). When combining
sequences at the genus-level, terrace size improved dra-
matically: only one tree could be returned from the taxon
triplets observed across gene subtrees. We used one
randomly-selected genus-level estimate (Figure 3) when
examining historical biogeography of bees. The effects of
these treatments do not change the overall conclusions:
bee families are monophyletic, but uncertainty remains in
the placement of Andrenidae relative to other bee families
(Table 2).
Missing data also come in the form of missing taxa, and

certain groups are less well-sampled than others.
Andrenidae has a lower proportion of genera sampled
relative to other bee families, and its phylogenetic place-
ment is uncertain. Only about 47% of andrenid genera
have more than one gene sequenced (and thus retained in
our data set), compared to the average within families
(excluding Stenotritidae, which has complete generic-level
sampling) of 65% and the average across all bees of 79%.
Increasing taxon sampling across partitions for this group
may be necessary to resolve its relationship to other bees,
as this additional sequence data would contain informa-
tion about internal nodes.
Missing data, in terms of taxon and gene sampling, may

not be the only source of weak statistical power when
distinguishing among alternative hypotheses for relation-
ships among bees. Branch lengths along the backbone of
the tree are noticeably shorter than average. The branch
leading to the melittid bees, the branch between Melittidae
and the remainder of the bees, and the branch that deter-
mines the placement of Andrenidae are all within the
lower one third of the branch length distribution. Thus,
the uncertainty of early bee history appears to be due, in
part, to short branches among families. This suggests that
major lineage differentiation occurred within a relatively
short amount of time early in bee history. Incomplete
lineage sorting or hybridization between lineages early in
bee history could also obscure bifurcations. This problem
is not unique to bees: similar difficulties in resolving early
branching patterns based on molecular sequence data have
also plagued researchers working on butterflies [25], ants
[39], and birds [40].

Comments on the bioinformatics approach
Database mining is not without problems. First, our ability
to objectively curate data is limited. The inclusion of
Ceratina japonica within a clade of Apis spp. rather than
with other Ceratina spp., or of the type species of
Anthophorini, Anthophora plumipes, within the eucerine
bees (Additional file 1), is suggestive of either incorrect
species identification, DNA contamination, or error in
uploading sequence to the GenBank database. Our
skepticism that the placement of these species reflects evo-
lutionary history is warranted. Ceratina are morphologi-
cally very distinct from Apis, even to a non-expert in field
conditions, and error in species identification is highly un-
likely. The longest ef1af2 sequence for Ceratina japonica
(DQ149700), and thus the one selected by our bioinfor-
matic pipeline, is identical to the DNA sequence in the
Apis mellifera genome (NM001014993), while a shorter se-
quence (AY250212) is more similar to other Ceratina (i.e.,
best blast hit). A similar problem occurs for Anthophora
plumipes, whose sequence for RNA polII (GU245385) is
identical to that of Eucera frater (EU184737), although
these species are otherwise genetically, morphologically,
and geographically disparate. We did not prune these
erroneously-identified sequences from our dataset prior to
analysis, but when DNA sequences from one species are
concatenated with those of another, this will introduce
inaccuracy into phylogenetic reconstruction. Other un-
identified taxonomic errors may be present within our
dataset. One potential solution would be to ensure that a
given sequence has as its best blast hit a member of the
same species or genus prior to alignment, assuming that
named genera represent monophyletic groups and that
such data are available.
While not a source of phylogenetic error, several re-

cords refer to taxa that have subsequently been synony-
mized. For example, within Apidae, Inquilina is no
longer recognized as valid, and has been synonymized
with Exoneura; within Megachilidae Fideliopsis is now a
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Figure 3 Maximum-likelihood estimate of relationships among bees. Tree estimated using one randomly-selected DNA sequence per gene
per genus. Numbers at nodes represent bootstrap percentage after 100 replicates. To enhance visualization of relationships, wasp outgroups were
removed, and clades of tribes and subfamilies containing more than one genus have been collapsed. The tree with all genera is in Additional file
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subgenus of Fidelia. Since the NCBI taxonomic data-
bases are not always up-to-date with the latest classifica-
tions, our bioinformatic pipeline treats these genera as
separate entities. The solution would be to manually
curate sequence records to reflect the current state of
taxonomy (as in Figure 3).
Historical biogeography
In our biogeographic analyses (Figure 4, Additional file 4),
the ancestral distributions of many groups of bees remain
uncertain, especially at the family level and for groups
with widespread distributions (e.g., Lithurginae). We could
not clearly identify a sample bias in our data set that
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would drive this uncertainty. For example, we have identi-
fied the family Andrenidae as more poorly sampled than
other groups in our phylogeny. However, we are primarily
missing South American taxa in the andrenid tribes
Calliopsini and Protandrenini, and the addition of these
would not be likely to alter biogeographic reconstruction.
Ancestral distributions within the family Melittidae are

reconstructed with reasonable confidence. Melittidae has
its greatest genetic, tribal, and subfamily diversity in
Africa, and is reconstructed unambiguously as African in
origin, as are its subfamilies, Melittinae and Dasypodainae
(the third subfamily, Meganomiinae, is entirely restricted
to Africa).
Andrenidae is reconstructed with weak support as
primitively New World, consistent with the observation
that basal genera of Andreninae, all Oxaeinae, and many
Panurginae are restricted to the Americas [41,42]. For
Halictidae, our results also weakly support a New World
origin. Within Halictidae, lineages with a mix of both
New and Old World taxa (e.g., Rophitinae, Nomiinae,
and Halictinae) are reconstructed in our analysis to be
New World in origin, and the monophyletic groups
Halictinae + Nomioidinae + Nomiinae and Halictinae +
Nomioidinae are weakly supported as ancestrally New
World. This is in contrast to a previous analysis that hy-
pothesized these lineages had origins in Africa, based on
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a flawed assumption that Nomiinae was likely of African
origin [43].
The common ancestor of Stenotritidae and Colletidae

is weakly supported as South American, with the split
between ancestrally South American Colletidae and
Australian Stenotritidae suggesting an ancient vica-
riance between South America and Australia [34]. Con-
sistent with Almeida et al. [34], we find evidence of
multiple interchanges between South America and
Australia, presumably via Antarctica, over the course of
colletid evolution. The colletid subfamilies Euryglossinae
(+ Scrapterinae) and Hylaeinae are reconstructed as
unambiguously Indoaustralian (Oceania) and the subfa-
mily Xeromelissinae is reconstructed as unambiguously
South American. Scrapterinae, the sole endemic African
subfamily, appears to have arisen (via dispersal) from the
Indoaustralian Euryglossinae (as hypothesized in [34]).
The ancestral state for Apidae as a whole is not clearly

resolved. However, certain groups show clear connections
with the New World. The “cleptoparasitic clade” of
Apidae [32] is unambiguously reconstructed as South
American. The corbiculate clade, as well as the monophy-
letic group including corbiculates and Centridini, are
reconstructed as ancestrally New World. Xylocopinae, a
widespread group, is entirely ambiguous. This could be
due to the fact that three of the four xylocopine subfa-
milies (Ceratinini, Allodapini, and Xylocopini) are stem-
or wood-nesters and dispersal over water appears to be
fairly common in such bees [3,41,44,45]. Large bees, such
as Xylocopini, may also be capable of long-distance
dispersal via flight. Our results for Anthophorini are un-
clear because of limited taxon sampling and because this
group is geographically widespread. For a more detailed
treatment of anthophorine historical biogeography, see
Dubitzky [46].
For Megachilidae, our results largely support the hypoth-

eses proposed by Litman et al. [33]. Fideliinae, a paraphy-
letic group at the base of Megachilidae, has one lineage in
South America (Neofidelia) and one in Africa (Fidelia),
consistent with an ancient vicariance event between South
America and Africa. The uncertainty in the ancestral recon-
struction of Lithurginae is not unexpected, as bees in this
group are widely-distributed and wood-nesting. Bees that
nest in wood or preexisting cavities have a disproportionally
high probability of long distance, human-mediated dis-
persal, and they may also be capable of dispersing over
water via rafting [44,45]. Wood- and cavity-nesting bees are
among the most common introduced bee species in North
America. Of the 21 species of bees accidentally or in-
tentionally introduced into North America, 14 are in the
family Megachilidae [45]. Of the 17 exotic bee species
reported in Canada, ten are in the family Megachilidae [47].
Our results would generally support a southern hemi-

sphere origin for bees, because at the highest levels
ancestral state reconstructions indicate strong connec-
tions among South America, Australasia (Oceania), and
Africa. The split between Melittidae (Africa) and the
remaining bee groups, many of which have inferred
origins in the New World (especially South America), is
consistent with the hypothesis that Gondwanan frag-
mentation impacted early bee evolution, as has also been
suggested for Megachilidae [33]. Our results are con-
sistent with a hypothesis, proposed by Michener [3,41],
that bees arose in the xeric interior of Gondwana, par-
ticularly West Gondwana (Africa-South America).

Future directions
Diversification among bee species has implications for
processes driving early angiosperm diversification (e.g.,
[48]), but branching patterns early in bee history still re-
main unresolved. Statistical support for diversification
patterns could be improved by increasing the number of
genes sampled, and thus the number of characters that
may be informative about that diversification. Sampling
could be appropriately increased either by sequencing
additional species for some of the more poorly-sampled
genes (for example, abdA, ak, cad, and ecrb1 have all
been successfully sequenced across Apoidea; Table 1), by
using general arthropod primers to increase the number
of genes sampled [29], or by utilizing large-scale sequen-
cing strategies such as transcriptomics (e.g., [25,49]) or
targeted enrichment (using sequenced bee genomes, as
in [50-53]).
Given the comparatively poor sampling of the bees’

closest evolutionary relatives, the root of the bee tree
and thus early diversification patterns of bees, may be
resolved by increasing the taxonomic and gene sampling
of apoid wasps. To improve reconstruction of the early
geography of bee diversification, further data would also
need to be collected on biogeographical ranges of these
wasp taxa.

Conclusions
Our study includes the largest number of bee genera for
any study to date. We have reconstructed all families as
monophyletic and can reject several proposed hypotheses
for relationships among families. Our ability to recon-
struct biogeographic patterns in bees at the highest levels
indicates the utility of the supermatrix approach for his-
torical biogeographic analysis. By including a much
broader taxonomic and geographic sample of bees than
has been included in previous studies of family-level rela-
tionships (e.g., [12]), we can more accurately reconstruct
ancestral states using model-based methods. Supermatrix
methods, and the insights derived from analysis of the
massive amount of sequence data currently publically
available, are therefore a powerful approach for inferring
patterns on a broad evolutionary scale.



Hedtke et al. BMC Evolutionary Biology 2013, 13:138 Page 10 of 13
http://www.biomedcentral.com/1471-2148/13/138
Methods
Sequence collection and alignment
All nuclear, coding DNA sequences for apoid wasps and
bees were downloaded from the non-redundant nucleotide
database of GenBank in October, 2011, and parsed using a
custom Perl script. Of these, we only retained coding
regions for those twenty genes that were represented by at
least three bee tribes (Table 1): abdominal A (abdA), argi-
nine kinase (ak), mitotic checkpoint control protein (bub3),
calcium/calmodulin-dependent protein kinase II (cad),
carbamoylphosphate synthetase/aspartate transarbamylase/
dihydroorotase (camkii), deoxyribonucleoside kinase (dnk),
ecdysone receptor B1 (ecr-b1), elongation factor 1-α f1 and
f2 copies (ef1af1, ef1af2), feminizer (fem), glycerol kinase
(gk), sodium potassium adenosine triphosphate (nak), odo-
rant receptor 2 (or2), phosphoenolpyruvate carboxykinase
(pepck), long wavelength rhodopsin (rho), RNA polymerase
II (polII), ultraspiracle (usp), vasa (vas), white, and wingless
(wg). Because whole genomes are not available for most
bee species, we cannot be certain that all of the nucleotide
sequences identified for a given gene represent orthologs.
However, paralogous copies were not identified after
performing a search for each gene against the Apis mellifera
genome [54] using blastn [55], and many of these genes are
standard in bee phylogenetic analyses because they appear
to be single-copy [8]. Under the assumption that members
of a species are monophyletic, we selected the longest avail-
able sequence per species—longer sequences potentially
contain more phylogenetically-informative characters—or
one at random if there were more than one equally-long se-
quence for a particular species. These nucleotide sequences
were aligned using MUSCLE v. 3.8 [56]. Minor adjustments
were made by hand using Mesquite v. 2.73 [57] to retain
amino acid coding and to remove introns in those records
where they had not been annotated. This initial data set in-
cluded 1666 species (summarized in Table 1; GenBank
accession numbers in Additional file 5).
We removed any species represented by only one gene

using a custom Perl script; thus each data partition con-
tains overlap with at least one other partition for each
taxon in our dataset. 1376 species remain in the align-
ment, spanning 374 genera, with a total alignment length
of 22,612 sites (summarized in Table 1). After trimming
the ends of each gene to remove sites with less than three
taxa, 17,269 sites remain (alignment deposited in Tree-
Base under study accesstion number S14049). 85% of this
matrix contains missing data (empty cells; distribution in
Additional file 2). For generic-level analyses, we generated
ten replicate alignments by randomly selecting one DNA
sequence per gene per genus, removing genera repre-
sented by only one gene. Thus, each genus could be
chimeric, containing sequences from different species.
The average proportion of missing data across these ten
generic alignments was reduced to 77%. 376 genera
remain: 349 bee genera (~67% of genera [31]) and 27
apoid wasp outgroups. Finally, we also produced species-
level alignments with more stringent rubrics for gene in-
clusion: one requiring genes to be sampled for two or
more bee families (10 genes, 1336 taxa, 11944 sites, 78.4%
missing), and one requiring genes to be sampled for at
least four bee families (7 genes, 1328 taxa, 8467 sites,
71.7% missing).

Phylogenetic analyses
We used jModelTest v.0.1 [58] to find the best-fit model
of sequence evolution for each partition separately, and
found the maximum-likelihood estimate under that
model using Garli v.2.0 [59] with 20 search replicates.
Nonparametric bootstrapping was performed with 2
search replicates per 100 bootstrap replicates.
Maximum-likelihood estimates for our concatenated

alignments were generated using RAx-ML v. 7.2.8-alpha
[60]. For our species-level and one randomly-selected
generic alignment, we ran analyses under six partitioning
schemes with the GTR-CAT approximation for sequence
evolution: unpartitioned, partitioned by gene, partitioned
by codon position, partitioned by codon positions 1+2 and
3, partitioned by 1+2 and 3 by gene, and partitioned by
codon position within genes. We used the Akaike Infor-
mation Criterion to determine the best-fit partitioning
scheme. We ran 100 bootstrap replicates using this best-
fit partitioning scheme, and used this pool of trees to cal-
culate the taxon instability score using Mesquite [57]. We
removed those taxa with instability scores in the top 1%
from each alignment (n = 14 for species-level; n = 4 for
generic-level), and re-ran analyses to find the maximum-
likelihood estimate and bootstrap proportions. For our
species-level and one randomly-selected generic align-
ment, we ran twenty replicate RAx-ML analyses to find
the optimal maximum-likelihood estimate with 100 boot-
strap replicates. In distantly-related or rapidly-evolving
taxa, the third codon position can become saturated and
potentially lead to inaccurate phylogenetic results due to
the inability of the likelihood model to detect multiple
substitutions. We ran an analysis in which the third codon
position was excluded. The APE package in R [61] was
used to plot bootstrap support on the species-level phy-
logeny. Figtree v.1.3.1 [62] was used to annotate clades at
the tribal and subfamily levels using the tree from the
generic-level analyses.

Hypothesis testing
For each of eight alternative topological hypotheses
(Figure 1), we constrained RAx-ML to find the best tree
and site-likelihood scores under the GTRGAMMA model
of sequence evolution using the species-level concatenated
alignment. Constraints tested were: (1) Colletidae sister to
the remainder of the bees (Figure 1H); (2) Colletidae +
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Stenotritidae sister to the remainder of the bees (Figure 1I);
(3) Reciprocal monophyly of short-tongued and long-
tongued bees (Figure 1J); (4) Andrenidae sister to
Colletidae + Stenotritidae + Halictidae (Figure 1K); (5)
Melittidae + Andrenidae sister to the remainder of the
bees (Figure 1L); (6) Melittidae sister to all other bees, and
Andrenidae sister to the remaining bees (Figure 1M); (7)
Melittidae and long-tongued bees as a clade (Figure 1N);
(8) Melittidae paraphyletic, with Dasypodainae sister to
the remainder of the bees (Figure 1O). The log likelihood
of any given tree is a sum of the log likelihood for each
site. One method of examining whether one tree has a
statistically significantly higher likelihood than another is
to use the site likelihoods for each hypothesis. We gene-
rated 10,000 bootstrap replicates of the site likelihoods for
each constrained tree using CONSEL [63], and ranked
alternative hypotheses using the weighted Shimodaira-
Hasegawa test (WSH [63]), the approximately unbiased
test (AU [64]), and the Bayesian Information Critierion
approximation for posterior probability (BIC [63]). These
tests generate p-values indicating whether a topology can
be rejected from the confidence set, and were selected as
they range in power and sensitivity. Both the AU and
WSH tests reduce selection bias inherent in comparing
the maximum-likelihood estimate to less-likely trees. The
AU test tends to work well when selection bias is not
extreme, but is less conservative than the WSH as the true
tree can be excluded from the confidence set when many
of the best trees are nearly as good [64]. The more conser-
vative WSH test tends to overestimate selection bias [64],
and thus the number of trees in the confidence set in-
creases with the number of trees being compared [65]. As
we performed multiple statistical tests, we used a
Bonferroni correction on the p-values [66] used for
excluding a particular tree from the confidence set.
Phylogenetic decisiveness
Not all possible taxonomic triplets in the concatenated data
set are represented in individual gene alignments, which
means that our taxon sampling is not phylogenetically
decisive [36]. We calculated partial tree-wise phylogenetic
decisiveness based on simulations of 1000 equiprobable,
random trees [36] using the program decisivatoR
[http://cores.ibest.uidaho.edu/software/decisivator] for
our species-level, genus-level, and subsampled data
sets. DecisivatoR required more than 24GB RAM to
run our DNA sequence alignments, so we simplified
our matrices to gene presence (1) or absence (?). We
additionally estimated the number of trees that could
be built from triplets in our data (i.e., tree terrace size
[37]), and used these trees to calculate a ‘BUILD’ tree
[38] using the Perl scripts in the package PhyloTerraces
[http://sourceforge.net/projects/phyloterraces/].
Biogeography
The current distributions of bee genera were assigned
to one or more of seven broad geographic regions:
Africa, Eastern Palearctic, Western Palearctic, North
America, South America, Central America, and Oceania
(i.e., the Australasian or Indoaustralian ecozone) (from
[3]; Additional file 6). To calculate the posterior probabil-
ity of ancestral distribution at internal nodes, we used a
Bayesian approach implemented in the updated version of
Statistical Dispersal Vicariance Analysis (S-DIVA), RASP
v.2.0b [67,68], and our generic-level phylogeny (Figure 3).
The wasp outgroups, which are relatively poorly sampled
compared to the ingroup taxa and are biased towards
North American taxa, were set to have a null distribu-
tion according the recommendation of the program
author (Y. Yu, pers. comm.). The program was run for 1
million cycles along 10 chains, with a maximum number
of areas occupied by a single taxon of 4. The state fre-
quencies were set to the F81 model [69] with a gamma
distribution for among-site rate variation. Default settings
were used for all other program parameters. Parsimony
and maximum-likelihood reconstructions were performed
in Mesquite [57], with each geographic region scored as a
separate, binary character (Additional file 6).
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