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Abstract

Background: Bayesian phylogenetic analysis generates a set of trees which are often condensed into a single tree
representing the whole set. Many methods exist for selecting a representative topology for a set of unrooted trees,
few exist for assigning branch lengths to a fixed topology, and even fewer for simultaneously setting the topology
and branch lengths. However, there is very little research into locating a good representative for a set of rooted time
trees like the ones obtained from a BEAST analysis.

Results: We empirically compare new and known methods for generating a summary tree. Some new methods are
motivated by mathematical constructions such as tree metrics, while the rest employ tree concepts which work well
in practice. These use more of the posterior than existing methods, which discard information not directly mapped to
the chosen topology. Using results from a large number of simulations we assess the quality of a summary tree,
measuring (a) how well it explains the sequence data under the model and (b) how close it is to the “truth”, i.e to the
tree used to generate the sequences.

Conclusions: Our simulations indicate that no single method is “best”. Methods producing good divergence time
estimates have poor branch lengths and lower model fit, and vice versa. Using the results presented here, a user can
choose the appropriate method based on the purpose of the summary tree.

Background
Bayesian Markov Chain Monte Carlo (MCMC) analysis
provides powerful and popular techniques for perform-
ing phylogenetic analysis. The result of such an analysis
is a set of trees drawn from the posterior distribution.
The set of correlated draws is often condensed into a
single tree for visualistion, comprehension, annotations
and presentation. When most trees agree in topology and
branch lengths, the most frequent tree topology, properly
annotated, can give a fair representation of the posterior
distribution.
However, a single tree can be misleading, especially

when the agreement between posterior trees is small.
Posterior tree topologies can be reduced to a set of com-
mon sub-topologies [1], but this is also a fragmented view
of the posterior. Tree drawing programs such as FigTree
[2] can annotate internal nodes with the clade posterior
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support (the fraction of posterior trees containing the
clade), and the credible interval of internal node ages.
Still, the choice of any specific topology highlights one

alternative at the expense of others. The tree drawing
programDensiTree draws all posterior trees transparently
[3]. Where most trees agree in topology and node height,
lines are close to each other and distinct edges appear,
while areas of uncertainty in topology or heights remain
a blur. The composite image allows a direct assessment of
posterior support and node height uncertainty by visual
inspection. But even the display of the full posterior can
be hard to interpret when the uncertainty gets large, and
a summary tree overlaid on top can be useful in such
situations.
There are many ways of obtaining a “representative” tree

topology from a collection of trees. One group of methods
look for consensus among the trees using splits, clusters
or rooted triplets/quartets present in posterior trees [4].
The TreeAnnotator utility in BEAST [5] uses the clade fre-
quencies as estimated by the posterior to score each tree,
selecting the rooted topology of the highest scoring tree
amongst the set. This results in a fully resolved topology
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with a non zero support, in contrast to consensusmethods
which often produce unresolved trees. A recently pub-
lishedmethod uses conditional clade splits probabilities to
compute a probability for each posterior tree [6].
However, selecting a representative topology is only the

first step in generating a summary tree from the output
of programs such as BEAST. BEAST trees are rooted with
branches proportional to time, as is the summary tree.
In the second step, TreeAnnotator assigns a divergence
time for each clade using the ages of matching clades
from the posterior. If the number of trees containing the
clade is small, the divergence time estimate can have high
variance which may result in negative branch lengths.
Clades in trees from the MCMC samples which do not
appear in the summary tree are essentially ignored, and
sometimes a large proportion of the posterior goes unrep-
resented. Ignoring non-matching parts appears to be the
accepted practice and is used in the SumTrees utility in
DendroPy [7].
In this paper we describe several new ways for building

rooted summary trees. These new constructions use more
of the information contained in the posterior even when
the disagreement between posterior trees is high. Some
of the methods are based on rooted tree distances, and
are similar in spirit to the method developed by Huggins
et al. for unrooted trees [8]. We perform an extensive sim-
ulation study and compare the trees from all methods
using multiple criteria. Summary trees are assessed with
respect to the posterior and by their distance to the tree
used in generating the sequence data. The methods are
implemented in biopy [9], and integrated with DensiTree,
making it easy to examine the summary tree in the context
of the full posterior.

Methods
Definitions and notations
We define a rooted tree as a collection of clades with ages.
Specifically, a tree is a strict hierarchy of clades, where
each clade is a subset of the taxa, and a non-negative age
is associated with each clade.
Formally, a tree T is a triplet (L,C, h), where L =

{x1, x2, . . . , xl} is the set of taxa and C = {C1,C2, . . . ,Cn}
is a set of clades. Each clade Ci ⊆ L is a subset of taxa,
and h : C → R≥0 is a function assigning an age to the
clade. The set C describes only the clades hierarchy and
is referred to as the tree topology. Sometimes we shall use
c ∈ T as a shorthand for T = (L,C, h)andc ∈ C (“clade c
is present in tree T”).
To qualify as a tree, the following conditions must hold:

i The tree contains all leaves: ∀i{xi} ∈ C.
ii The tree contains a root: L ∈ C.
iii Strict hierarchy of clades: for any two clades

C1,C2 ∈ C, either C1 ⊂ C2, C2 ⊂ C1 or C1 ∩C2 = ∅.

(Note that C1 ⊂ C2 implies C1 
= C2, otherwise we
write C1 ⊆ C2.)

iv Non-Negative branches: for c1, c2 ∈ C,
c1 ⊂ c2 =⇒ h(c1) ≤ h(c2).

For any clade c, the elements in the set A(c) = {y ∈ C :
c ⊂ y} are called ancestors of c, and the minimal element
P(c) in A is the parent of c. Every clade except the root
has a parent and by association a branch to its parent with
length b(c) = h(P(c)) − h(c). For convenience, the branch
length of a subset not in C is defined as zero. Any subset
of taxa x has a Most Recent Common Ancestor in the tree,
the minimal clade containing all members of x. Formally,
ca(x) is the minimal element of {y ∈ C : x ⊆ y}. For
brevity we omit the tree when the context is clear, and use
ca(c,T) to explicitly associate the clade with the tree T.
Extending the domain of b(·) to all taxa subsets sim-

plifies definitions involving sets of trees with different
topologies. We extend h(·) for the same reason and define
the age of any subset x ⊆ L to be the age of the common
ancestor of x,h̄(x) = h(ca(x)).
Using h̄, we define the heights error, a discrepancy score

between clade ages of T = (L,C, h) and a reference tree
Tref ,

εH(T ,Tref ) =
∑
c∈C

|h(c) − h̄ref (c)|. (1)

The heights error is the total sum of clade age errors,
whether they appear in the reference tree or not. The age
of a clade which is not in the reference tree is taken to
be the age of the MRCA of the clade taxa, which spans a
larger clade in the reference tree. Note that the definition
is not symmetric. Alternatively we define the divergence
times error which focuses on the time lineages split from
each other. The divergence time for any clade x ⊆ L is the
mean divergence time of all pairs of x. Formally, we start
with the pairs of taxa which split at the clade; those are the
pairs in x whose common ancestor is the clade,

D(x,T) = {{a, b} ∈ x : ca(T , {a, b}) = x} . (2)

Now the average split time is the mean of all pair splits,

h̃(x,T) = |D(x,T)|−1
∑

a,b∈D(x,T)

h̄({a, b}). (3)

Finally, The total error is,

εD(T ,Tref ) =
∑
c∈T

|h(c) − h̃(c,Tref )| (4)

The clade and divergence errors are equal for trees
with the same topology, but they differ when topologies
disagree, and the difference usually increases with the
distance in topology.
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The clades missed error counts the number of clades in
Tref not present in T,

εcm(T ,Tref ) = |Cref | − |
{
c ∈ C ∩ C

ref : b(c) > 0
}

|.
(5)

This number is equal to (half ) the Robinson-Foulds tree
distance [10] when T has no zero length branches. A clade
with a zero branch does not count as a match because it
is potentially confused with its parent. The clades called
error scores a 1 for correctly called clades and a -1 penalty
for incorrectly called clades,

εcc(T ,Tref ) =|
{
c ∈ C \ Cref : b(c) > 0

}
|

− |
{
c ∈ C ∩ C

ref : b(c) > 0
}

|.
(6)

A tree set T = {T1,T2, . . . ,Tk} is a set of trees on shared
taxa. Typically those sets are samples from a Bayesian
analysis, and we define the posterior frequency F(x) of
x ⊆ L as the fraction of times x is present as a clade in the
trees:

F(x) = 1
|T| | {T ∈ T : x ∈ T} |. (7)

The posterior frequency of a subset not in any of the trees
is zero.

Distance between trees
The Rooted Branch Score (RBS) measures the distance
between two rooted time trees, and is the total sum of
the difference in branch lengths of matching clades. This
definition is motivated by the distance between unrooted
trees [11], but the space of rooted trees is more complex
than its unrooted counterpart since branch lengths are
not free to vary independently of each other [12]. Since by
convention the branch length of a missing clade is zero,
any clade present only in one tree contributes its total
length to the score.
Formally, for T1 = (L,C1, h1) and T2 = (L,C2, h2) we

have,

RBS(T1,T2) =
∑

c∈C1∪C2

|b(1)(c) − b(2)(c)|. (8)

The Squared Branch Score (SRBS) is similar, but taking
the square of the difference instead of the absolute value,

SRBS(T1,T2) =
∑

c∈C1∪C2

(b(1)(c) − b(2)(c))2. (9)

The Heights Score (HS) takes the difference between
clade ages instead of branches. Like the RBS, branches
appearing in only one tree are added to the sum,

HS(T1,T2) =
∑

c∈C1∩C2

|h(1)(c) − h(2)(c)|+
∑

c∈C1\C2

b(c) +
∑

c∈C2\C1

b(c).
(10)

The heights score is a (non-optimal) edit distance, where
the score is the total sum of a sequence of moves which
transform one tree into the other. Eachmove involves slid-
ing an internal node, and two nodes may “merge” into one
when they meet.
The Rooted Agreement Score (RAS) measures the dis-

agreement between branches by treating them as inter-
vals. Two branches may be of the same length and still
contribute to the distance if they span different intervals
as measured from the time of the tips. The score, when
divided by the sum of the length of the two trees, is the
probability that a random point chosen uniformly on one
of the trees has a corresponding point on the other tree.
Formally,

RAS(T1,T2) =
∑

c∈C1∩C2

μ
(−→
b (1)(c) � −→

b (2)(c)
)

+
∑

c∈C1\C2

b(c) +
∑

c∈C2\C1

b(c),
(11)

where
−→
b (x) is the interval spanned by the clade branch,−→

b (x) =[ h(x), h(x) + b(x)] and � is the symmetric differ-
ence operator, that is

μ([l1, h1]�[l2, h2] )=(h1 − l1) + (h2 − l2)
−2max(min(h1, h2)−max(l1, l2), 0).

(12)

RBS and RAS are metrics in tree space, while SRBS
and HS are not. RBS is a metric since branches can
be mapped to the vector space R

2n−1 [8], and a similar
argument works for RAS. However, we only require that
distances are semimetrics and make no use of the triangle
inequality.

Summary trees
BEAST Tree annotator
TheTree Annotator utility in BEAST generates a summary
tree using a two stage procedure. First, each posterior
tree is assigned a score based on topology. The Clade
Credibility of a tree is the product of posterior frequencies
(equation (7)) of all clades in the tree,

CC(T = (L,C, h)) =
∏
c∈C

F(c).
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The Maximal Clade Credibility (MCC) tree is the tree
with the highest score, and we shall refer to its topology
as the MCC topology. In the second step, each clade is
assigned an age based on the clade age in posterior trees.
Formally, the age is set as either the mean or the median
of the set of ages

H(c,T) = {hi(c) : (L,Ci, hi) ∈ T and c ∈ Ci} .
Since each age is set independently, the end result is not

guaranteed to be a tree (condition iii). A few “negative
branches” are not an unusual occurrence in trees with a
medium to large number of taxa and moderate posterior
uncertainty.

Minimumdistance trees
The distance between the tree set T and the tree T is
defined as the mean distance of T to all members of T,

d(T ,T) = |T|−1
∑
ti∈T

dT (T , ti), (13)

where dT is one of the tree scores defined previously.
A Minimum Distance Tree is a tree which minimizes
d(T ,T). While the definition is simple and natural, the
details are not. First, the minimal tree is not necessarily
unique; there might be several or even an infinite num-
ber of minimal trees in some cases. Second, with anything
more than a few taxa the space of trees is vast and topolog-
ically complex, so there is no guarantee of finding themin-
imal tree. We therefore limit the search to the topologies
present in the posterior, and designate this approach by
a lowercase ‘m’ followed by the distance method (mRBS,
mRAS, etc). However, even this can be time consuming
when the posterior contains many topologies, and in addi-
tion we examine a family of methods which consider just a
single topology, using one of the heuristics outlined in the
next section. The details about the algorithm for search-
ing the best branch assignment for a specific topology are
in Appendix 2.

Selecting a topology
All of the two stage methods we considered selects a
topology first and assign branch lengths conditional on
that topology.We examined three alternatives to theMCC
for selecting a topology.
The first alternative uses the recently published Con-

ditional Clade Probability Distribution (CCD). The CCD
computes a probability for each tree based upon the
posterior probability of the splits in the tree, conditional
on the clade posterior frequency [6]. The second is a the
Total Clade Branch (TCB), which assigns a score to each
clade in the tree equal to the total length of matching
branches in the posterior. The total length reflects the
support for a clade by combining both the frequency (the
number of trees with the clade) and confidence, under

the assumption that longer branches are more likely to
be “real” than shorter branches. The third is the Highest
Posterior Frequency (HPF), which picks the topology of
the tree most frequent in the posterior. To break ties, the
HPF picks the tree whose height is closest to the mean
root height of the posterior.

CA Tree
Negative branches in the TreeAnnotator tree result from
using a different subset of posterior trees for estimating
each clade age. In theCommonAncestor Tree (CAT), every
clade x ∈ C is assigned an age using the mean of the clade
age in all posterior trees. Formally,

h(c) := |T|−1
∑
Ti∈T

h̄(c,Ti) (14)

The generated ages always produce a tree, since x ⊂
y =⇒ h̄(x,Ti) ≤ h̄(y,Ti). Unlike TreeAnnotator, which
may end up using a small number of values for some
clades, CAT uses |T| posterior values for estimating the
age of each clade.

Taxa partitions tree
Wenow present the Taxa Partition (TP) tree, a single stage
method which does not commit to a particular topol-
ogy before assigning ages. The TP is inspired by the tree
operator described by Mau et al [13]. In this representa-
tion each internal node is assigned a left/right orientation,
inducing a linear order on the taxa and positioning each
internal node between two tips (Figures one and two in
[13]). We reverse the process by first ordering the taxa,
then using the posterior to assign the ages between tips
and finally reconstructing the tree topology from the ages.
For a given ordering of taxa, each posterior tree provides

ages according to its topology. A clade contributes an age
if it spans an unbroken range in the ordering. For example,
for the order [a b c d], the tree (((a,b),c),d) contributes the
age of (a,b) to [a | bcd], the age of ((a,b),c) to [ab | cd] and
the root height to [abc |d]. The tree ((a,d),(b,c)) contributes
only the age of (b,c) to [ab | cd]. (a,((d,b),c)) contribute only
its root height to [a | bcd].
After collecting ages for all splits from the posterior, a

point estimate of the height at each split is used to build
the tree. The precise definitions are given in Appendix 2.
TP incorporates clade ages from competing topologies

before committing to the final topology. For example, take
the set with a mixture of two topologies, ((a,b),c) and
(a,(b,c)). With the obvious ordering [a b c], TP uses all ages
in every tree, and the choice between the two topologies
is determined by the age of the [ab | c] and [a | bc] splits.
If [ab | c] is higher we end up with ((a,b),c), otherwise with
(a,(b,c)).
Finding an optimal ordering is hard. Assigning an orien-

tation which minimizes the distance between taxa orders
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of just two trees is NP complete [14]. We use a fast
heuristic which proved effective in practice: build a dis-
tance matrix for pairs of taxa and use simple cluster-
ing to build the ordering. The distance between taxa
a and b in each tree is the size of the clade of their
common ancestor, d(a, b) = |ca({a, b})|. The overall
distance is the mean of pair distances over all pos-
terior trees. The clustering starts with each taxon in
its own group, then progressively joins the two closest
groups.

Test cases
To evaluate the various methods we generated 2000 test
cases, divided into 20 groups of 100 repeats. For each case,
a tree with n tips was drawn from the Kingman coales-
cent distribution [15] with population size Ne. All repeats
shared the same n and Ne, and each group was assigned
one pair from the 5x4 grid formed by n = 8, 16, 32, 64, 128
and Ne = 1, 2, 4, 8.
A sequence of length 800bp was generated for the tips

of the tree, starting with an ancestral sequence at the root
and mutating the sequence along the branches using the
Jukes-Cantor substitution model [16] with a mutation rate
of 0.005. The sequences were analyzed using BEAST-2
[17] under the samemodel (Jukes-Cantor and a coalescent
prior with constant population size). The tree and popu-
lation size were estimated but the mutation rate was fixed
at its true value. The chain was 2.2M steps, sampled every
2k steps. 200k of the initial samples were discarded (burn-
in), leaving 1000 posterior samples. Those were used as
input for building a summary tree by each of the methods
under consideration.
The test trees contain 8 to 128 tips and range (on aver-

age) from a height of 0.01 substitutions to 0.08, or 2 to 16
million years for a nuclear mammalian gene. Sampling the
posterior of such trees normally requires a longer MCMC
chain, but here a relatively short one is sufficient. The
data was generated under a simple model and the exact
same model is used for inference, resulting in excellent
mixing. Not only was the effective sample size high for
all parameters, we made sure the clades were adequately
sampled by running a second independent chain, starting
with a different seed. We then computed the maximum of
the absolute difference between posterior frequency of all
clades; this number was well below 5% in most settings,
and around 6% for the most diffuse case (128 tips and
height of 0.01 substitutions).
The posterior for trees with 32 and more taxa was com-

pletely diffuse, with a distinct topology for each sample.
Even the easiest cases (n = 8 and Ne = 8) contained
between 1 and 45 distinct topologies, with a mean of 6.
Also note that even when the posterior has a single topol-
ogy, a method may do better that others by setting more
accurate branch lengths.

Summary trees were compared using two main criteria:
accuracy in estimating ages and model fit. The first cri-
teria was broken into 3 related error measures: accuracy
in estimating the root height, accuracy in estimating clade
ages (equation 1) and accuracy in estimating divergence
times (equation 4). The second criteria was also divided
into three: the log-likelihood of the sequence data given
the tree (tree likelihood), the log-likelihood of the tree
under the coalescent (coalescent likelihood), and the over-
all model fit, which is the sum of the tree and coalescent
likelihood.

Howmethods are ranked
The methods were compared by aggregating the results
from all test cases. Let us take the root height as an exam-
ple. For each test case, an error value is computed for
each method by taking the absolute difference between
the summery and true tree heights. Next, the methods are
ranked by error using dense ranking (the 1-2-2-3 rule).
Finally, the mean rank of each method is computed by
averaging its rank over all 2000 tests.
This scoring procedure was repeated (bootstrapped)

4000 times. In each repeat 2000 test cases are sampled
(with replacement) from the pool of 2000 test cases, and
a mean score computed for each method. Method A was
deemed better than B only if A’s mean ranking was greater
than B’s in 90% (3600) of the bootstraps. The method gets
a final score of 0 (best) if no other method is better, and a
score of R + 1 if there is a better method of score R.
The same process is repeated, using not the rankings of

errors but the normalized error values. The normalization
takes the errors of each case and transforms them to have
a mean of 0 and a variance of 1. This ranks the methods by
the magnitude of the error they make compared to other
methods.
This may seem overly complex but making a fair com-

parison requires extra care. The methods and error mea-
sures are correlated in both obvious and subtle ways.
Multiple criteria allows for a more nuanced comparison.
Ideally, the particular mix of methods should not matter:
adding a duplicate (or a very close variant) of one method
should not penalize the ranking of lesser methods. Using
dense ranking should minimize those effects. Strong cor-
relations exist between the test settings (Ne and n) and
the magnitude of errors, so aggregating results from the
20 groups requires some care. Rankings based on com-
parison alone are insensitive to those correlations, and the
normalization of errors makes aggregation possible with-
out going through the complex exercise of modeling the
relations between settings. Another reason for using two
rankings is that method A may be slightly better than B in
(say) 60% of the cases, yet its errors in the other 40% are
large. The difference between the two ranks would alert us
to such situations.
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Finally, any number of test cases, 2000 included, is small
when considering the size of tree space. Bootstrapping
provides some confidence that the results are stable and
not due to random noise.

Results
Table 1 lists the rankings of 22 methods for build-
ing summary trees. The table lists the comparison and
error magnitude ranks for each of the 7 error mea-
sures: root height, clades missed and called (equations
5 and 6), ages and divergence times errors (equation 1
and 4), model fit, tree likelihood and coalescent likeli-
hood. See Additional files 1 and 2 for the complete table
and detailed per method rank graphs. Table 2 provides
condensed rankings for the 22 methods together with
performance statistics for each method obtained by aver-
aging over the 2000 summary trees produced by each
method.

Discussion
Clearly no method in Table 1 is “best”, but several interest-
ing trends and patterns can be identified. The agreement
of ranking by comparison andmagnitude is excellent, sug-
gesting a similar distribution of errors for all methods.
The table shows 22 of the 55 methods examined; most of
the reduction comes from removing methods using CCD
and HPF to select a topology, as MCC/TCB were signifi-
cantly better for almost all combinations of methods and
error criteria. This is slightly surprising, especially since
we expected CCD, which assigns a proper probability to
every tree topology, to fare better than heuristics such as
TCB or MCC. The on-line supplement compares the four
selection methods in more detail.
As expected there is a strong correlation betweenmodel

fit and tree/coalescent likelihood (r = 0.89 and r = 0.98),
but in addition the tree and coalescent likelihood are
strongly correlated as well (r = 0.85). Basically, methods

Table 1 Rankings of methods for building a summary tree

Method RH CME CCE CAE DVE MF TLL CLL

TP(med) 1/3 0/0 12/9 8/8 7/5 3/3 0/0 3/3

TP(avg) 0/4 0/0 13/9 6/7 0/3 11/10 1/6 14/15

MED,TCB 1/0 3/3 10/7 6/4 6/6 9/7 8/11 9/9

MED,MCC 1/0 6/6 12/10 7/4 7/7 7/6 7/10 7/7

RBS,TCB 6/8 10/10 4/3 12/12 11/10 2/2 4/3 1/1

RBS,MCC 7/9 12/12 5/4 12/12 11/11 1/1 3/2 0/0

HSO,TCB 1/1 2/2 11/8 6/4 6/6 10/7 8/11 10/10

HSO,MCC 1/2 5/5 13/11 6/4 7/7 8/6 7/10 8/8

SRBS,TCB 3/5 8/7 8/5 6/5 1/2 12/9 6/9 13/13

SRBS,MCC 4/6 9/9 9/6 6/5 3/4 11/9 5/9 11/12

RAS,MCC 5/6 14/14 7/4 9/9 9/8 4/4 3/4 6/6

RAS,TCB 5/6 13/13 6/3 10/10 10/9 5/4 5/5 5/5

mSRBS 3/5 9/8 9/6 7/6 2/3 11/8 4/8 12/11

mRAS 5/7 15/15 7/4 11/11 10/9 6/5 6/7 4/4

mRBS 6/8 11/11 3/3 13/13 11/10 0/0 2/1 2/2

mHS 1/0 18/19 1/1 2/0 1/0 16/12 12/14 18/18

AVG,MCC 0/4 7/7 11/9 5/5 5/8 13/11 9/12 15/14

CAT,TCB 0/5 1/1 14/10 0/0 1/2 18/16 14/15 20/21

CAT,MCC 0/4 4/4 15/12 1/1 1/2 17/15 13/14 19/20

HS,TCB 2/2 17/17 2/2 4/3 4/1 15/14 11/17 16/16

HS,MCC 1/1 19/18 2/2 3/2 3/0 14/13 10/16 17/17

CONS(med) 1/0 16/16 0/0 3/2 8/8 17/14 15/13 19/19

Rankings of methods for building a summary tree from posterior samples. Both the comparison and error magnitude ranking are given for each method and 7 error
measures (as a comparison/magnitude pair). The error measures are root height error (RH), clades missed (CME), clades called (CCE), clade ages errors (CAE),
divergence times errors (DVE), model fit (MF) and tree likelihood/coalescent likelihood (TLL/CLL). Method names are as defined in the methods section, except for
CONS,MED,AVG and HSO. CONS is the strict consensus tree with ages set by median estimates, as implemented by DendroPy. MED and AVG respectively use the
median and average of clades ages from all matching trees in the posterior. HSO also uses the same clade ages, but uses the search algorithm utilized by the tree
distance methods to find heights which minimize the total squared error.
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Table 2 Condensed rankings for methods in Table 1 with additional performance numbers

Method TIMES CME CCE MODEL POLY MF% CAE% CME%

CAT,TCB 1 1 14 19 0.0% 45.2% 3.79% 36.33%

CAT,MCC 2 4 15 18 0.0% 45.3% 3.79% 36.46%

TP (avg) 5 0 13 11 0.0% 93.2% 4.37% 36.22%

TP (med) 12 0 12 1 0.0% 98.6% 4.50% 36.21%

SRBS,TCB 6 8 7 12 4.1% 91.8% 4.38% 36.64%

MED,TCB 7 3 9 8 1.1% 94.0% 4.36% 36.36%

HSO,TCB 8 2 10 10 1.1% 94.0% 4.36% 36.35%

MED,MCC 9 6 13 6 0.9% 94.6% 4.37% 36.48%

mSRBS 9 9 8 9 3.8% 92.1% 4.39% 36.80%

HSO,MCC 10 5 14 7 0.9% 94.6% 4.37% 36.48%

AVG,MCC 10 7 11 13 1.1% 84.2% 4.30% 36.49%

SRBS,MCC 11 10 8 11 4.2% 91.9% 4.39% 36.8%

mHS 0 19 1 16 29.8% 50.0% 3.97% 44.48%

HS,MCC 3 19 2 14 34.3% 54.9% 4.16% 44.27%

HS,TCB 4 18 2 15 34.5% 54.6% 4.18% 44.09%

CONS (med) 6 17 0 17 27.5% 46.3% 3.98% 43.00%

RAS,MCC 13 15 6 3 24.4% 93.1% 4.66% 42.45%

RAS,TCB 14 14 5 4 24.2% 92.7% 4.67% 42.26%

mRAS 15 16 6 5 24.5% 88.2% 4.74% 42.73%

RBS,TCB 16 11 4 2 23.4% 99.0% 4.82% 40.60%

mRBS 17 12 3 0 23.8% 99.1% 4.84% 40.80%

RBS,MCC 18 13 5 0 23.7% 99.0% 4.81% 40.94%

The ranks for RH, CAE and DVE were added to make the TIMES rank indicating fit of clade heights, and MF, TLL and CLL ranks added to make MODEL rank indicating fit
of topology. The POLY column shows the mean number of branches with length zero, which effectively create a polytomy in the tree. The number of zero length
branches in each tree were divided by the total number of branches to turn them in percentages so that they can be averaged over all 2000 test cases. The MF%
column shows the mean percentile of the summary tree log-likelihood (tree+coalescent) in the posterior samples. For example, a value of 94%means that the
summary tree log-likelihood was higher than 94% of the posterior trees. The CAE% column show the mean clade age errors per clade, as a percent of tree height. The
CME% column shows the mean number of missed clades, as a percentage of the number of non-trivial clades in the tree. The means are obtained by averaging the
statistic over the 2000 summary trees produced by each method.

generating trees with a good model fit tend to do well on
both counts. The only exception is TP(avg) with a good
tree likelihood but bad coalescent likelihood. Also, low
clade age errors and low divergence errors go together
(r=0.79), again with TP(avg) as the exception. Slightly
unexpected at first sight is the negative correlation (r =
−0.88) between clades missed and clades called. Either a
method plays it safe by calling only definite clades, and
tends to miss a lot (CONS), or calls everything and makes
more mistakes (TP).
The table shows a second unexpected result: strong neg-

ative correlation between clade age errors and model fit
(r = −0.94). Since model fit is highly correlated with
branch lengths (r = 0.87), no method provides good
clade ages and good branch lengths/model fit. Methods

optimizing branches, such as RBS, generate trees with
good fit but worse ages, and methods optimizing ages
exhibit the opposite. This negative correlation exists
between all measures of age and fit. It is quite interesting
that the two variants of the TP end up at different ends:
medians give better model fit while means gives lower
divergence errors.
Another performance split can be observed between

pairs employing the same method for setting branch
lengths but using MCC and TCB for selecting the topol-
ogy. The MCC variant has better model fit, while the TCB
fares better with clade calls and misses.
While Table 1 makes it easy to compare pairs of meth-

ods, it is quite hard to interpret as a whole. Table 2
complements it by aggregating some performance ranking
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and adding a few per-method statistics. The first statis-
tic is the mean number of zero length branches in the
summery tree, which effectively create polytomies. The
methods in the table are divided into three groups: those
who never create polytomies, those with occasional poly-
tomies (up to 5%), and those with a high number (20% or
more). The number of polytomies is strongly correlated
with missed and called clades: methods which “resolve”
conflict in the posterior by not committing and creat-
ing zero length branches miss more true clades but make
less mistakes, and so have a high clade calls. Somewhat
surprisingly there is no connection between zero length
branches and model fit. We suspected that short branches
were the main cause for low model fit, since they cre-
ate non-coalescent like trees, however we see that RBS
methods manage to have high model fit and around 24%
polytomies. The other three statistics are the mean model
fit percentile, clade age errors per clade as a percent of tree
height, and the percent of missed clades from the total
number of non-trivial clades. Those numbers can help in
deciding how a difference in ranking translates to perfor-
mance: for example, TP(avg) is seven ranks higher than
TP(med) in clade time errors, but this amounts only to a
difference of 0.13%, about 1/7 of the total range. On the
other hand there are a seven ranks between TP(avg) and
CAT in model fit, but here the difference is very large -
from 45% to 93%.
Figure 1 illustrates visually how conflict in the posterior

affects the summery trees generated by four methods. The
posterior trees are from a preliminary analysis of the rps16
intron of Quercus, part of a niche evolution study (Xu et
al., in prep). We use this example because the weak phy-
logenetic signal makes the differences stand out. HS sets
to zero all branches with low support, effectively creating
polytomies where competing topologies exist. CAT takes
the chosen topology as the truth and treats the conflicting
information as “noise” to eliminate. TP is somewhere in
between, and RBS creates very short branches, because a
long branch for a clade with low support is penalized when
the tree is matched with the many posterior trees miss-
ing the clade. Clearly RBS goes somewhat astray here, but
one should keep in mind that some branches produced
by other methods are unreliable too. Large discrepancy
between summary trees indicates a large amount of uncer-
tainty in the posterior, and in those cases no single tree is
a good representative of the full posterior.

Conclusions
Properly analysing the test cases proved to be as challeng-
ing as the research itself. The number of possible methods
for constructing summary trees, coupled with the num-
ber of ways of assessing the results can be overwhelming.
In addition, the domain of trees is vast and the evalua-
tion and construction methods are not independent. For

Figure 1 Four Summary Trees. Four summary trees generated from
the same data set drawn over a DensiTree. A DensiTree draws all trees
in a set of trees using transparancy so that in places where the trees in
the tree set agrees there is dark colouring, while in places where there
is a lot of variation there is light colouring. The bars in the tree from
RBS shows the 95% credible intervals for all clades.
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example, the distance between the summary and true tree
seems the most natural error measure. However, we have
four ways ofmeasuring distance and four relatedmethods,
each searching for the minimal distance tree using that
distance. Not unexpectedly, each distance score finds the
tree produced by its counterpart to be closer to the true
tree than the trees generated using other scores. Inter-
connections such as these show the importance of using
multiple error criteria when comparing methods. The
space of tree sets is complex, and eachmeasure sheds light
on different aspects of that space. Both “Clades Missing”
and “Clades Called” measure topological distance via suc-
cess in detecting clades, both seem reasonable and valid,
yet one is the reverse of the other. Having only one of them
would give a biased view. Simultaneously examining many
methods – while complicating the comparison process –
can reveal general performance trends.
By examining results from a large simulation study we

found there is no clear “winner”. Having low clade age
errors and good branch lengths in a tree seems fundamen-
tally exclusive. Methods setting clade ages from posterior
ages tend to have lower age errors while methods match-
ing the branch lengths produce trees with a better fit to
the model.
Therefore, it makes sense to consider the purpose of

the summary tree when choosing a method. If divergence
times matters most, use either HS or CAT. If only topol-
ogy matters, use the consensus (CONS) or TP. In both
cases the decision between the two alternatives depend
on whether you are conservative and prefer unresolved
clades (polytomies) in areas of conflict, or whether you
wish a “the best guess” at a fully resolved tree. Use RBS
to get a tree with good model fit and therefore closer to a
Maximum Likelihood tree.
TP(med) provides a good compromise: good model

fit and low missed clades, with middle of the pack
ages/divergence errors (but still better than RBS). All of
these are better than theMCC as implemented in TreeAn-
notator, which is middle of the pack in all measures except
for doing worse on clades called and well on root height.
While the simulations show a few surprising results, we

were most surprised by the performance of the “theory
based” methods. We set out to replace heuristics with
methods based upon firmer theoretical consideration, and
strongly expected that RAS, a tree metric which takes into
account both ages and branch lengths, will outperform the
alternatives. Likewise, we expected the CCD to fare bet-
ter than other methods for selecting a topology. However,
heuristics seem to do better when measured against the
main objective - recovering the true tree.
We think the different types of summaries are all valu-

able when the posterior trees are in conflict. Together
with the full posterior as drawn by DensiTree, they pro-
vide different insights into the information contained in

the posterior. We suggest that researchers generating a
summary tree for annotation or publication use one of the
newer methods since all of them outperform the existing
consensus methods and BEAST’s own TreeAnnotator.
While we focused on obtaining a single point estimate

from posterior MCMC samples, we would like to empha-
size that researchers should treat single point estimates as
end points, and use the full posterior whenever possible,
especially for secondary analyses. In addition, one should
look at several methods for extracting a point estimate
when dealing with the complex space of phylogenetic
trees.

Appendix
A Taxa partitions formal definition
Formally, For taxa ordering L = (x1, x2, . . . ) and clade c,
let I = (i1, i2, . . . ) be the set of ordered indices of c in L,
that is c = (xi1 , xi2 , . . . ) and i1 < i2 < . . . < i|c|. The span
of the clade is the range of consecutive integers covering I,

sp(c, L) = (i1, i1 + 1, i1 + 2, . . . , i|c|).

Now, c is compatible with L at position k if

compat(c, L, k) ≡ |c| = | sp(c, L)|
and k ∈ sp(c, L)

and sp(S1(c), L) ∩ sp(S2(c), L) = ∅

where S1,2(c) are the left and right sons of c.
The contribution for the k’th split comes from all trees

containing a compatible clade at this point,

Vk = {
h(C) : (L,C, h) ∈ TandC ∈ Cand compat(c, L, k)

}

The ages are computed by taking the median (or mean)
of Vk . The tree is reconstructed by picking the maximal
age as the root, and recursively building the sub-trees to
the left and right of the split.

B Implementation: Minimum distance tree
For a tree set T (draws from the posterior) and a target
topology C our objective is to find a tree with topology
C which minimizes the total distance to T under a tree
distance metric DT (Equation 13). We use a generic mul-
tivariate optimizer to do part of the heavy lifting, but
transforming the problem into a suitable form is far from
trivial. While the details vary slightly for each distance
metric, we found the following four steps essential:

1. Represent the tree as a point in Rm.
2. Pre-process posterior trees to speed up the

evaluation of the total distance to all posterior trees.
3. Analytically compute the derivative.
4. Find a good initial starting point.
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Tree parametrization
The tree T = (L,C, h) is represented as a vector of
real numbers z = (hr ,α2, . . . ,αm) ∈ Rm, where m =
|C| − |L| is the number of internal clades in the tree.
hr is the height of T, and α2,α3, . . . ,αm are m − 1 val-
ues, one per internal clade, equal to the ratio of the
clade age to the age of its parent. To retrieve a clade
age from z, multiply the root height by the α for all the
clade ancestors. That is, hr

∏
k αk , where k ranges over

the clade ancestors. By traversing the tree in pre-order
(clade before its descendants) all ages can be extracted
from z using just m − 1 multiplications, and an addi-
tional 2(m − 1) subtractions would extract all branch
lengths. Each component in z has a simple bound inde-
pendent of other components; 0 ≤ hr < ∞ and 0 ≤
αi ≤ 1. This makes the tree a suitable optimization target
for a method such as L-BGFS-B, a quasi newton algo-
rithm for minimizing a multivariate function with simple
bounds [18].

Pre-processing of posterior trees
The search for the minimum distance tree involves
many evaluations of the target function, the mean dis-
tance d(T ,T). This evaluation is sped up by transform-
ing the expression, which is a sum on trees, into a
sum over clades. The details vary somewhat, depending
on the distance metric DT . Here we elaborate for the
rooted branch score case (Equation 8), and the interested
reader should consult the code for details of the other
metrics.
For the tree T = (L,C, h) the total distance is expanded

as follows,

d(T ,T) =
∑
ti∈T

RBS(T , ti)

=
∑
ti∈T

∑
x∈Ci∪C

|bi(x) − b(x)|

=
∑
ti∈T

⎡
⎣ ∑
x∈Ci∩C

|bi(x) −b(x)| +
∑

x∈C\Ci

b(x) +
∑

x∈Ci\C
bi(x)

⎤
⎦

=
∑
ti∈T

∑
x∈Ci∩C

|bi(x) − b(x)| +
∑
ti∈T

∑
x∈C\Ci

b(x)

+
∑
ti∈T

∑
x∈Ci\C

bi(x)

=
∑
ti∈T

∑
x∈Ci∩C

|bi(x) − b(x)| +
∑
x∈C

b(x)

⎛
⎝∑

ti∈T
x /∈ Ci

⎞
⎠

+
⎛
⎝∑

ti∈T

∑
x∈Ci\C

bi(x)

⎞
⎠ .

The terms in parentheses do not depend on T and
can be precomputed, so the last two terms take O(|C|)

operations to evaluate. The first term appears to require
O(|C||T|) but we can cut this down to O(|C| log(|T|)).

∑
ti∈T

∑
x∈Ci∩C

|bi(x) − b(x)| =
∑
x∈C

∑
ti∈T
x∈Ci

|bi(x) − b(x)|

=
∑
x∈C

⎡
⎢⎢⎢⎢⎣

∑
ti∈T
x∈Ci

b(x)>bi(x)

b(x) − bi(x) +
∑
ti∈T
x∈Ci

b(x)≤bi(x)

−b(x) + bi(x)

⎤
⎥⎥⎥⎥⎦

=
∑
x∈C

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

∑
ti∈T
x∈Ci

b(x)>bi(x)

1 −
∑
ti∈T
x∈Ci

b(x)≤bi(x)

1

⎞
⎟⎟⎟⎟⎠
b(x)

−

⎛
⎜⎜⎜⎜⎝

∑
ti∈T
x∈Ci

b(x)>bi(x)

bi(x)

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

∑
ti∈T
x∈Ci

b(x)≤bi(x)

bi(x)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

The reason for this complicated looking expression
is that the last two terms in parentheses can be pre-
computed, and the first is simply the number of branches
in the posterior greater than b(x) minus the number of
branches smaller than it. After we pre-sort the branches
from the posterior for each clade, this number can be
found by a binary search, taking at most O(log(|T|)) since
there can be at most (|T|) matched branches, one for each
tree in the posterior.

Analytical derivative
The search is significantly faster when a derivative can
be computed analytically, since estimating a derivative
requires at least m evaluations (the number of dimen-
sions).While the details are tedious the calculations them-
selves are simple, since the target function is composed in
a series of multiplications and additions/subtractions, so
the derivative is easy to compute using the chain rule at
each stage. Again the interested reader should consult the
code for the exact details in each case.

Search initialization
We found that a good starting point can be vital, as under
some settings the number of multiple local minima can be
large. While the procedure to obtain the initial tree seems
natural and obvious in hindsight, several other obvious
looking approaches did not perform well at all.
The initial tree is obtained by first examining each

branch independently. Each branch has its own optimal
length, based on the matching branches in the posterior
and the distance metric. This optimal value is computed
for each branch, but since branch lengths are not inde-
pendent, the next step builds a tree from those optimal
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values. The build assigns an age to each clade, proceeding
in post-order, that is assigning an age to all descendants of
a clade before assigning the clade age. The age of the clade
is obtained by averaging the expected age from the direct
descendants, which is the sum of their own assigned age
and their optimal branch length.
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