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Abstract

Background: Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases
of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to
40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are
poorly understood. The functional roles of individual genes within such gene families also remain unclear. The
relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species
has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in
two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also
investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic
growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are
supplemented by results of the protein structure modeling for a representative set of hydrophobins.

Results: We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes,
Heterobasidion irrequlare, representing one of the microspecies within the aggregate H. annosum s.l, and Phlebia
brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irrequlare (16 copies),
a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of
hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1-40 copies), whereas
contraction through gene loss was observed among the analyzed ascomycetes (1-11 copies). Our phylogen-
etic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in
basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’
ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their
pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-
encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of
the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns.

Conclusions: A considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed.
The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their
ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may
be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin
genes under different growth conditions, indicating their possible functional diversification.
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Background
Hydrophobins are surface-active proteins produced by
filamentous fungi [1,2]. They are small secreted proteins
with eight cysteine residues arranged in a strictly con-
served motif [3,4]. The cysteine residues form four disul-
fide bridges connecting beta strands and stabilizing the
protein structure. Another important feature of hydro-
phobins is their ability to self-assemble into amphiphilic
films at hydrophilic/hydrophobic interfaces [5-7]. Hydro-
phobins have been reported in filamentous fungi belong-
ing to the phyla Ascomycota and Basidiomycota [8].
They are often secreted extracellularly but can also be
found inside fungal structures such as fruiting bodies
and hyphae [9]. Based on solubility and sequence char-
acteristics, hydrophobins can be classified into two
major classes: Class I and Class II [1,10]. Although the
two classes are similar in many ways, class I hydropho-
bins have larger size and more diversity in amino acid
sequence than class II [1,10]. Hydrophobins are
expressed at different stages of fungal life cycle: sporula-
tion, fruiting body formation and during growth of vege-
tative hyphae [9]. Studies have shown that hydrophobins
play important role in fungal pathogenesis where they
act as virulence factors to enhance fungal infection
[11-15]. They have also been reported to be involved in
the attachment of fungal structures [16,17] and the
emergence of aerial hyphae from submerged conditions
[18-20]. Hydrophobins have been implicated in diverse
fungal interactions such as symbiosis [21], mycorrhiza
formation [22], and antagonistic interactions [20,23].
Evidence of hydrophobin involvement in cell wall assem-
bly during pathogenic interactions where the monomers
act as elicitors and toxins have been reported [24]. Re-
cent gene expression studies have shown that P. gigantea
hydrophobin encoding genes 1 and 2 (Pghl and Pgh2)
are highly transcribed in the interaction zone between
the biological control agent P. gigantea and the tree
pathogen H. annosum sl. [20,23]. However, the actual
roles of these genes in the interaction are not known.
Previous studies have demonstrated a high level of se-
quence divergence in P. gigantea hydrophobin-encoding
genes Pghl and Pgh2 [20] and the hydrophobins from
the pathogenic fungus H. irregulare Hahl and Hah2
[12]. These observations raised crucial questions on the
evolutionary forces driving the rapid differentiation of this
gene family. Available data also indicate a considerable
amount of variation in the numbers of hydrophobin-
encoding genes across other fungal taxa, ranging from
1 gene in Acremonium alcalophilum to 40 genes in
Trametes versicolor. This may suggest that hydrophobin
genes could be under a dynamic evolutionary process
across most fungal taxa.

Gene duplication is an important evolutionary process
that plays a crucial role in an organism’s complexity,
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adaptation and diversification to closely related strains
and species [25,26]. Reports have shown that duplication
of genes results in functional diversification and gene ex-
pression patterns observed in different fungi and other
organisms [27]. Paralogous genes resulting from duplica-
tion events create genetic redundancy, which may be
vulnerable to selection pressure [25,27]. Genome-wide
analysis of gene duplication has shown that this bio-
logical phenomenon occurs at a very high rate. However,
the fate of duplicated genes and the forces driving their
fixation and divergence still remain unknown [26]. There
has been increasing number of evidences showing that
mutated genes with deleterious effects are purged from
the genome through purifying selection whereas copies
with enhanced functions are fixed in the population
through positive or diversifying selection [28,29]. Fur-
thermore, evidence of duplication and losses among
stress-related genes has been documented in the litera-
ture whereas growth-related genes have been shown to
be selected against change in the copy number [30].
Gene contraction through gene loss and expansion
through duplication are common processes in gene fam-
ily evolution and it has been documented in chitinases
[31] and glycosyl hydrolases (GH28) [32] gene families.
However, the mechanisms driving these evolutionary
processes in fungal hydrophobins are poorly understood.
In this study, we investigated hydrophobin gene family
evolution in several diverse fungal groups, we also ana-
lyzed recombination events in H. annosum s.l. by exam-
ining the ratio of non-synonymous (dN) to synonymous
substitutions per site (dS). We tested correlation be-
tween number of hydrophobin-encoding genes, overall
genome size and their ecological strategy. The transcript
abundance of sixteen hydrophobin genes from H. anno-
sum s.s. during saprotrophic growth on pine wood as
well as on culture filtrate from P. gigantea was further
evaluated using micro-array. The results from this study
have further highlighted the possible involvement of
hydrophobin genes in fungal ecological lifestyle.

Results

Hydrophobin sequence identification and alignment
Sequence alignment of selected fungal hydrophobins
Alignment of the manually curated sequences of hydro-
phobin encoding genes from representative fungal spe-
cies screened in this study showed eight conserved
cysteine residues necessary for disulfide bridge forma-
tion, a characteristic feature of all fungal hydrophobins
(Figure 1). There was high sequence diversity in the
multiple alignments. A comparison was made between
the aligned sequences and already published sequence
consensus of class I, C-X5.7-C-C-X;9.30-C-X-g_53-C-X5-
C-C-X4.15-C-X5.13 [33] and class II, C-Xo-C-C-X;;-C-
X14-16-C-Xg-C-C-X19-C-X6.7» [14] hydrophobins. Based
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Figure 1 Sequence alignment of selected fungal hydrophobins. Alignment of amino acid sequences of several selected fungal hydrophobins
representing both known classes and including two deviating sequences from U. maydis and T. terrestris. Following abbreviations are used to
indicate the species of origin (in alphabetic order): Acral, Acremonium alcalophilum; Aspca, Aspergillus carbonarius; Aspnid, Aspergillus nidulans;
Aurde, Auricularia delicata; Hetan, H. irregulare; Lepmu, Leptosphaeria maculans; Phlbor, Phlebia brevispora; Thite, Thielavia terrestris; Triha, Trichoderma
) A.
delicata (jgi|Aurde1|152219]estExt_fgene), P. brevispora (jgi|Phlbr1|162498estExt_Genem) and H. irregulare (jgi|Hetan2|105914|Hetan1.Genem)
belong to the Class I; sequences from L. maculans (jgilLepmul|775|Lema_T007750.1), T. atroviride (jgi[Triha1|3176|gm1.3176_g) and A. alcalophilum
(jgilAcral2[2105212|e_gw1.4.137) represent the Class Il. T. terrestris (jgi|Thite2|159967|Thite1.genem) and U. maydis (jgi|Ustma1|5010]UMO05010)
deviated from the general consensus of classes | and Il. Conserved cysteine residues are shaded black and indicated with an asterisk; functionally

on the consensus, sequences were clearly separated into
two different groups, class I and class II. Hydrophobins
from H. irregulare and P. brevispora were found to be
class I members. There was a long stretch of amino
acids (aas), 26—39 amino acid residues between the C3/C4
position in the hydrophobins from the class I pro-
teins. However, class II hydrophobins showed a short

stretch of amino acids at this region (C3/C4) with all
members investigated in this study having 11 aa at
position C3/C4 (Table 1). The hydrophobins from the
thermophilic fungus Thielavia terrestris and the corn
smut fungus Ustilago maydis deviated from the
remaining analyzed hydrophobins in the length of the
region between cysteine residues C3 and C4 (Figure 1;

Table 1 Spacing between conserved cysteine residues in different classes of hydrophobins

Class Numbers of amino acid residues between conserved cysteine residues

c/c2? C3/ca C4/C5 C5/C6 C7/C8
Class | (basidiomycetes) 6 26-33 12-13 6 13
Class | (ascomycetes) 6-7 26-39 18-21 6-8 15-17
Class Il 9-10 1 15-16 2-7 10
T. terrestris protein 159967 7 5 8 5 12
U. maydis protein 5010 6 49 17 5 16

? = Positions of conserved cysteine residues. Cysteine residues C2/C3 and C6/C7 are adjacent in all characterized hydrophobins.
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Table 1). The hydrophobin from T. terrestris had very
short C3/C4 stretch consisting of only 5 amino acids
residues, while the one from U. maydis had unusually
long C3/C4 regions of 49 amino acid residues.

Domain structure, hydropathy pattern and homology
modeling of selected hydrophobins

A comparison of the domain structures of hydrophobins
from a subset of the fungal species screened in this study
was made to determine if the differences in their eco-
logical habits could be explained by different domain
patterns. Furthermore, the hydropathy profile of hydro-
phobins from class I was compared with the profile from
class II members as well as hydrophobins from 7. terres-
tris and U. maydis (Figure 2A-D). Class I hydrophobins
showed higher hydrophobicity stretch (positive values)
(Figure 2A), when compared with the pattern from class
II members (Figure 2B). The cysteine doublets in the
Class I hydrophobins are followed by a long stretch of
hydrophilic residues, whereas in the proteins belonging
to the Class II, the cysteine doublets were followed by
hydrophobic residues. For U. maydis and T. terrestris,
the hydropathy patterns were similar to that of class I
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proteins (Figure 2C-D). The signal peptides of the hydro-
phobins screened in this study lie in the region of the first
21 amino acids, although in some cases the signal peptide
was missing. Homology modeling of a subset of hydropho-
bins sequences revealed the distribution of the hydrophobic
residues and conserved cysteine residues (Figure 3). This
clearly shows that the residues are arranged as patches. The
models only cover parts of the relevant hydrophobins, as
construction of complete models was hindered by the lack
of template structures.

Phylogenetic analysis of the fungal hydrophobins and
ecological strategy

Basidiomycetes and ascomycetes

In order to understand the evolutionary relationships of
the fungal hydrophobins from both ascomycetes and ba-
sidiomycetes screened in this study (Additional file 1:
Table S1), species based trees were reconstructed using
the NJ method with JTT matrix-based model [34]. Two
distinct separations along the two classes of hydropho-
bins were evident, all the class I hydrophobins clustered
in clade A whereas class II members grouped together
in clade B (Additional file 2: Figure S1). Other subclades
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Ct-) are shown with the respective amino acids.

Figure 3 Homology modeling of hydrophobins. Surface and ribbon models of the parts of the hydrophobins from (A) P. gigantea (protein 1D
104621), (B) H. irregulare (protein ID 181098), (C) V. dahliae (protein ID 6939), (D) U. maydis (protein ID 5010), (E) L. bicolor (protein 1D 473162), and
(F) T. terrestris (gm1.6178_g, protein ID 2089872). The protein IDs correspond to the protein model numbers in the Fungal Genomic Platform

database at JGI. The hydrophobic areas and conserved cysteine residues are shown in orange and hotpink respectively. N- and C-termini (Nt- and

such as C, D, E, F and G were evident. Subclade C is a
mixed group containing class I proteins from both asco-
mycetes and basidiomycetes. Most of the basidiomycetes
in this group are from the order Polyporales except few
species like Auricularia delicata and Schizophyllum
commune which were from the orders Auriculariales
and Agaricales, respectively. It was also interesting to
see that all the hydrophobins from A. delicata, a

basidiomycete, are closer related to the class I proteins
from the ascomycetes than to the remaining members of
class I hydrophobins from basidiomycetes (Additional
file 2: Figure S1, subclade C). Hydrophobins from U
maydis and T. terrestris which showed a deviation from
the general consensus of classes I and II (49 aas at C3/
C4 and 5 aa at C3/C4) respectively, were nested within
the Class I hydrophobins (Additional file 2: Figure S1) in



Mgbeahuruike et al. BMC Evolutionary Biology 2013, 13:240
http://www.biomedcentral.com/1471-2148/13/240

our phylogenetic analysis and thus, most likely, they are
just two extreme examples of the variation in length of
C3/C4 region in the Class I hydrophobins. Furthermore,
the hydrophobin from T. terrestris with unusually short
stretch of amino acids between cysteine residues C3 and
C4 appeared within group C. Subclade D contains white
rot fungi of the order Polyporales except Wolfiporia cocos,
a brown rot fungus. Most of the hydrophobins from
P. brevispora clustered in this group. However sequences of
hydrophobins from H. irregulare could not be resolved into
a distinct clade. Groups E, F and G consisted of class I
hydrophobins from basidiomycetes of different systematic
positions and ecological lifestyles (brown rots, white rots,
mycorrhiza-formers and saprotrophs). Another interesting
observation from the phylogenetic grouping is that many
ascomycetes such as Magnaporthe grisea, Trichoderma
virens, Neurospora discreta, Neurospora crassa and
Neurospora tetrasperma appeared to have both Classes I
and II proteins and the two classes separated into different
clades (Additional file 2: Figure S1).

Basidiomycetes

A similar trend was observed for the phylogenetic
tree involving only hydrophobins from basidiomycetes.
Seven main clades and two smaller clades were
formed (Additional file 3: Figure S2). Members of clades H,
I and ] were mostly hydrophobins from fungi of the order
Polyporales, all the fungi in this group except W. cocos
and Punctularia strigosozonata are white rotters. Most
of the sequences of hydrophobins from P. brevispora were
resolved in clade ]. However, sequences of hydrophobins
from H. irregulare have not formed a distinct clade. Clade
K consists of hydrophobins from fungi of diverse system-
atic positions (orders Agaricales, Polyporales, Russulales,
Corticiales and Boletales) and ecological strategies. Clades
L and P are relatively smaller clades with hydrophobins
from fungi representing different orders and lifestyles. In
clade M, sequences of hydrophobins from S. commune, a
white rot fungus dominated the group with hydrophobins
from A. delicata. Group N is a relatively small group com-
prising of hydrophobins from fungal species of the orders
Agaricales, Boletales and Dacrymycetales. Fungal species
in this group have mixed lifestyle, while some are sapro-
trophic in nature (Coprinopsis cinerea), others are brown
rotters. In addition, some sequences of hydrophobins from
the mycorrhizal fungus, Laccaria bicolor were found in
this clade. In clade O, all the hydrophobin sequences
separated into fungal species with brown rotting habits.
The fungal species (Coniophora puteana and Serpula
lacrymans) in this group are from the order Boletales.

Ascomycetes
Three major clades Q, R and S were evident in the
phylogenetic tree reconstructed with the ascomycetes
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(Figure 4). The branches were strongly supported with
relatively high boothstrap values. Clades R and S formed
monophyletic groups with members of the group being
class II hydrophobins from Trichoderma and Aspergillus
species respectively, except one sequence of hydropho-
bin from M. grisea that nested with the members of
clade S. Clade Q is a mixed clade with class I pro-
teins from different fungal species. Members of the
group include sequences of hydrophobins from the patho-
genic fungi (Fusarium oxysporum, M. grisea, Verticillium
dahliae, Leptosphaeria maculans and Alternaria brassici-
cola). Other members of the group are hydrophobins
from the saprotrophic fungi (Neurospora spp. and A.
alcalophilum) and the mycoparasitic fungi, Trichoderma
species.

Distribution, genome size and hydrophobin gene family
evolution in ascomycetes and basidiomycetes

A survey of the distribution of hydrophobin-encoding
genes and genome sizes of the fungi analyzed in this
study revealed considerable variation in the copy number
of hydrophobin genes ranging from 1 in A. alcalophilum
to 40 copies in T. versicolor (Additional file 4: Figure S3
and Additional file 5: Figure S4, Additional file I:
Table S1). There were 26 functional copies of hydrophobin-
encoding genes in P. brevispora with a genome size of
49.96 MB. Although previous studies have reported 13 cop-
ies of hydrophobin encoding genes in H. irregulare [35],
our analysis revealed 24 predicted gene copies of hydropho-
bins in the genome of H. irregularre, out of this number,
only 16 are functional proteins. This difference in the
number of hydrophobin-encoding genes observed in
H. irregulare could be a result of automatic annota-
tion problem. However, among the basidiomycetes
screened in this study, hydrophobins were completely
absent in the Pucciniales. The absence of hydropho-
bins in rust fungi may be either linked with their life
style or with their relatively simple life forms (i.e., rela-
tively simple morphology, absence of massive fruiting
bodies). The second explanation seems more probable as
hydrophobins are missing both in parasitic (Puccinia) and
free-living (Rhodotorula) members of Pucciniomycotina.
In the ascomycetes group, there was no evidence of
hydrophobins in all the Saccharomycetales/yeast screened
in our study (Additional file 1: Table S1). Also the gen-
ome size was variable across the different fungal species
screened, ranging from 11.5 MB in Pichia membranifa-
ciens (yeast) to 101.1 MB in Melampsora laricis-populina,
a basidiomycete with biotrophic lifestyle (Additional file 1:
Table S1). A considerable expansion of hydrophobin-
encoding genes was observed in basidiomycetes (P =
0.002) while a contraction of the same gene family was
evident in the ascomycetes. A comparison of the genome
size and the number of hydrophobin encoding genes of a
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Figure 4 Phylogenetic tree showing the relationship between
hydrophobins from a representative set of ascomycetes. The
tree was inferred using the Neighbor-Joining method. The optimal
tree with the sum of branch length = 2348723281 is shown. The
percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1000 replicates) are shown above the
branches. The tree is drawn to scale, with branch lengths in the
same units as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed using
the JTT matrix-based method and are in the units of the number of
amino acid substitutions per site. The analysis involved 59

amino acid sequences. All ambiguous positions were removed for
each sequence pair. There were a total of 136 positions in the
final dataset. Three clades Q (purple), R (blue) and S (green) are
represented in the tree. Clades R and S =monophyletic groups.
Clade Q=class | hydrophobins from ascomycetes with mixed
lifestyles, pathogens, saprotrophs and mycoparasites. Clades R = class I
hydrophobins from Trichoderma species. Clade S = class Il hydrophobins
from Aspergillus species except one sequence from the rice blast fungus,
M. grisea. Fungal species are indicated with the following abbreviations.
[Thite2|, Thielavia terrestris; |Acral?|, Acremonium alcalophilum, |Aspca3|,
Aspergillus carbonarius, |Aspcl1|, Aspergillus clavatus; |Aspnid1|, Aspergillus
nidulans; |Dotse1|, Dothistroma septosporum, |Lepmull, Leptosphaeria
maculans, [Triat2| Trichoderma atroviride, [TriviGv|, Trichiderma virens, |
Altbr1|, Alternaria brassicicola, [Trihal|, Trichoderma harzianum, |Pench1|,
Penicillium chrysogenum, [Neudi1|, Neurospora discreta, |Fusgr],
Fusarium graminearum, |Fusox1|, Fusarium oxysporum, [Maggri|,
Magnaporthe grisea, |Neucr1|, Neurospora crassa, |Neute_mat_al|,
Neurospora tetrasperma, |Verdal|, Verticillium dahliae.

subset of the fungal isolates used in this study was made
using Pearson’s partial correlation, although a correlation
between genome size and the number of hydrophobin-
encoding genes exist, it was not statistically significant
(R?=0. 135, P =0.35). Furthermore, there was no signifi-
cant relationship between genome size and ecological
strategy (Figure 5a), however, there was a statistically
significant relationship between ecological strategy
(non-pathogenic) and the number of hydrophobin-
encoding genes (Figure 5b). The fungi with non-pathogenic
lifestyle tend to be more favored by higher numbers of
hydrophobin-encoding genes (P =0.0001). However, fungi
with pathogenic lifestyles showed no statistically significant
relationship between the number of hydrophobin-encoding
genes and their ecological strategies.

Gene clusters and inventory of hydrophobins in

P. brevispora and H. irregulare hydrophobins

The 26 class I hydrophobin-encoding-genes found in
the genome of P. brevispora, were arranged in a rela-
tively clustered pattern (Additional file 6: Table S2).
A good number of the proteins (6) were located in
scaffold 12, whereas 4 proteins each where found in
scaffolds 11 and 14 respectively. Scaffold 23 had 3
proteins, while scaffolds 9, 14 and 19 contained 2
proteins each. Other scaffolds, 75, 30 and 38 had one
protein each.
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Figure 5 Relationships between genome sizes, hydrophobin gene copy numbers and ecological strategies of selected fungal species.
a) Relationships between genome size and different ecological strategies. The bars indicate average genome size in the analyzed pathogenic and
non-pathogenic fungi. b) Relationships between hydrophobin copy number and different ecological strategies. The bars indicate average
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In H. irregulare, 24 putative class I hydrophobin en-
coding gene sequences were identified, 16 appeared to
be functional proteins whereas 8 were probable pseudo-
genes. A similar clustering pattern of hydrophobin-
encoding genes was observed in the genome of H. irre-
gulare (Additional file 7: Table S3), most of the genes
(15) clustered in scaffold 11. Scaffold 6 had 3 genes,
whereas 2 genes were found in scaffold 3. Scaffolds 4, 8
and 9 had 1 gene each.

Selection tests for H. irregulare hydrophobins

A selection test was carried out in a subset of hydro-
phobins from H. irregulare. A high dN/dS ratio (>1)
was observed in all the tested hydrophobin genes. This
result was supported by the D test statistics (Table 2).
Only one recombination event was observed in H.
irregulare.

Microarray analysis of hydrophobin expression in

H. annosum s.s.

To investigate the transcriptional regulation of hydro-
phobins in H. annosum s.s. during growth in culture
filtrate from P. gigantea and to see the biocontrol po-
tentials of the culture filtrate from P. gigantea, micro-
array analysis was conducted. Also microarray analysis
of hydrophobins from H. annosum s.s. was carried out
during saprotrophic growth on wood. Sixteen tran-
scripts of class I hydrophobin-encoding genes with dif-
ferent regulatory patterns were observed (Table 3).
Among the 16 hydrophobin transcripts identified, high
expression of transcript number 5 was observed mostly
during saprotrophic growth of H. anmnosum s.s. on
bark, sapwood and heartwood. However, transcript
number 11 was highly up-regulated during growth on
sapwood and heartwood but showed low expression
during saprotrophic growth on bark. The abundance of



Mgbeahuruike et al. BMC Evolutionary Biology 2013, 13:240
http://www.biomedcentral.com/1471-2148/13/240

Page 9 of 16

Table 2 Selection test for hydrophobins genes from H. irregulare

Number of hydrophobins Recombination Tajima’s D test Non-synonymous Synonymous dN/dS ratio
events/sites substitutions (dN) substitutions (dS)
13 1 —1.03462 189.97 65.03 292

transcript number 9 was observed during saprotrophic
growth on bark, sapwood and heartwood as well as
during growth on culture filtrate produced by P.
gigantea.

Discussion

Hydrophobins are surface-active proteins with diverse
roles in fungal life cycle [9,11-15]. Hydrophobins are
grouped into class I and class II based on the following
criteria: minimum of eight cysteines arranged in a con-
served pattern, solubility of the formed aggregates, hy-
dropathy pattern and the differences in the spacing of
amino acids between the cysteine residues [1,36]. Al-
though we did not carry out solubility test in this study,
a clear separation of the hydrophobins screened in this
study into class I and II was observed. Although H.
irregulare and P. brevispora have different ecological
lifestyles, the domain structure of hydrophobins from
these two fungi did not differ considerably, an indica-
tion that the differences in nutritional lifestyle could not
be explained by their domain structures. Separation of
hydrophobins into various classes based on hydropathy
pattern has been reported in other studies [37].

The most prominent feature of the phylogenetic
grouping of hydrophobins from all the fungal species is
the separation of the sequences along the two classes of
hydrophobins (Additional file 2: Figure S1). Similar results
based on phylogenetic grouping of Class I and II into the
two major fungal taxa have been reported [3,37]. Some
fungal species such as M. grisea, T. virens, N. discreta,
N. crassa and N. tetrasperma have both class I and class
II proteins which were resolved into distinct clades
(Additional file 2: Figure S1). Similar findings have
been reported in other studies where both class I and
class II hydrophobins were identified in a single fun-
gal species [1,38]. Class I hydrophobins were common
among the members of the basidiomycetes, while both
class I and II were present in the ascomycetes. This is in
line with findings from other studies [3,37]. The absence
of class II proteins in basidiomycetes may indicate that
only the class I proteins may be important in basidiomy-
cetes for fruit body formation. However, despite the high
level of sequence conservation between the hydrophobins
from P. brevispora and H. annosum s.l., the two fungi
appeared to be phylogenetically distant from each other
(Additional file 2: Figure S1 and Additional file 3:
Figure S2).

Numerous clusters of hydrophobins were found in our
analysis; paralogous genes with high bootstrap support

were also nested together in the generated trees. The pres-
ence of these clusters provides additional evidence in sup-
port of our hypothesis about important role of gene
duplication in the evolution of hydrophobin-encoding
genes in fungi. Paralogous sequences of hydrophobins
from P. brevispora clustered together and they appeared to
be phylogenetically closer to hydrophobins from W. cocos,
B. adusta and F. mediterranea (Additional file 2: Figure S1
and Additional file 3: Figure S2). Sequences of hydropho-
bins from H. irregulare were not clearly resolved into dis-
tinct clades. It was interesting to note that hydrophobins
from A. delicata, a basidiomycete were closer relatives to
the class I proteins from ascomycetes than members of the
same class basidiomycetes (Additional file 2: Figure S1).
Hydrophobins of A. delicata differ from hydrophobins of
most remaining basidiomycetes in our analysis by having
shorter region between the conserved cysteines C3 and C4
(26—-29 amino residues versus 32-33). This structural
feature might influence the results of the phylogenetic
analysis. At the same time, Auricularia is the most basal
member of basidiomycetes in our analysis, and it is
possible that hydrophobins of Auricularia retained
the similarity to the hypothetical ‘ancestral’ type of
hydrophobins that were present in the common ancestor
of ascomycetes and basidiomycetes, whereas in evolution-
ary more advanced species of basidiomycetes they are
more diverged from that type, e.g. by having longer
stretch of amino acids between C3 and C4 positions. The
phylogenetic relationships between class I hydrophobins
from ascomycetes and the same class of proteins from the
basidiomycetes may suggest that the ancestor of these
genes may have been formed very early during evolution.
Furthermore, it is possible that the gene products may
have a role in the life style or ecology of the fungal species.
Based on this result, a complete survey of genome
sizes and copy numbers of hydrophobin-encoding
genes was made on several fungal species with varied
ecological strategies (Additional file 4: Figure S3 and
Additional file 5: Figure S4). A considerable variation in
the number of hydrophobin-encoding genes exists in all
the fungi screened, ranging from 1 in A. alcalophilum
to 40 in T. versicolor. In H. irregulare 13 hydrophobins
have previously been reported [35]. In our analysis, 16
functional class I proteins and 8 putative pseudogene were
identified. This difference in the number of hydrophobin-
encoding genes observed in our study could be a result of
automatic annotation problems. However, our microarray
studies identified only the 16 functional proteins. In
P. brevispora, 26 class I hydrophobin-encoding genes have



Table 3 Microarray expression® analysis of hydrophobin encoding genes from H. annosum s.s. during growth on wood and growth on culture filtrate from
P. gigantea

No Transcript ID Pg/Ha fold P-value Bark/control P-value Sapwood/control P-value Heartwood/control P-value
changes® fold changes® fold changes® fold changes®
1 jgilHetan1|181099|AOL _estExt_fgenesh3_kg.C_90057 0.82 040 0.50 0.02 052 0.02 0.34 0.02
2 jgilHetan1|28315|gw1.9.943.1 4.50 043 1.21 1.00 0.23 0.52 1.92 0.72
3 jgi|Hetan1|33224|estExt_Genewise1.C_30567 0.59 042 1.01 098 1.09 099 1.89 028
4 jgi|Hetan1]46054/e_gw1.3.836.1 1.85 0.90 322 059 239 061 133 1.00
5 jgilHetan1|65822|estExt_Genewise1Plus.C_90176 047 042 73.57 0.09 1733 0.21 5544 0.1
6 jgi|Hetan1|104521|Genemark.5594_g 245 0.60 032 052 032 0.51 032 053
7 jgi|Hetan1|105914|Genemark.6987_g 326 042 1.22 092 488 0.06 131 0.80
8 jgilHetan1]|148119|estExt_fgenesh3_kg.C_90130 0.94 1.00 0.88 0.69 091 087 117 0.72
9 jgi|Hetan1]|156762estExt_fgenesh2_pm.C_90143 7.14 040 1858 0.05 20238 0.04 1917 0.05
10 jgi|Hetan1|181098|AOL_estExt_fgenesh3_kg.C_90132 0.82 040 067 0.02 0.78 0.16 0.81 021
1 jgilHetan1]|181114|AOL_EuGene18000072 1.00 1.00 146 0.78 33.23 0.02 284.3 0.00
12 jgi|Hetan1|104521|Genemark.5594_g 244 0.59 032 0.52 032 051 032 0.52
13 jgi|Hetan1|181117|AOL_EuGene16000006 539 0.58 045 0.83 063 0.98 1.07 1.00
14 jgilHetan1|156763|estExt_fgenesh2_pm.C_90144 3.89 0.28 093 0.62 0.60 0,10 0.73 0.16
15 jgi|Hetan1|17575|gw1.11.458.1 038 061 0.80 1.00 0.02 0.09 0.73 0.95
16 jgilHetan1|181100]AOL_e_gw1.9.435.1 0.1 045 0.59 0.07 0.64 0.08 0.58 0.09

= Expression data normalized to liquid Hagem media.
b= Fold changes calculated as the expression value of the experimental sample over the control.
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been identified. Accumulation of several copies of dupli-
cate hydrophobin genes from a single copy of ancestral
sequence may have resulted in the variation in numbers of
hydrophobin genes in the different fungi. An interesting
finding in this work is the absence of hydrophobins
among the members of hemiascomycetous yeasts, an
indication that species like S. cerevisiae, Pichia stipitis,
Hansenula polymorpha and Wickerhamomyces anomalus
with yeast-like or monocentric growth pattern (non-
filamentous growth pattern) may not need hydrophobins.
In addition, the complete absence of hydrophobins in the
Pucciniales may suggest that hydrophobin genes may
have undergone relaxed selection after evolution. It is
also possible that hydrophobins were completely lost
during evolution. Among the basidiomycetes screened
in this study, a significant expansion of the gene was
observed (P =0.002) whereas ascomycetes appeared to
have witnessed a massive contraction of the gene during
evolution. The expansion of hydrophobin-encoding
genes among the members of Basidiomycota may not
be unconnected with fruit body formation [9]. It is also
possible that the increase in the number of hydrophobin-
encoding genes may have been positively selected for in
basidiomycetes, but not in ascomycetes. Relationship
between the number of hydrophobin-encoding genes and
ecological strategy (pathogenic and non-pathogenic
life style) was further investigated. There was a well-
supported link between the number of hydrophobin genes
and ecological strategy with the non-pathogenic fungi
having higher numbers of hydrophobins than the
pathogenic ones (P=0.0001), this may suggest that
although hydrophobins may be needed in fungal
pathogenesis [11-15], higher numbers of the gene may
have more ecological role in non-pathogenic condi-
tions such as symbiosis [21], mycorrhiza formation
[22] and interspecific fungi-fungi interactions [20,23],
fruit body formation [39] and emergence of hyphal
structures [18-20]. This result is in contrast with
other studies that have shown massive expansion of
gene families in pathogens as compared with non-
pathogenic relatives [31,32]. Differences between eco-
logical strategies and genome size were also tested.
Genome size had no significant effect on ecological
strategy (P =0.1).

Evolutionary forces operating at a genomic scale may
have some influence on gene family expansion or con-
tractions, implying that the fungal species with larger
genome sizes may have a correspondingly higher num-
ber of hydrophobins. However, there was no significant
relationship between genome size and the number of
hydrophobin-encoding genes in this study. To under-
stand the evolutionary forces driving hydrophobin gene
family evolution in H. irregulare, a selection test was
carried out. A high dN/dS ratio (> 1) was observed in
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H. irregulare hydrophobins, an indication that hydro-
phobin genes may be under positive selection. It is also
possible that the evolution of these genes could be a re-
sult of recombination and duplication events. Evidence
of duplication events have been reported in hydropho-
bins from P. gigantea [20,23] and H. irregulare [12].
These finding may therefore suggest that this group of
proteins may have evolved through the so called birth
and death model [14]. In the birth and death model,
new gene copies evolve through duplications followed by
diversification due to accumulation of spontaneous mu-
tations; new duplicates with vital functions are retained
in the genome while those with deleterious effects are
purged from the genome through purifying selection.
We identified 16 transcripts of class I hydrophobin en-
coding genes that were differentially regulated during
growth on bark, heartwood and sapwood as well as dur-
ing growth on culture filtrate produced by P. gigantea.
Furthermore, the differences in expression pattern of
these class I proteins during saprotrophic growth may
suggest that different hydrophobin genes are employed
by H. annosum s.s. during growth on diverse wood com-
ponents. In addition, the low transcript abundance
observed during growth in the submerged medium
containing culture filtrate from P. gigantea may sug-
gest that the induction of these genes could be inhibited
due to the presence of the secreted molecules from the
biocontrol agent (P. gigantea). P. gigantea is the biological
control fungus for the control of H. annosum s.l. infection.
It is possible that one of the mechanisms for action of the
biocontrol fungus against the pathogen is by repression of
genes such as hydrophobins through its secreted mole-
cules or metabolites. Other studies have reported the
upregulation of hydrophobin encoding genes at the
zone of interaction between the biocontrol fungus
and the pathogen [20,23]. Due to lack of protein
structure of hydrophobins from H. annosum sl,
hydrophobins from selected fungal species were mod-
eled alongside hydrophobins from P. gigantea. The
models revealed the surface patches of hydrophobic
residues (Figure 3), which are possibly important in
the formation of amphiphilic membranes as reported
earlier [5]. The conserved cysteine residues confirm prob-
ably a preserved structural feature of the protein.

Conclusions

We have surveyed the distribution and evolution of
hydrophobin genes in P. brevispora and H. irregulare as
well as in other fungi. We have also examined the rela-
tionships between the number of hydrophobin-encoding
genes and ecological strategy in the examined fungal
species. From our results, hydrophobin genes have wit-
nessed a considerable expansion in P. brevispora as well
as in other basidiomycetes while contraction of the same
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gene family has occurred in the ascomycetes. In addition,
although different numbers of hydrophobins have been re-
ported in P. brevispora, H. annosum s.. and other fungal
species, each gene has different regulatory pattern in the
pathogenic fungus (H. annosum s.s.) during growth on
wood and in culture filtrate produced by the antagonistic
P. gigantea. The results from this study have also given
some insights on some of the factors underlying the eco-
logical habits of the fungi screened in this study.

Methods

Gene mining

Annotated sequences of hydrophobins from H. irregu-
lare [12] and P. brevispora were used as queries to
search for other hydrophobin sequences of some ran-
domly selected fungal species, using BlastP [40]. Blast
searches were performed at the fungal genomic platform
of the Joint Genome Institute (JGI) (http://www.jgi.doe.
gov/). The identified ORFs were used as queries to
search for all possible hydrophobin proteins in the se-
lected fungal species. Repeated blast searches were car-
ried out until no more hydrophobin proteins were
found. Sequences with E-values below 10 were selected
for further analysis. Due to the reasonably lower number
of hits generated by the blast results, filtered model was
further used as a criterion to download all the hydro-
phobin proteins of the selected fungal taxa. Sequences
without N- or C-terminal parts were corrected. Also
sequences with regions of unspliced introns were cor-
rected and aligned using MUSCLE alignment tool imple-
mented in Molecular Evolutionary Genetic Analysis
software (MEGA 5.0). MUSCLE was used because it
gives a better accuracy and is computationally stronger
than CLUSTAL alignment [41]. The aligned protein se-
quences were viewed with the Biological sequence align-
ment editor (Bioedit), Windows 95/98/NT/2 K/XP [42].
Alignments were curated manually, and all ambiguous
positions were removed. The sequences were further fil-
tered to remove pseudogenes, or sequences shorter than
50 residues in length, or missing the hydrophobin do-
mains as defined by the InterproScan Tool [43] or hav-
ing a different gene ontology (GO) from hydrophobins
and realigned for further analysis. The signal peptides
were predicted using SignalP 3.0 software. The protein
sequences were classified into class I and class II using
Kyte-Doolittle hydropathy plot, Version 2.0u66 in Win-
dows 9.0 [44] and published consensus sequence infor-
mation for class I [33] and class II [14] respectively.

Species tree reconstruction

A total of 335 protein sequences from 41 fungal species
(Additional file 1: Table S1) were used for the analysis.
The protein sequences were further divided into the two
major fungal taxa, basidiomycetes and ascomycetes.
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Species-based trees were reconstructed for both groups
using the Neighbor-joining (NJ) method in MEGA. The
evolutionary distances were calculated using the Jones
Taylor—Thorton (JTT)+ gamma matrix-based [34] tak-
ing into account rate heterogeneity among sites. The
rate variation among sites was calculated with a gamma
distribution with a default parameter of 5. The reliability
of internal branches was evaluated using 1000 bootstrap
replications [45].

Species ecological strategy, genome size and
hydrophobin distribution

Information on the ecological strategy of each fungal
species was obtained from already published data. In
parallel, a complete survey of hydrophobin distribution
and genome sizes of all the fungi species used in the
study was obtained from JGI (http://www.jgi.doe.gov/)
(Additional file 1: Table S1). The fungal species were di-
vided into basidiomycetes and ascomycetes, and were
further subdivided according to their ecological strat-
egies, pathogens and non-pathogens (Additional file 1:
Table S1). The selected fungal species (Additional file 1:
Table S1) were analyzed for gene contraction through
gene loss and gene expansion through duplication. The
relationship between ecological strategy and the copy
number of hydrophobin-encoding genes within the se-
lected set of species was also examined (Additional
file 1: Table S1). Further analysis to determine the re-
lationship between genome size and hydrophobin gene
distribution was evaluated among the fungi in this group.

Microarray expression analysis of hydrophobin genes
from the pathogenic fungus, H. annosum s.s. during
growth on culture filtrate of P. gigantea and saprotrophic
growth on pine wood

Saprotrophic growth of H. annosum s.s. on wood bark,
sapwood and heartwood

Wood discs from Scots Pine (Pinus sylvestris) were sepa-
rated into bark, sapwood and heartwood. Each wood
component was grounded into small particles of sizes
0.5-1 mm for 15 min at 590 rpm using a ball grinding
mill (Fritsch Pulverisette, Germany) and 8 g of each
wood material was weighed in a flask and autoclaved for
20 min. The wood tissues were allowed to cool for
20 min, 8 ml sterile low nitrogen medium (NH4NO;
0.6 g/L, K,HPO, 0.4 g/L, KH,PO,4 0.5 g/L, MgSO,7H,0
0.4 g/L) was added to each flask followed by the addition
of 8 ml of sterile distilled water ensuring that compar-
able moisture levels was maintained. This was followed
by inoculation with three pieces of 1 x 1 c¢cm agar plugs
of malt extract agar containing H. annosum s.s. hyphae
(isolate FP5, obtained from Kari Korhonen, Finish Forest
Research Institute (METLA), Vantaa Finland). The plugs
were put into each flask, mixed gently to allow the agar
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plugs to be covered by the wood tissues. Cultures were
incubated at 20°C and harvested after 3 months. Harvested
mycelia and wood tissues were frozen in liquid nitrogen
and stored at —80°C until RNA extraction. There were 3
biological replicates for each sample.

Growth of H. annosum s.s. in culture filtrates of P. gigantea
Three Erlenmayer flask (300 ml) containing liquid malt
extract (100 ml) each, were inoculated with 3 mm agar
plugs of the commercial isolate of P. gigantea (Rotstop®),
courtesy of Kari Korhonen (Finish Forest Research Insti-
tute (METLA), Vantaa Finland). Cultures were incubated
at 20°C for 10 days. The cultures were filtered to get rid
of the fungal mycelia using sterile flask and filter paper.
The liquid filtrate was incubated overnight at 70°C to kill
any remaining particle of P. gigantea mycelia. Freshly
growing agar plugs (3 mm) of H. annosum s.s. were inocu-
lated in each flask and cultures were incubated at 20°C.
In parallel, fresh liquid medium of malt extract were
inoculated with 3 mm freshly growing agar plugs from
H. annosum s.s. to act as positive control and incubated
at 20°C. Cultures were harvested after 10 days post
inoculation (d.p.i) and the harvested mycelia were frozen
in liquid nitrogen until further processing. There were 3
biological replicates for each experiment.

RNA processing and microarray

RNA was extracted from triplicate cultures of each sam-
ple using the method by Chang [46] with some modifi-
cations. RNA was purified by using the RNeasy®
MinElute Cleanup kit (QIAGEN) according to the
protocol. RNA integrity was assessed with RNA 6000
Nano kit using an Agilent Bioanalyzer (Agilent, CA).
RNA concentration was measured using NanoDrop ND-
1000 Spectrophotometer and the purity of the samples
was estimated by the OD ratios (Ajgo/Asg, ranging
within 1.8-2.2). The RNA samples were DNase treated
to remove any potential DNA contamination using DNa-
sel according to the recommendations from the manu-
facturer (Fermentas, Canada). cDNA was synthesized by
using the TransPlex® Complete Whole Transcriptome
Amplification Kit according to the manufacturer’s proto-
col (SIGMA). Microarray analysis was carried out using
the Nimblegene protocol (http://www.nimblegen.com/).

Statistical analysis

Pearson’s partial correlation coefficient was used to test
if the number of hydrophobins in P. brevispora or H.
irregulare and hydrophobins from other fungal species
correlate with their genome sizes. General linear model
(GLM) procedure in SAS was used to test the hypothesis
that the number of hydrophobin-encoding genes and gen-
ome size differed between basidiomycetes and ascomy-
cetes, and between pathogens and non-phytopathogens.

Page 13 of 16

To understand the evolutionary forces driving hydropho-
bin gene evolution in H. irregulare, recombinations events
were tested using the method described in [47]; also the
ratio of non-synonymous substitution per site (dN) to syn-
onymous substitution per site (dS) in 13 paralogous se-
quences of hydrophobin-encoding genes was calculated.
Tajima’s D test statistics [48] was also applied on the
hydrophobin-encoding genes from H. irregulare. For the
microarray data, the mean expression and fold changes
were calculated with FDR (Benjamini Hochberg) multiple
testing corrections using ArraySTAR software (3801 Re-
gent Street Madison, WI153705, USA). Student t-test was
also used to determine differences in mean between
samples.

Homology modeling of hydrophobins

Similar sequences to the hydrophobins from P. gigantea
and H. irregulare as well as hydrophobins from Verticil-
lium dahliae, T. terrestris, U. maydis and L. bicolor were
located in the entries of Protein Data Bank (PDB) using
PSI-BLAST search [49] and aligned using CLUSTAL W
[50]. The best predictions were selected as the templates
and these structures were obtained from the PDB [51],
then superimposed and compared with the programs
LSQMAN [52] and O [53]. The best pair-wise align-
ments with the relevant parts of the structures were
used to generate homology models of the hydrophobins
from P. gigantea, H. irregulare, V. dahliae, T. terrestris,
U. maydis and L. bicolor with thioredoxin reductase
from Drosophila melanogaster (PDB entry 3DGH; iden-
tity 35%), transcriptional regulator BT_p548217 from
Bacteroides thetaiotaomicron (PDB entry 2K9Q; identity
35%), Hydrophobin from Hypocrea jecorina (PDB entry
2FZ6; identity 44%) [7], hydrophobin from N. crassa
(PDB entry 2K6A [54]; identity 48%), Dsllp subunit
from Saccharomyces cerevisiae (PDB entry 3ETU [55];
identity 31%) and glyceraldehyde-3-phosphate dehydro-
genase from Trypanosoma cruzi (PDB entry 3DMT [56];
identity 30%) structures respectively as templates in
the program SOD [53]. The models were adjusted in
O, using rotamers that would improve packing in the
interior of the protein, and accounting for insertions
and deletions in loop regions. The models are available
upon request from the authors. The figure was prepared
using http://www.pymol.org.

Availability of supporting data

The microarray data obtained in this work were depos-
ited at the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database (accession number
GSE39805 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE39805) and GSE41301 (http://www.ncbinlm.nih.
gov/geo/query/acc.cgi?acc=GSE41301). The alignments of
hydrophobin sequences used for the phylogenetic
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reconstructions were deposited at the TreeBASE database
(http://www.treebase.org/) under accession number 14520
(http://purl.org/phylo/treebase/phylows/study/ TB2:514520).

Additional files

Additional file 1: Table S1. Fungal species screened in this study, their
ecological strategies, genome sizes and numbers of predicted
hydrophobin-encoding genes.

Additional file 2: Figure S1. The phylogenetic tree of hydrophobins
from a representative set of basidiomycetes and ascomycetes. Neighbor-
Joining tree showing the phylogenetic relationships between selected
fungal hydrophobins. Bootstrap support values above 30 (in percent) are
indicated next to the branches. Clade A = class | hydrophobins from both
ascomycetes and basidiomycetes, clade B (blue) = class Il hydrophobins
from ascomycetes. Subclade C = Class | proteins from ascomycetes
(magenta) and basidiomycetes (red) A. delicata marked with grey,

M. grisea, N. tetrasperma, N. discreta, N. crassa and T. virens have both
classes I and Il proteins and are marked with black circle at the tip of the
branches. T. terrestris nested with class | proteins from ascomycetes and is
marked with black triangle at the tip of the branch. Subclade D (green) =
class | proteins from basidiomycetes of the Order Polyporales, Subclasses
E (pink), F (black) and G (purple) = Class | hydrophobins from basidiomy-
cetes of different systematic positions and ecological preferences. Other
unmarked subclades are shown in black, U. maydis marked with black
square. Following abbreviations are used to indicate the fungal species:
|Lacbi2|, Laccaria bicolor; |Hetan2|, Heterobasidion irregulare; |Phlbr],
Phlebia brevispora; |Bjead1|, Bjerkandera adusta; |Gansp1|, Ganoderma sp.;
|Phchr1|, Phanerochaete chrysosporium; |Serla_varshal|, Serpula lacrymans;
|Wolco1|, Wolfiporia cocos; |Cersul|, Ceriporiopsis subvermispora; |Copcil|,
Coprinopsis cinerea; |Schco2|, Schizophyllum commune, [Fommel|,
Fomitiporia mediterranea; |Fompi3|, Fomitopsis pinicola; |Punst1|, Punctularia
strigosozonata; [Travel|, Trametes versicolor; |Conpul|, Coniophora puteang;
|Glotr11], Gloeophyllum trabeum; [Pospl1|, Postia placenta; [Thite2|, Thielavia
terrestris; |Ustmal|, Ustilago maydis; |Acral2|, Acremonium alcalophilum;
|Aspca3| Aspergillus carbonarius; |Aspcl1|, Aspergillus clavatus; |Aspnid1],
Aspergillus nidulans; |Dotse1|, Dothistroma septosporum; |Lepmu],
Leptosphaeria maculans; |Triat2|, Trichoderma atroviride; [TriviGv],
Trichoderma virens; |Aurdel|, Auricularia delicata; |Dacsp1], Dacryopinax sp.;
|Altbr1|, Alternaria brassicicola; |Trihal|, Trichoderma harzianum; [Pench1],
Penicillium chrysogenum; |Neudil|, Neurospora discreta; |Fusgrl|, Fusarium
graminearum; |Fusox1|, Fusarium oxysporum; |Maggr1|, Magnaporthe
grisea; |Neucr1|, Neurospora crassa; [Neute_mat_a1|, Neurospora
tetrasperma; |Verdal|, Verticillium dahliae.

Additional file 3: Figure S2. Phylogenetic tree showing the
relationships between hydrophobins from a representative set of
basidiomycetes. The tree was inferred using the Neighbor-Joining
method. The optimal tree with the sum of branch length = 76.88625866
is shown. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown
above the branches. The evolutionary distances were computed using
the JTT matrix-based method and are in the units of the number of
amino acid substitutions per site. The analysis involved 281 amino acid
sequences. All ambiguous positions were removed for each sequence
pair. There were a total of 216 positions in the final dataset. All the se-
quences of hydrophobins are from class | proteins except the sequence
from U. maydis which has some deviations from the general consensus
of class | proteins. Seven major clades H, I, J, K, M, N and O. Clades L and
P are smaller clades. Clades H, I and J = Class | proteins from basidiomycetes
of the Order Polyporales, Clade K = Class | hydrophobins from basidiomycetes
of different orders (Agaricales, Polyporales, Russulales, Corticiales and Boletales),
Clades L and P = Hydrophobins from basidiomycetes of different orders and
lifestyles, M = Mostly sequences of hydrophobins from S. commune
and A. delicata.,, N = Hydrophobins sequences from Agaricales, Boletales and
Dacrymycetales, O = Hydrophobins from brown rotting fungi (Boletales).
The following abbreviations are used to indicate the fungal species: |Lacbi2],
Laccaria bicolor; |Hetan2|, Heterobasidion irregulare; |Phlbr1], Phlebia

brevispora; |Bjead1|, Bjerkandera adusta; |Gansp1|, Ganoderma sp.;
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[Phchr1|, Phanerochaete chrysosporium; |Serla_varshal|, Serpula lacrymans;
|Wolco1]|, Wolfiporia cocos; |Cersul|, Ceriporiopsis subvermispora; |Copcil|,
Coprinopsis cinerea; |Schco2|, Schizophyllum commune; |Fommel|,
Fomitiporia mediterranea; |Fompi3|, Fomitopsis pinicola; |Punst1],
Punctularia strigosozonata; [Travel|, Trametes versicolor; |Conpul|,
Coniophora puteana; |Glotr11], Gloeophyllum trabeum; |Pospl1|, Postia
placenta.

Additional file 4: Figure S3. Genome size and hydrophobin-encoding
genes copy number in basidiomycetes. Comparison of the genome sizes
(in Mbp) and the copy number of hydrophobin-encoding genes in the
species of basidiomycetes analyzed in this study.

Additional file 5: Figure S4. Genome size and hydrophobin-encoding
genes copy number in ascomycetes.

Additional file 6: Table S2. Inventory of hydrophobin encoding genes
in P. brevispora.

Additional file 7: Table S3. Inventory of hydrophobin encoding genes
in H. irregulare.
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