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Abstract

Background: A major goal of molecular evolution is to determine how natural selection has shaped the evolution of
a gene. One approach taken by methods such as KA/KS and the McDonald-Kreitman (MK) test is to compare the
frequency of non-synonymous and synonymous changes. These methods, however, rely on the assumption that a
change in frequency of one mutation will not affect changes in frequency of other mutations.

Results: We demonstrate that linkage between sites can bias measures of selection based on synonymous and
non-synonymous changes. Using forward simulation of a Wright-Fisher process, we show that hitch-hiking of
deleterious mutations with advantageous mutations can lead to overestimation of the number of adaptive
substitutions, while background selection and clonal interference can distort the site frequency spectrum to obscure
the signal for positive selection. We present three diagnostics for detecting these effects of linked selection and apply
them to the human influenza (H3N2) hemagglutinin gene.

Conclusion: Various forms of linked selection have characteristic effects on MK-type statistics. The extent of
background selection, hitch-hiking and clonal interference can be evaluated using the diagnostic statistics presented
here. The diagnostics can also be used to determine how well we expect the MK statistics to perform and whether
one form of the statistic may be preferable to another.
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Background
Understanding the mechanisms by which natural selec-
tion shapes the evolution of genes is one of the major aims
of molecular evolution. One commonly used approach
for the detection of positive selection in protein-coding
sequences is based on comparing the frequency of non-
synonymous or amino-acid (A) changes to the frequency
of synonymous (S) changes [1]. For simplicity, synony-
mous nucleotide changes that do not affect the protein are
generally assumed to be neutral. In the absence of selec-
tion and accounting for the genetic code, we expect both
types of changes to be equally probable so that the rate of
non-synonymous substitutions per site (KA) is equal to the
rate of synonymous substitutions per site (KS); a ratio of
KA/KS > 1 indicates positive selection favouring a change
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in the protein [2]. However, this test is heavily conser-
vative as proteins are generally under negative selection
against amino acid changes that may affect protein func-
tion. Positive selection at a small number of sites may be
masked by negative selection removing non-synonymous
changes in the rest of the protein [3].
The McDonald-Kreitman (MK) test [4] attempts to

account for the presence of negatively selected sites by
comparing KA/KS to f, the proportion of nearly neutral
sites in the sequence [5]. If selection is strong, deleteri-
ous and beneficial mutations are expected to make little
contribution to polymorphism; deleterious mutations are
removed by selection and beneficial mutations reach fix-
ation rapidly. Polymorphic sites are expected to consist
largely of neutral variation, and the ratio of the num-
ber of neutral non-synonymous polymorphic sites (PA) to
the number of synonymous polymorphic sites (PS) can
be used as an estimator of f [6]. In the MK test, posi-
tive selection is inferred when KA/KS > PA/PS. Following
similar reasoning, KA/KS measured in a related sample
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can be used as a measure of selective constraint so that an
increase in theKA/KS ratio implies positive selection [7,8].
With the increasing availability of sequence data, vari-

ousmodifications ofKA/KS methods have been developed
to quantify the prevalence [6], strength [9,10] and dynam-
ics of positive selection [11,12]. These methods rely on
the assumption that sites segregate independently; that
is, the change in frequency at one site will not affect the
change in frequency at another site. In a large population
with a high mutation rate, however, multiple mutations
co-occur in the population and the change in frequency
of one mutation also depends on selection acting at linked
sites. Depending on the type of selection, linkage can have
different effects; background selection, hitch-hiking and
clonal interference can both increase or decrease fixa-
tion probability or polymorphism frequency relative to
expected levels, which we describe below.
Background selection is the reduction in genetic vari-

ability caused by linkage to negatively selected sites [13].
The effect of background selection on the probability of
fixation is qualitatively similar to a reduction in effec-
tive population size [13-16], which implies a higher than
expected value of KA/KS under negative selection and
a lower than expected value of KA/KS under positive
selection relative to expectations under independently
segregating sites [14]. Background selection also reduces
the number of neutral polymorphic sites [17], and can
result in a non-monotonic site-frequency spectrum, sim-
ilar to the effect of continual adaptation [18,19]. Linkage
between sites introduces dependencies in the site fre-
quency spectrum, increasing the covariance even if the
mean is unchanged [20]. Recent work with the struc-
tured coalescent [21] in a model of only negative selection,
provides analytical expressions for the number of both
neutral and deleterious mutations showing that the effec-
tive population size varies, both going back in time, and
between individuals in different fitness classes.
When both positive and negative selection operate on

a locus, the dynamics of linked neutral and deleteri-
ous mutations will also be affected by hitch-hiking [22].
Birky and Walsh [14] showed that hitch-hiking does not
affect the fixation probability at neutral sites but increases
the fixation probability at negatively selected sites, which
implies that KA/KS values are elevated relative to expec-
tation under independently segregating sites. For the MK
statistic, the effect of hitch-hiking depends on its effect
on polymorphism relative to its effect on divergence. The
effect of hitch-hiking on neutral polymorphism has been
described by Braverman et al. [23], but has not been
characterised on a selected background. Previous find-
ings [23-25] were largely based on coalescent simulations
which allow only a small number of sites to be under
selection and model the trajectory of beneficial mutations
deterministically. Forward simulation studies [14,26-28]

which begin with a number of positively selected sites
and evolve towards mutation-selection equilibrium show
that linkage affects a number of frequency-based statistics
including Tajima’s D and heterozygosity.
Clonal interference (interactions between positively

selected mutations) has also been predicted to reduce the
fixation probability of beneficial mutations and promote
the fixation of deleterious mutations; this was demon-
strated in several experimental systems [29,30]. More
recently, theoretical models assuming continual adapta-
tion with a high supply of beneficial mutations have
been used to obtain analytical expressions characterising
genetic diversity. These models predict a non-monotonic
site frequency spectrum with a large number of both low
and high-frequency mutations [18,19,31]. This is equiva-
lent to large number of lineages coalescing simultaneously
and is often described as multiple-mergers [18,19,31].
Here, we examine the joint effects of background

selection, hitch-hiking and clonal interference on the
KA/KS and MK statistic. Based on theoretical studies
[18,19,21,31], we expect different forms of distortion in
the site-frequency spectrum due to these effects. Previ-
ous simulation studies [14,26,27,32] have often considered
these effects together, but here we distinguish between
them by allowing both the strength of selection and the
level of interference to vary. We do this using forward
simulations with finite sites, allowing positive selection to
occur at different times. Finally, we propose three diag-
nostic statistics to indicate the degree to which (a) hitch-
hiking of deleterious mutations (b) background selection
and (c) clonal interference affect a sample of protein-
coding sequences.

Results
The effect of background selection
We begin by examining the effect of negative selection
and linkage without positive selection in a protein-coding
region of 500 codons evolving under a Wright-Fisher pro-
cess. Negative selection is described by the distribution of
fitness effects (DFE) of non-synonymous changes, which
are specific to each codon site. The DFE is modelled using
a gamma distribution where a large value of the shape
parameter β corresponds to a higher proportion of weakly
deleterious mutations.
The effect of background selection on the ω̂ = KA/KS

statistic is shown in Figure 1. The density of estimators
with linked selection computed using Equation (19) is
shown in solid lines, whereas the corresponding values
obtained with independently segregating sites from PRF
simulations are shown with dashed lines. Both simula-
tions account for the contribution of segregating polymor-
phisms. The effect of linkage, therefore, is shown by the
difference between simulations with linkage and without
linkage. As expected, the effect of background selection in
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Figure 1 Distribution of ω̂. Distribution of ω̂ under only negative selection for DFE shape parameters β = 0.25, 0.5, 1, 2. Solid curves indicate
simulation results under complete linkage and dashed curves indicate results based on independently segregating sites using the PRF. Distributions
were calculated from 100 sequences sampled at 6N generations with 500 replicates.

reducing ω̂ increases with β and u. Our simulations also
show that linkage increases the variance of the estimator
due to correlations between linked sites. This is particu-
larly evident for u = 10−5 where the distribution of ω̂

visibly broadens with increasing β .
In Figure 2, we consider three forms of the MK statistic:

(i) the uncorrected estimator âMK (Equation 21), and (ii)
Fay’s corrected estimator âF (Equation 22) which removes
low-frequency polymorphisms to reduce the effect of seg-
regating deleterious polymorphisms and (iii) Bhatt’s cor-
rected estimator âB (Equation 23) which removes both
low and high frequency polymorphisms that are likely
to contain deleterious and beneficial mutations. In the
absence of positive selection, we expect âF and âB to per-
form similarly, and this is indeed seen for u = 10−6.
However, for simulations with a higher mutation rate
and correspondingly larger effect of background selec-
tion, discrepancies occur between the two statistics due
to an increase in the number of high-frequency polymor-
phisms. Unlike ω̂, the variance of the MK statistics does
not seem to be affected by linkage. In fact the performance
of theMK statistics (in the absence of positive selection) is
slightly improved by background selection which removes
weakly deleterious mutations.

The combined effect of background selection, clonal
interference and hitch-hiking
In the following section, we examine the combined effect
of negative and positive selection. Positive selection is
introduced at a fixed number of sites at intervals of τ

generations throughout the simulation, where all posi-
tively selected sites have the same selective coefficient
sb. Decreasing τ increases the probability of interfering
positive sweeps. A comparison of the effects of differ-
ent selective conditions on the site frequency spectrum
is shown in Figure 3. Note that these curves represent
averaged levels of polymorphisms, and dynamics can vary
rapidly over time (see Additional file 1: Figures S3–20).

We show results for low levels of background selec-
tion (small u) in the left column and results for high
levels of background selection in the right column. The
(unscaled) synonymous site frequency spectrum is shown
in the top row. When the effect of background selec-
tion is small, the synonymous site frequency spectrum
is close to the expectation under independently segre-
gating sites (θ/i; black dashed lines). Background selec-
tion (bold grey lines) reduces the level of synonymous
variation, particularly at medium frequencies, leading to
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â

D
en

si
ty

β = 0.25 , u = 10−6 âMK
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Figure 2 Distribution of the MK statistics. Distribution of the MK
statistics under only negative selection. Results are shown for
simulations with complete linkage (solid lines) and independently
segregating sites (dashed lines) for different DFEs and mutation rates.
The true number of adaptive substitutions (zero) is indicated by the
dotted vertical line.



Chan et al. BMC Evolutionary Biology 2013, 13:244 Page 4 of 15
http://www.biomedcentral.com/1471-2148/13/244

20 40 60 80

i

p S
(i )

0.
00

1
0.

01
0

0.
10

0
1.

00
0

no positive selection
sb = 10−3 , τ = 104

sb = 10−3 , τ = 103

sb = 10−2 , τ = 104

sb = 10−2 , τ = 103

β = 0.25 , u = 10−6

20 40 60 80

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

i

p A
( i)

p S
(i)

20 40 60 80

i

p S
(i)

0.
01

0
0.

10
0

1.
00

0

β = 0.25 , u = 10−5

20 40 60 80

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

i

p A
(i)

p S
(i)

Figure 3 The effect of linkage on the site frequency spectrum. The synonymous site frequency spectrum (top row) and the ratio of
non-synonymous to synonymous frequency spectrum (bottom) is shown for β = 0.25 with mutation rates u = 10−6 and 10−5. All curves are
averaged over 500 replicates, under conditions of only negative selection (grey), and different conditions of positive selection (coloured lines). Black
dashed lines show the expected behaviour of the neutral site frequency spectrum under independently segregating sites (θ/i) and black dotted
lines indicate the leading order behaviour expected under constant adaptation (θ/i2). In the bottom panels, solid lines show the average
non-synonymous to synonymous ratio for only negatively selected sites, whereas dashed lines show the ratio across both positively and negatively
selected sites.

a non-monotonic distribution, but the effect is not as
severe as clonal interference. Linked positive selection fur-
ther reduces polymorphism levels; a slow rate of sweeps
with strong selection (orange lines) primarily affects high-
frequency mutations while a high supply of weak positive
selection (green lines) results in smaller levels of reduc-
tion at both low and high frequencies. When both the
supply rate and the strength of positive selection is strong
(pink lines), the synonymous site frequency spectrum
approaches θ/i2 (black dotted line), which is the leading
behaviour predicted for continual adaptation [19].
To examine how linkage affects selected mutations, we

compare the ratio of the averaged frequency spectra for
non-synonymous (A) and synonymous (S) sites (Figure 3,
bottom row). The A/S ratio in the absence of positive

selection is indicated by the bold grey line, whereas the
A/S ratio for deleterious sites linked to positively selected
sites is shown by coloured solid lines. The discrepancy
between the grey and coloured lines reflects the effect of
hitch-hiking; there is a slight increase in the A/S ratio at
high-frequencies due to hitch-hiking. Note that the actual
number of deleterious polymorphisms is reduced relative
to simulations with no positive selection (Additional file 1:
Figure S1) but the number of synonymous polymorphisms
is reduced by a relatively greater proportion.
Comparing the A/S ratio with (dashed coloured lines)

and without (solid coloured lines) beneficial mutations,
it can be seen that beneficial mutations can segregate at
all frequencies when the supply rate is high (green and
pink lines), but mutations segregating at high frequencies
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tend to include more beneficial mutations. Comparison
of the two panels in the bottom row also shows that
higher levels of background selection increase the effect of
both hitch-hiking (solid coloured lines) and clonal inter-
ference (dashed coloured lines), as distortions in the site-
frequency spectrum tend to occur over a wider range of
frequencies. Similar results are seen for larger values of β

with more pronounced reductions of synonymous poly-
morphism due to background selection, and changes in
the A/S ratio due to hitch-hiking and clonal interference
are spread across a broader frequency range (Additional
file 1: Figure S1).
The contributions of background selection, hitch-hiking

and clonal interference result in qualitatively different
behaviour in the site-frequency spectrum, and this in turn
causes characteristic types of bias in the various forms of
the MK statistic. This is summarised in Figure 4, where
we compare the performance of different forms of the
MK statistic in estimating the true number of beneficial
mutations in each simulation. Here, we do not consider
the uncorrected âMK as it was severely biased in all the
simulations we examined. An additional MK statistic, âD
is considered which uses divergence information from

simulations with no positive selection instead of estimat-
ing selective constraint from polymorphism information.
Comparison of âF or âB against âD, therefore, shows how
much of the bias is due to incorrect estimation of selective
constraint.
The different panels in Figure 4 correspond to dif-

ferent combinations of positive and negative selection:
low levels of background selection (due to strong nega-
tive selection) and infrequent positive sweeps (top left),
low levels of background selection and frequent positive
sweeps (bottom left), high levels of background selection
and infrequent positive sweeps (top right) and high lev-
els of background selection with frequent positive sweeps
(bottom right). When the effect of background selection
is large (top right), both âF and âB tend to underestimate
the true number of adaptive substitutions. For low levels
of background selection or frequent positive sweeps, the
effect of hitch-hiking (controlled by β) and the amount of
clonal interference (using the observed number of bene-
ficial mutations as a proxy) has a consistent effect on the
MK statistics. For small values of β so that low levels of
hitch-hiking occur, âB has smaller bias than âF . However,
for high levels of hitch-hiking âF is less biased, particularly
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β = 0.50, âF
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β = 1.00, âD
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Figure 4 Effect of background selection, hitch-hiking and clonal interference on the MK statistics. Lines indicate the median relative error of
different forms of the MK statistics for sb = 10−2 across all time points in recurrent sweeps with varying levels of background selection, hitch-hiking
and clonal interference.
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when clonal interference is low. Results for different val-
ues of sb were qualitatively similar but with larger relative
error for weaker positive selection.
The reason for these biases is intuitively clear from the

site frequency spectrum. âB differs from âF only in that
it does not use polymorphism data at high frequency.
Therefore, âB is more robust against clonal interference
(Figure 4, bottom row) as beneficial mutations are more
likely to segregate at high frequencies. However, when
weakly deleterious effects are prevalent (Figure 4, solid
pink lines), âB is upwardly biased as it does not account for
the relaxation of selective constraint due to positive selec-
tion. This is confirmed by the similar values obtained for
âB and âD, suggesting that removal of high and low fre-
quency polymorphisms in the context of linked selection
has a similar effect to that expected under independently
segregating sites, namely the removal of both positively
and negatively selectedmutations. The correction of Bhatt
et al. [33] does not perform well when there are high
levels of background selection as distortions in the site
frequency spectrum are spread across a wider range of
frequencies than without background selection.

Diagnostics for linkage effects
In the previous section, we showed that much of the bias
in the comparative estimators can be explained in terms
of background selection, hitch-hiking and clonal inter-
ference. In order to detect these effects using samples
of protein-coding sequences, we construct and examine
three diagnostic statistics.
The first diagnostic tests for an excess of low frequency

non-synonymous polymorphisms relative to medium fre-
quency polymorphisms. For a sample size of n, we con-
sider a mutation to occur at low frequency if it occurs
i times in the sample, where i belongs to the set IL =
{1, 2, . . . , [0.15n]−1} and square brackets indicate round-
ing to the nearest integer. Charlesworth and Eyre-Walker
[34] showed that the majority of deleterious polymor-
phisms occurred in this frequency range even when the
sample size is varied. Similarly, we consider a muta-
tion to occur at medium frequencies if the number
of times it occurs in the sample belongs to IM =
{[0.15n] , [0.15n]+1, . . . , [0.75n] }. The first diagnostic is
given by

D1 =
∑

i∈IL pA(i)∑
i∈IL pS(i) + 1

−
∑

i∈IM pA(i)∑
i∈IM pS(i) + 1

. (1)

If weak deleterious effects are rare, then we expect that
most deleterious mutations are immediately removed
from the population. In this case, most polymorphisms
would be selectively neutral and we would expect that
the ratio of non-synonymous to synonymous polymor-
phisms, at any frequency range, is simply determined by
the mutational bias. The difference of the two ratios in D1

is therefore expected to equal zero in the absence of weak
deleterious effects and large values are indicative of a high
frequency of weak deleterious mutations, which results in
susceptibility to hitch-hiking.
In Figure 5, we show the correlation betweenD1 and the

amount of hitch-hiking, which we measure as the relative
excess of non-synonymous substitutions at non-beneficial
sites in simulations with positive selection compared to
simulations with no positive selection. A value of 1.0 in the
x-axis corresponds to half of all non-synonymous substi-
tutions being due to hitch-hiking.When positive selection
is weak so that âB < 0 (open circles), D1 correlates with
the β shape parameter so that values of D1 > 0 indi-
cate susceptibility to hitch-hiking. When strong positive
selection occurs, selective constraint is reduced so that the
proportion of mutations that can be considered weakly
deleterious may be increased. In this case, we see that
D1 is also increased, even for small values of β . Inter-
pretation of the D1 statistic, therefore, should depend on
both the value of D1 and the MK statistic. We use âB
here as Figure 4 indicates that it is less likely to result in
underestimation than âF .
The second diagnostic tests for an excess of high fre-

quency polymorphisms which is an indication of multi-
ple merger events [18,31] due to interfering mutations
that can be either negatively (background selection) or
positively(clonal interference) selected. We compare the
number of high frequency polymorphisms to medium fre-
quency polymorphisms, where a mutation is defined to be
at high frequency if the number of times it occurs in the
sample belongs to IH = {[0.75n]+1, . . . , n − 1} and |x|
denotes the number of elements in the set x,

D2 =
∑

i∈IM ipA(i)
|IM| −

∑
i∈IH ipA(i)

|IH | . (2)

Deleterious mutations are not expected to persist to
medium frequencies, so polymorphisms at medium and
high frequencies can be assumed to be neutral or benefi-
cial. Under assumptions of neutrality and independently
segregating sites, the expected number of polymorphic
sites that occur at frequency i is given by E(pA(i)) = θA/i,
where θA = 2uNLc/(c + 1), giving an expectation of
D2 = 0. Values of D2 < 0 can, therefore, indicate strong
linkage effects due to an excess of beneficial or deleterious
mutations.
A third statistic can distinguish between the effect of

background selection and clonal interference,

D3 = 2
∑

i∈IH ipA(i)
|IH | −

∑
i∈IM ipA(i)

|IM| −
∑

i∈IH ipS(i)
|IH |

×
∑n−1

i=1 pA(i)∑n−1
i=1 pS(i) + 1

.

(3)
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This statistic tests for an excess of high-frequency non-
synonymous polymorphisms relative to both medium
frequency non-synonymous polymorphisms and high-
frequency synonymous polymorphisms. As with D1 and
D2, the expectation under independently segregating neu-
tral sites is D3 = 0 and values of D3 > 0 are indicative
of clonal interference. In Figure 6, values of D2 and D3
are shown for varying levels of background selection and
clonal interference. In the left panel, low mutation rates
generate only low levels of background selection and val-
ues ofD2 andD3 are strongly correlated, as both are due to
clonal interference. In the right panel, a highmutation rate

increases levels of both background selection and clonal
interference. Simulations with a high supply rate of bene-
ficial mutations (filled red circles) have large values of D3
and strongly negativeD2 values, whereas simulations with
a low supply rate of beneficial mutations and occasional
instances of clonal interference tend to small positive val-
ues of D3 with negative values of D2 (filled blue circles).
When only high levels of background selection are acting,
both D3 and D2 fall below zero (open black circles). The
behaviour of these three diagnostics are similar for differ-
ent sample sizes (Additional file 1: Figure S2) and different
population sizes (Additional file 1: Figures S15–20).
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Figure 6 Diagnostics for clonal interference and background selection.Median values of D2 and D3 are shown for all combinations of
sb = 10−3, 10−2 and β = 0.25, 0.5, 1, 2 for all time points after 40000 generations. Bars represent interquartile ranges for D3. In the left panel,
negative values of D2 are mostly due to clonal interference but in the right panel, negative values of D2 are caused by a combination of clonal
interference and background selection.
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In Figure 7, we show that the bias of âF and âB varies
systematically withD3 (clonal interference) andD1 (hitch-
hiking). Larger values of D1 and D3 tend to result in larger
values for both statistics; for âF this tends to reduce the
magnitude of the bias, but increases bias for âB. This sug-
gests that âF performs better for large D1 but âB performs
better for large D3 and small D1. The size of the bias for
both statistics is larger for higher mutations rates (bottom
row, u = 10−5) which corresponds to very large D2 val-
ues (Figure 6) and larger effects of background selection.
In particular, whenD3 < 0 andD2 � 0, both statistics are
expected to heavily underestimate the amount of positive
selection that has occurred.
To evaluate whether D1, D2 and D3 differ from zero,

we use a non-parametric bootstrap, recalculating statis-
tics after resampling with replacement from the original

sequence sample. The scaling factor for mutation bias
c, which is omitted from D1, is automatically accounted
for by this method. Confidence intervals for D1 were
constructed from the bootstraps using the 2.5 to 97.5
percentiles. As D2 is slightly biased, confidence intervals
for D2 and D3 were constructed using the BCA method
provided in R [35].

Application of diagnostics to human influenza A (H3N2)
We applied the diagnostics with the bootstrap method to
the human influenza A (H3N2) dataset used by Strelkowa
and Lässig [36]. The dataset comprises 2030 sequences
with a length of 330 codons spanning 1968–2007. The
list of accession numbers is provided in the Additional
file 1 in [36]. Following Strelkowa and Lässig [36], we
used A/Bilthoven/16190/1968 as the ancestral sequence;
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results using A/Hong Kong/1/1968 were very similar.
DiagnosticsD1 andD2 were computed for samples in each
year separately, with sample sizes ranging from 5 to 215.
The results are shown in Figure 8. There is some vari-
ation over time, with wider confidence intervals in the
earlier samples due to small sample sizes, but D1 values
are mostly centred around zero, suggesting low levels of
hitch-hiking. Hitch-hiking cannot be conclusively ruled
out as confidence intervals are quite wide and a number
of points reach D1 = 1. However, values of D1 remain
consistently low with a number of time points falling

below zero which is more consistent with a low hitch-
hiking scenario. In contrast, simulations with prevalent
hitch-hiking tend to to have confidence intervals that are
consistently above zero and point estimates much higher
than 0.5 (Additional file 1: Figures S3–9). Values of D2 are
strongly negative, indicating a strong effect due to inter-
fering deleterious or beneficial mutations; the magnitude
of D2 is consistent with a high level of background selec-
tion. Multiple time points with D3 � 0 also suggests
that clonal interference frequently occurs in the evolution
of H3N2.
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Figure 8 Application of diagnostics to human influenza A. Diagnostics D1, D2 and D3 applied to the human influenza A (H3N2) HA1 region.
Shaded regions shows (uncorrected) 95% confidence intervals based on 10000 bootstrap replicates, calculated for each time point separately.
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Discussion
It has long been known that linkage influences polymor-
phism frequencies and fixation probabilities which can
adversely affect methods that assume independent seg-
regation of sites. The MK statistic, which compares the
number of polymorphic sites rather than using only fre-
quency information, is generally considered to be more
robust to linkage effects than frequency-based statistics
[20,27]. In this study, we show that the MK statistic can be
affected, depending on the mode of linked selection and
its characteristic effect of the site-frequency spectrum.
When background selection has a large effect, distor-

tions in the site-frequency spectrum result in a downward
bias in the MK statistics. However, when the effect of neg-
ative selection is low compared to positive selection, the
performance of the MK statistics as a quantitative estima-
tor of the number of adaptive substitutions is determined
by the extent of hitch-hiking and clonal interference.
When negative selection is strong so that levels of hitch-
hiking are low, âB tends to perform better. Specifically, it
is more robust against distortions of the site frequency
spectrum at high frequencies caused by background selec-
tion or clonal interference. However, âF is more robust to
hitch-hiking which occurs when weak negative selection
is pervasive.
Our results are consistent with that of a recent study by

Messer and Petrov [32] showing that âF tends to under-
estimate the number of adaptive substitutions. We find
this primarily occurs when background selection has a
large effect and positive selection is infrequent. However,
when positive selection is strong, hitch-hiking can also
lead to overestimation as suggested in some empirical
studies [37]. When interactions between deleterious poly-
morphisms dominate the dynamics of the populations,
the asymptotic correction proposed by Messer and Petrov
[32] can be used to correct for underestimation due to low
and medium frequency deleterious polymorphisms. This
method corrects for deleterious mutations, as the relative
abundance of deleterious mutations is reduced at higher
frequencies, but cannot be applied for beneficial muta-
tions which have increased relative abundance at higher
frequencies.
Here, we show that, when background selection is rel-

atively weak, choosing the appropriate form of the MK
statistic can reduce estimation bias. Messer and Petrov’s
[32] results apply for organisms with large genomes and
many weakly deleterious mutations, but when genomes
are small and selective effects are broadly distributed, as
is the case viral populations [38,39], the considerations
raised in this study apply.
Understanding the effects of linked selection also

affects our interpretation of these estimators. The num-
ber of adaptive substitutions cannot be directly related to
either the strength of selection or the supply of beneficial

mutations, but it is a combination of both of these factors.
For example, Strelkowa and Lässig [36] and Koelle et al.
[40] raised alternative hypotheses concerning whether
periodic positive sweeps in human influenza were due to
a limiting supply of beneficial mutations, or by a high sup-
ply rate with competition between beneficial mutations
limiting the fixation rate.
The selective regime is important, then, for both the

application and interpretation of these estimators. We
present three statistics for evaluating the effects of linked
selection. D1 signals the presence of weak deleterious
mutations that can potentially cause hitch-hiking and is
based on identifying an excess of non-synonymous low-
frequency polymorphisms. More sophisticated methods
to characterise the DFE have been used [9,41], but these
methods rely on a number of assumptions and have given
conflicting results. Consequently, it is useful to have a
simple diagnostic that flags when hitch-hiking might be
an issue. We have not attempted to use standard site-
frequency based indicators of hitch-hiking (e.g [42]) which
test for an excess of low and high frequency polymor-
phisms. As demonstrated by Kim [43], the excess of
high frequency polymorphisms may not occur in recur-
rent sweeps. In addition, this effect can be complicated
by clonal interference. If no comparative information is
available, the excess of low frequency polymorphisms
cannot be distinguished from a model of population
growth [44].
Our second diagnostic, D2 detects an excess of high-

frequency non-synonymous polymorphisms signalling
strong linkage effects on the population, either due
to a large number of deleterious mutations causing
background selection, or a large number of beneficial
mutations causing clonal interference. In both cases, MK
statistics are biased and estimators assuming indepen-
dently segregating sites must be interpreted with care. We
can distinguish between the effects of background selec-
tion and clonal interference by using a third statistic, D3.
The diagnostic for clonal interference presented here fol-
low a similar reasoning to the method used by Strelkowa
and Lässig [36] in testing for an excess of high frequency
non-synonymous polymorphisms. Our method has more
general applicability as it accounts for the effect of dele-
terious mutations, and can be used even when it is not
knownwhich region of the sequence is positively selected.
We have applied these diagnostics to the dataset used

by Strelkowa and Lässig [36]. Our results provide fur-
ther support for their conclusion that clonal interfer-
ence occurs in human influenza A. The authors also
raised the question of whether strong and frequent pos-
itive selection would promote the fixation of deleterious
mutations, increasing the brittleness of the protein. The
values obtained for D1, however, suggest that strong neg-
ative selection is predominant, so that hitch-hiking in
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the HA1 region is rare; this is in agreement with Shih
et al. [45], who showed that few non-synonymous sub-
stitutions occurred outside antigenic epitopes. It is also
consistent with a phylogenetic study by Nielsen and Yang
[9] that estimated the DFE shape parameter β in that
region as 0.373, indicative of low sensitivity to hitch-
hiking in our model. The combination of clonal interfer-
ence and robustness against hitch-hiking suggests that the
modification used by Bhatt et al. [33] is appropriate for
application to the HA1 region.
In this study, we have not considered the effect of

population size changes, which are known to affect site-
frequency based statistics. However, we expect D1 and
D3 to be relatively robust, as they are based on compar-
isons between the non-synonymous and synonymous site
frequency spectra [32]. Population expansions, which are
expected to have the strongest effect on low-frequency
mutations [46], should have minimal effect on D2 and
D3. Population bottlenecks, however, can removemedium
frequency polymorphisms, potentially elevating the mag-
nitude of both D2 and D3 and giving false positives for
clonal interference. We have also not examined the effect
of selection against synonymous mutations. We expect,
however, thatD1 andD3 should not be strongly affected as
long as selection against synonymous mutations is weaker
than against non-synonymous mutations.D2 does not use
information from the synonymous site frequency spectra
and should not be affected by selection against synony-
mous mutations, but negative values of D2 may also result
from background selection at synonymous sites. These
effects could be considered in more detail in future simu-
lation studies.

Conclusions
We have shown that linked selection is responsible for
biases in the MK statistics, causing underestimation when
there are high levels of interference between selected
mutations, and overestimation for strong non-interfering
sweeps. The statistics presented in this study can be
applied to samples of protein-coding sequences to eval-
uate the influence of linked selection for the parameter
range studied here. Values of D1 that are significantly
greater than zero signal susceptibility to hitch-hiking
while values of D2 significantly smaller than zero indi-
cate the occurrence of multiple mergers. Multiple mergers
due to clonal interference can be distinguished from back-
ground selection when D3 > 0.
Based on our simulations, when D2 < 0, D3 > 0 and

D1 ≈ 0, we recommend using a statistic such as âB, which
excludes both low- and high-frequency polymorphisms.
On the the hand, when high values ofD1 (signalling hitch-
hiking) are obtained, it is more appropriate to use âF
which uses medium and high-frequency polymorphisms,
accounting for change in selective constraint due to

hitchhiking. In cases where D2 � 0 and D3 <= 0, both
âF and âB are expected to perform poorly.

Methods
Simulation of sequence evolution under linkage
We simulate the evolution of a population, represented
as a sequence of length L = 500 codons (nucleotide
triplet). Each codon site is associated with a selection coef-
ficient, sd, which is drawn from the distribution of fitness
effects (DFE; seeDistribution of deleterious effects, below).
The DFE affects both the extent of background selection
and hitch-hiking. To model a well-adapted population,
each simulation is initialised so that all non-synonymous
changes from the ancestral sequence are negatively
selected, reducing fitness by a factor of 1 − sd . All syn-
onymous changes are neutral. Throughout the simulation,
positive selection is introduced at a specified number
of sites at fixed times. After the introduction of posi-
tive selection, an individual carrying a non-synonymous
change from the ancestral sequence at the positively
selected site undergoes a change of fitness by a factor of
1 + sb. The timing of the introduction of positive selec-
tion and the strength of selection (see Positive selection,
below) control the extent of clonal interference. The
extent of hitch-hiking is determined by the interaction
between the DFE and positive selection.
Each simulation is initialised with a haploid population

of N = 104 monomorphic individuals. The mutation pro-
cess follows a Kimura two-parameter model [47], with the
transition-transversion ratio fixed at κ = 3. Ancestral
sequences are generated randomly assuming that the base
frequency of all 61 non-stop codons are equal, and all 27
one-step mutations at a codon are allowed. For κ > 1, the
mutation probabilities are not equal. Individuals carrying
stop-codons have fitness set to zero.
In each generation, the total number of mutations intro-

duced into the population follows a Poisson distribution
with mean uNL, where the mutation rate per site per
generation is u = 10−6 or u = 10−5 and occurs uni-
formly across all sites and all sequences. We assume
non-overlapping generations and individuals reproduce
by multinomial sampling with probability proportional to
their fitness, as in a Wright-Fisher process.

Distribution of deleterious effects
The selection coefficient at each site is drawn from a con-
tinuous distribution of fitness effects (DFE), which we
model using the gamma distribution following previous
studies [9,34,41],

ρ(x,β , s̄) = (β/s̄)βe−(β/s̄)xxβ−1

�(β)
, (4)

where β is the shape parameter and s̄ is the mean
selective coefficient. We consider shape parameters of
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β = 0.25, 0.5, 1, 2, which is similar to the range used by
Charlesworth and Eyre-Walker [34]. Estimated values in
the literature range from 0.23 [48] to 3.22 [9]. The mean
strength of selection was set at s̄ = 4.4 × 10−1, 8.5 ×
10−3, 1.5 × 10−3, 7.0 × 10−4, each of which in combina-
tion with the respective β value above gives ω0 ≈ 0.1 in
the presence of linkage for u = 10−6.
The shape parameter β controls the proportion of

weakly deleterious mutations, and therefore the extent
of hitch-hiking, and in combination with u, the amount of
background selection. For small values of β , the distribu-
tion of selection coefficients is broadly distributed with a
larger proportion of both nearly neutral and strongly dele-
terious mutations; large values of β give a more strongly
peaked DFE centred at nearly neutral to weakly delete-
rious values. Background selection is primarily mediated
by the deleterious mutations that are sufficiently weakly
selected that they are able to persist to appreciable fre-
quencies but accumulate to increase the extinction prob-
ability of linked neutral and beneficial mutations. This
range of selective coefficients is given approximately by
0.5 < Ud/sd < 5 [38], where Ud is the genomic mutation
rate at selected sites. EquatingUd with the genomic muta-
tion rate gives a range of 6.7 × 10−5 < sd < 6.7 × 10−4

for u = 10−6, but Ud is generally smaller than U for finite
values of β . For β = 0.25, less than 5% of sites lie within
this range so that strong negative selection dominates and
most deleterious mutations are rapidly removed from the
population. For u = 10−5, all mutations with 6.7×10−4 <

sd < 6.7×10−3 contribute to background selection, which
covers the range around 1/N , so that much higher lev-
els of background can be observed. Similarly, the extent of
hitch-hiking is controlled by the proportion of sites with
weak deleterious effects relative to the strength of positive
selection, with the specific range varying according to the
strength and prevalence of positive selection.

Positive selection
To examine the effect of linked positive selection, we
introduce positive selection at a small number of codon
sites in the sequence. Unlike negatively selected sites that
individually have small effects but cumulatively can have
a strong effect due to the large number of negatively
selected sites, positive selection is expected to be rare, but
a single site can have a strong effect. Thus we model all
positively selected sites to have the same fixed selective
effect sb.
At regular time intervals, we randomly choose a site and

change the selective coefficient to sb to generate recur-
rent sweeps. Thismodels a scenario of continuous positive
selection, with beneficial mutations arising at different
times. By varying the interval between each introduction
of positive selection, we can model full selective sweeps
that occur successively [43] or interfering sweeps [49].

Note that unlike coalescent simulations [43,49], we con-
trol the rate at which beneficial mutations are introduced
rather than the sweep rate. The selective sweep may occur
considerably later than the time at which positive selection
is introduced because genetic drift, background selection
and hitch-hiking can affect the time required for beneficial
mutations to reach establishment.
For a low supply rate of beneficial mutations, we

expect beneficial mutations to fix primarily in succes-
sive sweeps with rare occurrences of clonal interference,
whereas clonal interference will occur with high probabil-
ity when the supply rate of beneficial mutations is high.
The expected time for a beneficial mutation to become
established in the population is given by test = 1/(uNLbsb)
[50]; after establishment, the beneficial mutation behaves
almost deterministically, increasing rapidly in frequency
and is expected to fix in tfix = log(Nsb)/sb generations
[50]. For population size N = 104 and u = 10−6, a sin-
gle beneficial mutation of strength sb = 0.01 is expected
to have establishment and fixation times of test ≈ 2857
and tfix ≈ 460 generations. To obtain a high supply rate
of beneficial mutations, we introduce positive selection at
high frequency, specifically at one site in every τ = 1000
generations, which is faster than the rate of establish-
ment. For a low supply rate of beneficial mutations, we
set τ = 10000 generations, so that establishment and fix-
ation of one beneficial mutation is likely to occur before
a second positively selected site is introduced. Note that
varying the timing of positive selection controls the supply
rate of beneficial mutations (generally parameterised as
UbN = uLbN) indirectly. After positive selection is intro-
duced at a site, Lb is increased by one; however, Lb is also
decreased when a beneficial mutation reaches fixation.

Simulations under independently segregating sites
To compare sequence statistics obtained under complete
linkage with those obtained under the assumption of inde-
pendently segregating sites, we simulate the number of
polymorphic and divergent sites according to the Poisson
Random Field (PRF) model [10]. The PRF model assumes
a Wright-Fisher population at equilibrium with an infi-
nite number of sites so that all new mutations occur on
distinct sites. Under these assumptions, Sawyer and Hartl
[10] showed that number of sites carrying a derived muta-
tion follows a Poisson random field, with expectations that
are functions of the mutation and selection parameters.
We use the PRF as it is the basis of a number of infer-
ence methods [6,9,10,41], and therefore provides a better
reference than a finite-site model with independently seg-
regating sites.
In the PRF framework [10], the number of derived sites

can be simulated as independent Poisson variables. We
can then use the number of divergent and polymorphic
sites to calculate sequence statistics ω̂, âMK and âF as
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described in the main text. In the following section, we
give the equations used to calculate the mean number of
divergent and polymorphic sites.
In the case where there is no positive selection, the

expected number of synonymous and non-synonymous
divergent sites, as described in Sawyer and Hartl [10], is
given by

E(k′
S) = uSLt (5)

E(k′
A) = uALt

∫
ω(−sd,N)ρ(sd,β , s̄) , (6)

where ω(.) is given by Equation (19), ρ(.) is the DFE, t
is the divergence time, L is the length of sequence, uS =
u/(1 + c) and uA = uc/(1 + c). Using ρ(.) as given in
Equation (3), this can be simplified to [34]

E(k′
A) = uALtβ

(
β

2Ns̄

)β

ζ

(
β + 1,

β

2Ns̄
+ 1

)
(7)

where

ζ(s, a) = 1
�(s)

∫ ∞

0

ts−1

eat(1 − e−t)
dt (8)

denotes the Hurwitz zeta function which is provided in
the GNU scientific library [51]. When Lb > 0 sites are
positively selected, we generate the number of divergent
non-synonymous sites over the deleterious portion of the
sequence using Equation (7) and the number of diver-
gent beneficial sites is generated from a truncated Pois-
son distribution with mean uALbtω(sb,N), capped at Lb.
This allows comparison with the finite sites model, which
explicitly does not allow recurrent positive selection at a
single site.
The expected number of derived polymorphic sites with

selection coefficient s segregating at frequency x in the
population is given by [52]

θφ(x,Ns) = θ

x(1 − x)
1 − e−2Ns(1−x)

1 − e−2Ns , (9)

where θ = 2uNL is the mutation input rate. For a sample
of size n with a known ancestral sequence, the expected
numbers of synonymous and non-synonymous polymor-
phic sites observed at frequency i, as given in Sawyer and
Hartl [10], are

E(pS(i)) = θS

∫ 1

0

(
n
i

)
xi(1 − x)n−iφ(x, 0)dx (10)

= θS
i

(11)

E(pA(i)) = θA

∫ 1

0

(
n
i

)
xi(1 − x)n−i

∫ ∞

0
ρ(sd,β , s̄)φ(x,−Nsd)dsdx (12)

where θS = 2uSNL and θA = 2uANL. Applying the
gamma DFE used in our model, Equation (12) can also be
simplified in terms of the Hurwitz zeta function to give

E(pA(i)) = θA

(
n
i

)
β

(
β

2Ns̄

)β ∫ 1

0
b(x, i, n − i)ζ

(
β + 1,

β

2Ns̄
+ x

)
dx.

(13)

where

b(x, a, b) =
∫ x

0
xa−1(1 − x)b−1dx , (14)

denotes the incomplete beta function.
To calculate sequence statistics under assumptions of

independently segregating sites, we sample the number
of segregating synonymous and non-synonymous poly-
morphisms from Poisson distributions characterised by
Equations (11) and (13). The number of observed diver-
gent sites is given by

kS = k′
S + 1

n

n−1∑
i=1

ipS(i) (15)

kA = k′
A + 1

n

n−1∑
i=1

ipA(i) (16)

where k′
S and k′

A are Poisson random variables described
by Equations (5) and (7).

Selection statistics
In each simulation, we randomly sample n = 100
sequences every 2000 generations. Based on each sample
and the known ancestral sequence, we then calculate the
KA/KS and MK statistics as follows. Let pA(i) denote the
number of derived polymorphic codon sites that are non-
synonymous (relative to the ancestral codon) and occur i
times in the sample of size n = 100, and similarly, let pS(i)
denote the number of derived synonymous polymorphic
sites that occur i times. Multiple mutations at the same
site are counted as distinct polymorphisms. The num-
ber of synonymous divergent sites and non-synonymous
divergent sites is given respectively by

kS = 1
n

n∑
i=1

ipS(i) (17)

kA = 1
n

n∑
i=1

ipA(i) . (18)

The KA/KS statistic is given by [2],

ω̂ = kA
ckS

. (19)

The scaling factor c = 2.4 accounts for the fact that non-
synonymous mutations are more likely than synonymous
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mutations due to the structure of the genetic code. It is
calculated by summing across the substitution matrix, in
our case the Kimura two-parameter model [47]. Standard
methods [53] will automatically account for this scaling
factor. Using this scaling, ω̂ can be interpreted as a func-
tion of the strength of selection s and the population
size N, which under the assumptions of a Wright-Fisher
population with independently segregating sites is given
by [9]

ω(Ns) ≈ 2Ns
1 − e−2Ns . (20)

This is obtained by taking the ratio between fixation prob-
abilities of a selected and a neutral mutation [54]. In the
case where positive selection is not operating, the value
of ω summed across the entire sequence is equal to the
proportion of effectively neutral sites, denoted f [5].
We use a modification of theMK test [4] which provides

a quantitative measure of adaptive substitution [6],

âMK = kA − kS
∑n−1

i=1 pA(i)∑n−1
i=1 pS(i) + 1

. (21)

The MK statistic does not require a scaling factor c, as
it is given in units of the number of non-synonymous
substitutions. The offset (+1) term in the denominator
means that this estimator is defined in all cases. Smith and
Eyre-Walker [6] found that the offset does not introduce
noticeable bias.
The ratio in Equation (21) is an estimator of f, under the

assumption that all segregating polymorphisms are selec-
tively neutral. This assumption is valid when selection
is strong so that selected mutations immediately reach
fixation or extinction, but not when weak selection is fre-
quent. This problem is further compounded in the context
of linked selection as linkage has the effect of weakening
the effective strength of selection so that both deleteri-
ous and beneficial mutations can potentially segregate for
longer prior to extinction or fixation. Here, we examine
two modifications of the MK statistic.
The first is motivated by weakly deleterious mutations

that segregate transiently in the population, which are
known to inflate the estimate of selective constraint and
cause underestimation of the number of adaptive substi-
tutions [34]. To correct for this, we exclude low-frequency
(< 0.15) derived polymorphisms from the analysis, fol-
lowing Fay et al. [55], giving

âF = kA − kS

∑n−1
i=[0.15n] pA(i)∑n−1

i=[0.15n] pS(i) + 1
, (22)

where the square brackets indicate rounding to the near-
est integer. A further modification used by Bhatt et al.
[33] is to exclude high-frequency polymorphisms which
are likely to contain beneficial mutations and would, if

included, lead to an overestimate of f and therefore under-
estimation of the number of adaptive substitutions,

âB = kA − kS

∑[0.75n]
i=[0.15n] pA(i)∑[0.75n]

i=[0.15n] pS(i) + 1
. (23)

Both âF and âB were developed to account for selected
variation segregating in the population on the assump-
tion of independently segregating sites. However, in the
context of frequent selection, linkage between sites is also
likely to have a strong effect, motivating us to consider
the performance of these statistics. For comparison with
theMK statistics, it is helpful to consider the performance
of an estimator that does not use polymorphism informa-
tion. Based on the ω̂ statistic, we estimate the number of
adaptive substitutions using

âD = kA − ckSω0 . (24)

In fact, âD is not a true estimator as ω0 is a fixed value
(treating f as known) rather than a measurable quantity.
Here, ω0 is obtained using the median value of ω̂ based
on simulations with linkage and the same values of β

and s̄ but no positive selection (ω0 = 0.09, 0.09, 0.11, 0.12
for u = 10−6 and ω0 = 0.10, 0.13, 0.23, 0.33 for u =
10−5). We used simulations rather than the theoretical
expectation of f to account for background selection. In
practice, ω0 cannot be estimated from divergence infor-
mation unless there is a period where it is known positive
selection has not occurred. However, we use âD, as it pro-
vides a comparison showing how âF and âB differ in their
estimation of f.
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