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Abstract

Background: Nucleotide and amino acid substitution tendencies are characteristic of each species, organelle, and
protein family. Hence, various empirical amino acid substitution rate matrices have needed to be estimated for
phylogenetic analysis: JTT, WAG, and LG for nuclear proteins, mtREV for mitochondrial proteins, cpREV10 and cpREV64
for chloroplast-encoded proteins, and FLU for influenza proteins. On the other hand, in a mechanistic codon
substitution model, in which each codon substitution rate is proportional to the product of a codon mutation rate
and the ratio of fixation depending on the type of amino acid replacement, mutation rates and the strength of
selective constraint on amino acids can be tailored to each protein family with additional 11 parameters. As a result, in
the evolutionary analysis of codon sequences it outperforms codon substitution models equivalent to empirical
amino acid substitution matrices. Is it superior even for amino acid sequences, among which synonymous
substitutions cannot be identified?

Results: Nucleotide mutations are assumed to occur independently of codon positions but multiple nucleotide
changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid replacements
are tailored to each gene with a linear function of a given estimate of selective constraints, which were estimated by
maximizing the likelihood of an empirical amino acid or codon substitution frequency matrix, each of JTT, WAG, LG,
and KHG. It is shown that the mechanistic codon substitution model with the assumption of equal codon usage yields
better values of Akaike and Bayesian information criteria for all three phylogenetic trees of mitochondrial, chloroplast,
and influenza-A hemagglutinin proteins than the empirical amino acid substitution models with mtREV, cpREV64, and
FLU, which were designed specifically for those protein families, respectively. The variation of selective constraint
across sites fits the datasets significantly better than variable codon mutation rates, confirming that substitution rate
variations across sites detected by amino acid substitution models are caused primarily by the variation of selective
constraint against amino acid substitutions rather than the variation of codon mutation rate.

Conclusions: The mechanistic codon substitution model is superior to amino acid substitution models even in the
evolutionary analysis of protein sequences.

Keywords: Amino acid substitution model, Empirical amino acid substitution rate matrix, Mechanistic codon
substitution model, Structural constraints, Functional constraints, Selective constraints, Variable selective constraint
across sites, Variable mutation rate across sites, multiple nucleotide change

Correspondence: sanzo.miyazawa@gmail.com
6-5-607 Miyanodai, Sakura, Chiba, 285-0857, Japan

© 2013 Miyazawa; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

http://creativecommons.org/licenses/by/2.0


Miyazawa BMC Evolutionary Biology 2013, 13:257 Page 2 of 10
http://www.biomedcentral.com/1471-2148/13/257

Background
The reliability of phylogenetic analyses on protein-coding
sequences strongly depends on models designed to
approximate the substitution processes of nucleotide and
amino acid. For the evolutionary analysis of protein-
coding sequences, particularly phylogenetic inference,
three types of substitution models can be used, pro-
vided that both DNA and protein sequences are available;
nucleotide [1-3], amino acid [4-12], and codon substitu-
tion models [7,13-27]. For closely-related sequences in
which most substitutions are synonymous, amino acid
substitution models cannot be used, instead nucleotide
substitution models may be employed. Conversely,
nucleotide substitution models should not be used in
the case of diverged sequences in which synonymous
substitutions are almost saturated and nonsynonymous
substitutions are significant. On the other hand, codon
substitution models are appropriate to both closely-
related and highly-diverged sequences with the intrinsic
property of detecting both synonymous and nonsynony-
mous substitutions.
In a reversible Markov model for substitution, a sub-

stitution rate matrix must be specified to estimate the
likelihood of a phylogenetic tree. Substitution tendencies
between nucleotides and those between amino acids are
characteristic of each species, each organelle, and each
protein family. In the case of nucleotide substitution mod-
els, full parameterization for a substitution rate matrix is
possible with 8 parameters; the total rate is normalized to
one. However, 208 parameters for an amino acid substi-
tution rate matrix are too many to be optimized for any
size of a multiple sequence alignment. Thus, empirical
amino acid substitution rate matrices have been estimated
from a large number of substitutions inferred on phylo-
genetic trees of single or many protein families; the JTT
[5], the WAG [10], and the LG [11] matrices from nuclear
proteins, mtREV [6] from vertebrate mitochondrial pro-
teins, cpREV10 [8] and cpREV64 [28] from chloroplast-
encoded proteins, and FLU [29] from influenza proteins.
Even a codon substitution rate matrix, KHG [25], has
been estimated. These matrices significantly differ from
one another, indicating that actually substitution ten-
dencies significantly differ among these protein families.
The estimation of a substitution rate matrix requires a
large number or size of alignments with intensive cal-
culation, and therefore is not always feasible. However,
generic empirical substitution rate matrices such as JTT,
WAG, LG,and KHG represent the average tendencies of
substitutions over various protein families by sacrific-
ing gene-level resolution [23]. On the other hand, a rate
matrix such as mtREV, cpREV64, and FLU derived from
a specific protein family represents substitution tenden-
cies characteristic of the protein but often lacks generic
representation of substitution tendencies enough to be

applied to other protein families. To resolve this situa-
tion, the parametrization of an amino acid substitution
rate matrix has been attempted to easily generate an
alignment-specific rate matrix [30,31]. Here, we propose
a different approach of employing a mechanistic codon
substitution model in which the biological and evolution-
ary mechanisms of amino acid substitutions are taken into
account.
Inmechanistic codon substitutionmodels [7,13-24,26,27],

substitution rates are represented as the product of a
codon mutation rate and the ratio of fixation, which
depend on the types of codon replacement and amino acid
replacement, respectively. Hence, mutational tendencies
at the nucleotide level and selection at the amino acid level
can be taken into account at various levels of separation.
This is a critical difference from amino acid substitution
models. As a result, the variations of codon mutation rate
and selective constraint across sites can be distinguished
from each other.We formulated a codon substitution rates
between codons μ and ν as Rμν ≡ Mμν(fν/fmut

ν )ewaμbν ,
with a codon mutation rate Mμν , a mutation equilibrium
frequency fmut

ν , an equilibrium frequency fν , and a selec-
tive constraint waμbν

on the substitutions between amino
acids aμ and bν [26,27]. On the basis of this mechanis-
tic codon substitution model, we estimated the wab by
maximizing the likelihood of an empirical amino acid or
codon substitution frequency matrix, each of JTT, WAG,
LG, and KHG [26]. It was shown [27] that the mechanis-
tic codon substitution model with a fully-parameterized
codon mutation rate matrix (M) and a selective constraint
matrix (w), each element of which was approximated as a
linear function (wab = min[βwestimate

ab + w0(1 − δab), 0])
of a given estimate (westimate

ab ) of selective constraint esti-
mated from the empirical substitution frequency matrix
such as JTT and LG, outperformed both nucleotide and
amino acid substitutionmodels converted into codon sub-
stitution models in the wide range of codon sequences,
from closely-related to highly-diverged protein-coding
sequences. In this codon substitution model, codonmuta-
tions with multiple nucleotide changes are also taken into
account, and were shown to increase significantly the like-
lihood of observed substitutions [26,27]. There have been
a variety of models [7,13-24] for selective pressure on
amino acid replacements in mechanistic codon substitu-
tion models. For their details, please see [27], in which
the present mechanistic codon substitution model was
discussed in comparison with other models.
In these days, DNA sequences are first analyzed and

protein sequences are translated from them, and con-
sequently codon sequences are likely available for most
protein sequences in databases. However, there are pro-
tein sequences whose codon sequences are not available
or not easily retrieved because of no cross link. In such
a case, analysis at the amino acid level must be forced.
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Here we show that even for amino acid sequences, among
which synonymous substitutions cannot be identified,
the present mechanistic codon substitution model with
the assumption of equal codon usage outperforms amino
acid substitution models using empirical substitution rate
matrices.

Results and discussion
On the basis of Akaike Information Criterion (AIC) [32]
and Bayesian Information Criterion (BIC) [33], the amino
acid substitution models with the empirical amino acid
substitution rate matrices, cpREV64 [28], cpREV10 [8],
mtREV [6], and FLU [29], as well as JTT [5], WAG [10],
and LG [11] that were estimated from nuclear proteins,
are compared with the mechanistic codon substitution
models [26,27] with the selective constraint matrices esti-
mated from JTT, WAG, LG, and KHG [25] by using
the 3 datasets: fast-evolving interspecific mitochondrial
proteins (mammalian-mtProt) concatenating 12 protein-
coding genes from 69 mammalian species [34], closely-
related chloroplast-encoded proteins (cpProt-55) con-
catenating 52 protein-coding genes from 55 chloroplast
genomes of the major angiosperm lineages [35], and HA
proteins of Human influenza-A H1N1 (HA_Human-Flu-
A-H1N1) consisting of 1309 sequences. The reference tree
topologies used here as the most probable one are Tree-
6 of [34] for mammalian-mtProt, the one reported in
[35] for cpProt-55, and the one inferred by the FastTree
version 2 [36] for HA_Human-Flu-A-H1N1. Branch opti-
mization of phylogenetic trees and their maximum log-
likelihood values are calculated using Phyml [37] modified
for the mechanistic codon substitution model. Please see
the Methods section for the details of the mechanistic
codon substitution model and the protein sequence data
used. The naming conventions of models employed here
are described in Tables 1 and 2. The AIC and BIC val-
ues for these 3 datasets are listed in Tables 3, 4, and 5,
respectively. Maximum log-likelihood (�), AIC, and BIC
values are represented in relative to those of the reference
model, which uses the empirical amino acid substitution
rate matrix specific to each dataset and has the lowest
AIC and BIC values in all the amino acid substitution
models; the best amino acid substitution model is chosen
here as a reference model in order to show how superior
mechanistic codon substitution models are in comparison
with the best amino acid substitution model. A random

effects approach (Bayesian mixture approach), in which
the discrete gamma distribution [38,39] withm categories
of unequal probabilities is assumed for a prior probabil-
ity distribution, is employed for rate variation across sites
in the amino acid substitution models, and also for the
variation of selective constraint or mutation rate across
sites in the mechanistic codon substitution models; see
Additional file 1 for details. Suffixes “-dGmr” and “-dGms”
are appended to model names to denote rate and selec-
tive constraint variations across sites, respectively. The
equilibrium frequencies of amino acids are assumed to be
equal to those in the aligned sequences, and equal codon
usage is assumed to calculate the equilibrium codon fre-
quencies from them; a suffix “-F” is appended to themodel
names.
The best models in the present amino acid substitu-

tion models for the respective datasets are cpREV64 for
cpProt-55, mtREV for mammal-mtProt, and FLU for
HA_Human-Flu-A-H1N1. This fact is expected because
cpREV64 was estimated [28] from the full set of 77
protein-coding genes in the 64 chloroplast genomes
including cpProt-55, mtREV [6] from the 12 mitochon-
drial proteins of 20 vertebrate species, and FLU [29] from
∼113000 influenza proteins including HA_Human-Flu-
A-H1N1. Hence, the fact shown in the tables indicates
that these matrices certainly represent substitution ten-
dencies specific to the respective protein families. On the
other hand, cpREV10 [8] was estimated from the smaller
dataset than that for cpREV64, that is, 45 proteins in 9
chloroplast genomes including 5 land plants and the com-
plete genome of cyanobacteria. The size of database used
for cpREV10 may cause the cpREV10 to perform worse
than JTT for cpProt-55.
These tables also show that the log-likelihood values for

JTT, WAG, and LG are much smaller than those of the
reference models and also differ largely from one another,
indicating that these empirical substitution matrices rep-
resent the average tendencies of substitutions over various
protein families but lack gene-level resolution. What are
the characteristics of substitutions specific to each pro-
tein family? Certainly the strength of selective constraint
against amino acid substitutions depends on the type
of protein, and varies across sites in a protein. How-
ever, the dependence of selective constraint on the sub-
stituted type of amino acid may result primarily from
amino acid properties. Hence, in the present mechanistic

Table 1 Brief description of models: Amino acid substitutionmodels

mtREV-dGmr, cpREV64-dGmr, FLU-dGmr, The empirical amino acid rates of mtREV [6], cpREV64 [28], and FLU [29] are employed.

JTT-F-dGmr, WAG-F-dGmr, LG-F-dGmr,
mtREV-F-dGmr, cpREV10-F-dGmr,
cpREV64-F-dGmr, FLU-F-dGmr

The empirical amino acid exchangeabilities of JTT [5], WAG [10], LG [11], mtREV [6], cpREV10 [8], cpREV64
[28], and FLU [29] are employed. The suffix “-F” means that equilibrium amino acid frequencies are
assumed to be equal to those of amino acid sequences.

The suffix “-dGmr” means that the variation of substitution rate is approximated by a discrete gamma distribution [38] withm categories of unequal probabilities; see
Additional file 1 for details.
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Table 2 Brief description of models: Mechanistic codon substitutionmodels

Equal-Constraint-n-F-dGm(r|s|sf) Equal constraint irrespective of amino acid substitution type is assumed; β = 0 in Eq. 4.

EI-n-F-dGm(r|s|sf) wEI
ab ≡ −(�ε̂cab + �ε̂vab) based on the Energy-Increment-based (EI) method [26] is used to esti-

mate wab in Eq. 4. The �ε̂cab and �ε̂vab represent the effects of the mean increment of contact
energy between residues and of residue-volume change due to an amino acid replacement,
respectively; see Supporting Information, Text S1, in [26].

JTT-ML91+-n-F-dGm(r|s|sf),
WAG-ML91+-n-F-dGm(r|s|sf),
LG-ML91+-n-F-dGm(r|s|sf)

Selective constraints {wJTT/WAG/LG-ML91+
ab } estimated by maximizing the likelihood of JTT/WAG/LG

[5,10,11] in the ML-91+ model [26] are used as {westimate
ab } in Eq. 4.

KHG-ML200-n-F-dGm(r|s|sf) Selective constraints {wKHG-ML200
ab } estimated by maximizing the likelihood of the KHG codon

substitution matrix [25] in the ML-200 model [26] are used as {westimate
ab } in Eq. 4.

The suffix “n” means the number of parameters optimized for the substitution rate matrix. The suffix “-F” means that equilibrium codon frequencies are assumed to be
equal to codon frequencies in codon sequences; equal codon usage is assumed for amino acid sequences. The suffix “-dGm(r|s|sf)” denotes “-dGmr”, “-dGms” or
“-dGmsf”. The suffixes “-dGmr” and “-dGms” mean the variation of mutation rate or selective constraint across sites, respectively, which is approximated by a discrete
gamma distribution [38] withm categories of unequal probabilities; see Additional file 1 for details. The “f” following “-dGms” means that the posterior frequencies of
amino acids in each category in the first run are used in the second run as the equilibrium frequencies for each category; see the Methods section.

codon substitution model, we approximate the selective
constraint (wab) for a target protein family with a lin-
ear function of the particular value (westimate

ab ) that was
estimated from an empirical amino acid substitution fre-
quency matrix and represents the average strength of
selective constraint against each type of amino acid substi-
tution over various proteins. In addition, the tendency of
nucleotide mutation may differ among nuclear, mitochon-
drial and chloroplast DNA, and selection on nucleotide
substitutions at the DNA/RNA level may exist and depend
on each gene. In the present model, a nucleotide muta-
tion rate matrix is fully parameterized by 8 parameters,
and one additional parameter (m) is employed to repre-
sent the ratio of multiple to single nucleotide changes in
a codon.
Tables 3, 4, and 5 clearly show that all the codon substi-

tution models together with the respective selective con-
straint matrices estimated from JTT, LG, WAG, and KHG
significantly outperform the best amino acid substitution
model in all the three datasets, even though 11 more
parameters must be estimated. Here we should notice
that the best amino acid substitution rate matrices were
estimated from the protein families corresponding to the
respective target proteins. In addition, it is important to
notice that in agreement with common biological knowl-
edge the mean transitional exchangeability is estimated to
be far larger than the mean transversional exchangeability
for all protein families in all codon substitution models.
As already claimed for codon sequences in [27], the vari-

ation of selective constraint across sites (dG4s) is a better
model than the variation of codon mutation rate (dG4r)
in all the three datasets. This fact confirms a common
presumption that substitution rate variations across sites
detected by amino acid substitution models are caused
primarily by the variation of selective constraint rather
than the mutation rate variation.
In the present analysis, 4 categories of unequal proba-

bilities are employed to represent a � distribution. This

number of categories is chosen to be not sufficient but
minimum to represent a� distribution. Actually, as shown
in Tables 3, 4, and 5, representing a � distribution by 8 cat-
egories of unequal probabilities can significantly improve
the log-likelihood.
In Tables 3, 4, and 5, the results for the equal constraint

model are also listed; selective constraint is the same for
all types of amino acid substitutions, that is, β = 0.
The AIC and BIC values of the equal constraint model
are larger for the mammalian-mtProt but smaller for the
cpProt and HA_Human-Flu-A-H1N1 than those of the
reference amino acid substitution models. Accordingly,
the estimated value of the slope β of a linear function for
selective constraints, is larger for the mammalian-mtProt
than for the cpProt and HA_Human-Flu-A-H1N1. This
fact indicates that the dependence (β) of selective con-
straint on amino acid type is less effective for both cpProt
and HA_Human-Flu-A-H1N1, although this may result
from a property that both the datasets consist of relatively
closely-related sequences and containmostly conservative
amino acid substitutions.
In the Energy-Increment-based (EI) model shown in

Tables 3, 4, and 5, the selective constraint matrix used is
the one estimated on the basis of the mean increment of
contact energy and residue-volume change accompanied
by an amino acid replacement [26]. Although the energy-
increment-based selective constraints perform better than
the equal constraint, it does not perform as well as the
empirical selective constraints estimated from the JTT,
WAG, LG, and KHG, indicating the good quality of their
empirical values of the selective constraints.
In the present discrete gamma distribution model for

the variation of selective constraint, the value of w0 differs
among categories, but the same equilibrium frequencies
of amino acids, which are estimated to be equal to those
in the alignment, are employed for all the categories.
Amino acid frequencies strongly depend on residue loca-
tion in protein structures. Typically, non-polar residues
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Table 3 Comparisons between various amino acid and codon substitutionmodels for the reference phylogenetic tree of
themammalian-mtProt

Substitution model a K b �� c �AIC c �BIC c β de w0 d 〈ewab 〉 f m̂ g h α̂ i

Amino acid substitution models

mtREV-dG4r 1 −96.5 154.9 37.2 0.471

cpREV64-F-dG4r 20 −3733.4 7466.9 7466.9 0.426

WAG-F-dG4r 20 −2667.4 5334.7 5334.7 0.443

LG-F-dG4r 20 −2617.5 5235.1 5235.1 0.438

cpREV10-F-dG4r 20 −2316.2 4632.4 4632.4 0.445

FLU-F-dG4r 20 −2249.4 4498.8 4498.8 0.433

JTT-F-dG4r 20 −1255.8 2511.6 2511.6 0.436

mtREV-F-dG4r 20 0.0 0.0 0.0 0.469

Mechanistic codon substitution models

Equal-Constraint-10-F-dG4r 30 −3356.4 6732.7 6794.6 (0.0) −0.000 1.000 0.338 2.887 0.407

EI-11-F-dG4r 31 −1663.4 3348.8 3417.0 0.463 0.012 0.276 0.369 4.061 0.424

WAG-ML91+-11-F-dG4r 31 356.4 −690.9 −622.8 1.140 0.017 0.122 0.336 3.978 0.427

LG-ML91+-11-F-dG4r 31 621.5 −1221.1 −1152.9 0.962 0.585 0.194 0.269 4.029 0.418

KHG-ML200-11-F-dG4r 31 701.5 −1380.9 −1312.8 1.321 0.944 0.223 0.196 1.939 0.415

JTT-ML91+-11-F-dG4r 31 712.6 −1403.2 −1335.1 1.354 0.539 0.137 0.348 2.417 0.421

JTT-ML91+-11-F-dG8r 31 1328.0 −2634.0 −2565.8 1.363 0.483 0.129 0.304 2.480 0.302

Equal-Constraint-10-F-dG4s 30 −3346.1 6712.1 6774.1 (0.0) −0.000 1.000 0.300 2.950 0.396

EI-11-F-dG4s 31 −1164.7 2351.4 2419.5 0.553 −0.511 0.136 0.344 3.772 0.288

WAG-ML91+-11-F-dG4s 31 509.8 −997.6 −929.4 1.355 0.147 0.106 0.403 3.534 0.418

KHG-ML200-11-F-dG4s 31 511.1 −1000.2 −932.1 1.259 0.069 0.115 0.192 2.044 0.485

LG-ML91+-11-F-dG4s 31 637.6 −1253.2 −1185.1 0.994 −0.108 0.097 0.268 3.897 0.436

JTT-ML91+-11-F-dG4s 31 909.2 −1796.5 −1728.3 1.587 0.425 0.094 0.398 2.190 0.452

JTT-ML91+-11-F-dG8s 31 1712.7 −3403.4 −3335.2 1.739 0.409 0.078 0.348 2.250 0.328

Equal-Constraint-10-F-dG4sf 87 −1878.8 3891.7 4306.7 (0.0) −0.000 1.000 0.283 2.967 0.390

EI-11-F-dG4sf 88 444.0 −752.0 −330.8 0.541 −0.678 0.117 0.310 3.914 0.265

JTT-ML91+-11-F-dG4sf 88 1226.6 −2317.2 −1896.0 1.495 0.358 0.098 0.373 2.350 0.442

WAG-ML91+-11-F-dG4sf 88 1290.2 −2444.5 −2023.3 1.339 0.220 0.116 0.375 3.544 0.390

KHG-ML200-11-F-dG4sf 88 1328.4 −2520.8 −2099.6 1.406 0.986 0.208 0.181 2.062 0.574

LG-ML91+-11-F-dG4sf 88 1360.7 −2585.4 −2164.2 0.992 0.122 0.123 0.278 3.769 0.416

a“-F” means that the equilibrium frequencies are estimated to be equal to those in the alignment; equal codon usage is assumed. “-dGmr” and “-dGms” mean discrete
gamma distributions withm categories of unequal probabilities for the rate variation and the variation of selective constraint across sites, respectively. “-dGmsf”
means the equilibrium frequencies for respective categories are estimated from their posterior probabilities for sites. The number string in the model name indicates
the number of parameters optimized for the substitution rate matrix, and the remaining strings denote a rate matrix or a selective constraint matrix used.
bThe number of adjustable parameters.
cDifference from the reference state; �� = � + 122106.2, �AIC = AIC − 244252.3, and �BIC = BIC − 244376.2. The reference tree topology is Tree-6 in [34].
dwab = min [βwestimate

ab + w0(1 − δab), 0]; westimate
ab is the one specified by the model name.

eThe value parenthesized means that the parameter is fixed at the value specified.
fThe average of ewab over all amino acid pairs {a,b}; 〈ewab 〉 ≡ 1

190

∑
a
∑

b>a e
wab .

gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂ ≡ m̂[tc][ag] .
hThe ratio of mean transitional to mean transversional exchangeability; m̂tc|ag/m̂[tc][ag] .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint across sites.

are more and polar residues are less frequent in the
interior of protein structures, where selective constraint
against amino acid replacements tends to be more restric-
tive [27,40,41]. There must be a correlation between

the strength of selective constraint and the equilibrium
frequencies of amino acids. Hence, different equilibrium
frequencies should be employed in principle for each
category. Substitution rate matrices that differ only in
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Table 4 Comparisons between various amino acid and codon substitutionmodels for the reference phylogenetic tree of
the cpProt-55

Substitution model a K b �� c �AIC c �BIC c β de w0 d 〈ewab 〉 f m̂ g h α̂ i

Amino acid substitution models

cpREV64-dG4r 1 0.0 0.0 0.0 0.292

LG-F-dG4r 20 −9935.0 19908.0 20051.6 0.339

mtREV-F-dG4r 20 −7875.1 15788.1 15931.7 0.259

WAG-F-dG4r 20 −7649.6 15337.2 15480.7 0.348

FLU-F-dG4r 20 −5732.4 11502.7 11646.3 0.269

cpREV10-F-dG4r 20 −5649.9 11337.8 11481.3 0.349

JTT-F-dG4r 20 −4671.9 9381.8 9525.3 0.347

cpREV64-F-dG4r 20 −803.8 1645.6 1789.2 0.345

Mechanistic codon substitution models

Equal-Constraint-10-F-dG4r 30 332.4 −606.8 −387.7 (0.0) −0.000 1.000 0.109 2.556 0.287

EI-11-F-dG4r 31 565.0 −1070.0 −843.3 0.101 0.101 0.782 0.119 2.686 0.285

KHG-ML200-11-F-dG4r 31 1150.9 −2241.8 −2015.1 0.386 0.139 0.491 0.102 2.249 0.287

WAG-ML91+-11-F-dG4r 31 1164.8 −2269.5 −2042.9 0.334 0.065 0.475 0.161 2.648 0.286

LG-ML91+-11-F-dG4r 31 1179.4 −2298.7 −2072.0 0.271 0.165 0.548 0.139 2.666 0.286

JTT-ML91+-11-F-dG4r 31 1426.3 −2792.6 −2565.9 0.430 0.132 0.421 0.187 2.234 0.287

JTT-ML91+-11-F-dG8r 31 1666.2 −3272.3 −3045.6 0.435 0.134 0.418 0.182 2.237 0.295

Equal-Constraint-10-F-dG4s 30 346.8 −635.6 −416.4 (0.0) −0.233 0.793 0.113 2.549 0.286

EI-11-F-dG4s 31 962.6 −1865.2 −1638.5 0.264 −0.255 0.341 0.135 2.727 0.262

KHG-ML200-11-F-dG4s 31 1472.2 −2884.3 −2657.7 0.434 −0.672 0.199 0.101 2.326 0.284

WAG-ML91+-11-F-dG4s 31 1632.9 −3205.8 −2979.1 0.607 −0.344 0.189 0.167 2.633 0.258

LG-ML91+-11-F-dG4s 31 1742.9 −3425.8 −3199.1 0.544 0.005 0.248 0.148 2.630 0.276

JTT-ML91+-11-F-dG4s 31 1886.9 −3713.7 −3487.1 0.788 0.221 0.235 0.191 2.198 0.253

JTT-ML91+-11-F-dG8s 31 2176.2 −4292.4 −4065.7 0.854 0.257 0.218 0.200 2.170 0.275

Equal-Constraint-10-F-dG4sf 87 1224.3 −2276.5 −1626.7 (0.0) −0.174 0.840 0.115 2.537 0.276

EI-11-F-dG4sf 88 1920.6 −3667.2 −3009.8 0.279 −0.231 0.335 0.135 2.665 0.251

KHG-ML200-11-F-dG4sf 88 2105.0 −4036.1 −3378.7 0.455 −0.626 0.200 0.102 2.296 0.286

WAG-ML91+-11-F-dG4sf 88 2320.8 −4467.5 −3810.1 0.633 0.060 0.270 0.165 2.528 0.249

LG-ML91+-11-F-dG4sf 88 2369.0 −4564.0 −3906.7 0.523 −0.007 0.256 0.147 2.557 0.269

JTT-ML91+-11-F-dG4sf 88 2542.1 −4910.2 −4252.8 0.787 0.308 0.255 0.188 2.168 0.249

a“-F” means that the equilibrium frequencies are estimated to be equal to those in the alignment; equal codon usage is assumed. “-dGmr” and “-dGms” mean discrete
gamma distributions withm categories of unequal probabilities for the rate variation and the variation of selective constraint across sites, respectively. “-dGmsf”
means the equilibrium frequencies for respective categories are estimated from their posterior probabilities for sites. The number string in the model name indicates
the number of parameters optimized for the substitution rate matrix, and the remaining strings denote a rate matrix or a selective constraint matrix used.
bThe number of adjustable parameters.
cDifference from the reference state; �� = �+ 217554.4, �AIC = AIC− 435110.9, and �BIC = BIC− 435118.5. The reference tree topology is the one reported in [35].
dwab = min [βwestimate

ab + w0(1 − δab), 0 ];westimate
ab is the one specified by the model name.

eThe value parenthesized means that the parameter is fixed at the value specified.
fThe average of ewab over all amino acid pairs {a,b}; 〈ewab 〉 ≡ 1

190

∑
a
∑

b>a e
wab .

gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂ ≡ m̂[tc][ag] .
hThe ratio of mean transitional to mean transversional exchangeability; m̂tc|ag/m̂[tc][ag] .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint across sites.

their equilibrium frequencies were employed in [42,43].
In [44,45], a different rate matrix was employed for each
of gamma rate categories and biochemical and struc-
tural categories. Le et al. [46] estimated from a very
large alignment database and then tested four amino acid

substitution rate matrices each of which corresponds to
one discrete gamma category or one distribution-free cat-
egory and has different exchangeabilities and equilibrium
frequencies. Here, we estimate amino acid frequencies
for each category from the posterior probabilities of sites
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Table 5 Comparisons between various amino acid and codon substitutionmodels for the reference phylogenetic tree of
the HA_Human-Flu-A-H1N1

Substitution model a K b �� c �AIC c �BIC c β de w0 d 〈ewab 〉 f m̂ g h α̂ i

Amino acid substitution models

FLU-dG4r 1 0.0 0.0 0.0 0.913

mtREV-F-dG4r 20 −985.5 2009.0 2085.2 0.809

LG-F-dG4r 20 −885.1 1808.3 1884.5 0.856

WAG-F-dG4r 20 −777.1 1592.2 1668.4 0.882

cpREV10-F-dG4r 20 −695.8 1429.5 1505.8 0.858

JTT-F-dG4r 20 −386.3 810.5 886.7 0.892

cpREV64-F-dG4r 20 −167.9 373.8 450.0 0.840

FLU-F-dG4r 20 8.1 21.7 98.0 0.907

Mechanistic codon substitution models

Equal-Constraint-10-F-dG4r 30 203.4 −348.7 −232.4 (0.0) −1.109 0.330 0.010 4.768 0.828

EI-11-F-dG4r 31 332.7 −605.4 −485.1 0.311 −0.609 0.212 0.013 4.835 0.880

LG-ML91+-11-F-dG4r 31 394.6 −729.2 −608.8 0.453 −0.690 0.151 0.014 4.792 0.920

WAG-ML91+-11-F-dG4r 31 405.2 −750.4 −630.1 0.565 −0.679 0.145 0.018 4.825 0.940

KHG-ML200-11-F-dG4r 31 410.0 −760.0 −639.7 0.676 −0.214 0.202 0.009 3.287 0.923

JTT-ML91+-11-F-dG4r 31 418.3 −776.6 −656.2 0.636 −0.425 0.162 0.027 3.725 0.923

JTT-ML91+-11-F-dG8r 31 441.2 −822.3 −702.0 0.641 −0.446 0.157 0.026 3.745 0.923

Equal-Constraint-10-F-dG4s 30 206.3 −354.7 −238.4 (0.0) −1.434 0.238 0.010 4.754 0.823

EI-11-F-dG4s 31 328.5 −596.9 −476.6 0.332 −0.495 0.225 0.015 4.741 0.887

LG-ML91+-11-F-dG4s 31 397.6 −735.2 −614.9 0.454 −0.962 0.115 0.014 4.780 0.903

KHG-ML200-11-F-dG4s 31 412.5 −765.1 −644.7 0.676 −0.662 0.129 0.009 3.300 0.923

WAG-ML91+-11-F-dG4s 31 415.0 −770.0 −649.6 0.627 −0.303 0.190 0.021 4.620 0.890

JTT-ML91+-11-F-dG4s 31 421.1 −782.2 −661.9 0.635 −0.761 0.116 0.027 3.722 0.918

JTT-ML91+-11-F-dG8s 31 457.7 −855.4 −735.1 0.731 −0.317 0.152 0.029 3.630 0.911

Equal-Constraint-10-F-dG4sf 87 297.2 −422.3 −77.4 (0.0) −1.549 0.212 0.010 4.603 0.716

EI-11-F-dG4sf 88 405.8 −637.7 −288.7 0.313 −0.526 0.229 0.014 4.366 0.856

KHG-ML200-11-F-dG4sf 88 428.1 −682.2 −333.2 0.565 −0.674 0.155 0.010 3.397 0.920

LG-ML91+-11-F-dG4sf 88 439.7 −705.5 −356.5 0.369 −1.050 0.128 0.016 4.575 0.885

WAG-ML91+-11-F-dG4sf 88 443.3 −712.6 −363.7 0.658 −0.012 0.241 0.023 4.446 0.864

JTT-ML91+-11-F-dG4sf 88 447.8 −721.6 −372.7 0.686 −0.200 0.185 0.032 3.520 0.871

a“-F” means that the equilibrium frequencies are estimated to be equal to those in the alignment; equal codon usage is assumed. “-dGmr” and “-dGms” mean discrete
gamma distributions withm categories of unequal probabilities for the rate variation and the variation of selective constraint across sites, respectively. “-dGmsf”
means the equilibrium frequencies for respective categories are estimated from their posterior probabilities for sites. The number string in the model name indicates
the number of parameters optimized for the substitution rate matrix, and the remaining strings denote a rate matrix or a selective constraint matrix used.
bThe number of adjustable parameters.
cDifference from the reference state;�� = �+20059.7,�AIC = AIC−40121.5, and�BIC = BIC−40125.5. The reference tree topology is one inferred by FastTree-2 [36].
dwab = min [βwestimate

ab + w0(1 − δab), 0];westimate
ab is the one specified by the model name.

eThe value parenthesized means that the parameter is fixed at the value specified.
fThe average of ewab over all amino acid pairs {a,b}; 〈ewab 〉 ≡ 1

190

∑
a
∑

b>a e
wab .

gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂ ≡ m̂[tc][ag] .
hThe ratio of mean transitional to mean transversional exchangeability; m̂tc|ag/m̂[tc][ag] .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint across sites.

being at each category and then parameters are opti-
mized again with the estimated amino acid frequencies
for each category. The AIC and BIC values for this new
model named with a suffix “-dG4sf” are also listed in
Tables 3, 4, and 5. The values of AIC and BIC are

improved for mammal-mtProt and cpProt-55 but not
for HA_Human-Flu-A-H1N1. This model requiring addi-
tional 57 parameters needs a sufficient number of amino
acid substitutions in an alignment to yield better values of
AIC and BIC.
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Conclusions
The greatest advantage of employing a mechanistic codon
substitution model over amino acid substitution models
resides in an intrinsic property that mutational tenden-
cies of codons and selective constraints against amino acid
changes can be separately formulated in codon substi-
tution models. As a result, codon mutational tendencies
and the strength of selective constraint can be tailored
to those in each gene with the additional 11 parame-
ters, although a sufficient number of sequences and more
calculations are needed for their estimation. Also, besides
mutation rate variation, the variation of selective con-
straint across sites can be taken into account. At the amino
acid level, synonymous substitutions cannot be identified.
Even so, taking account of synonymous substitutions with
a codon substitution model improves its performance, as
shown in the present analysis. Since mutations occur in
nucleotide level, codon mutations may be well approxi-
mated by a Markov process. However, Markovian prop-
erties are lost in the process of amino acid substitutions,
because of redundancy of translation to amino acids. A
hidden Markov model, in which codon types are hidden
states changing in a Markov process, is more appropriate
to represent amino acid substitutions. This may be one
of reasons why the mechanistic codon substitution model
outperforms any amino acid substitution model examined
here.
A conclusion is drawn that the mechanistic codon

substitution model is superior to amino acid substitu-
tion models even for protein sequences in evolutionary
analysis.

Methods
Likelihood of amino acid sequences in a codon
substitution model
Given a phylogenetic tree T and a codon substitution
model 	, in which codon substitutions are assumed to
occur independently at each site and to be in the sta-
tionary state of a time-reversible Markov process, the
conditional probability P(A|T ,	) that an alignment A ≡
{A1,A2, . . . ,AL} with L sites is observed is represented as
the product over sites of those of the alignments Ai ≡
{A1i,A2i, . . . ,ANi}′ at site i; P(A|T ,	) = ∏

i P(Ai|T ,	).
The likelihood of the phylogenetic tree T and the model
	 for the alignment at each site can be calculated as

P(Ai|T ,	) =
∑

μ

∑

ν

δA�iaνP(ν|μ, t�,	)fμPv� (Ai|v� = μ,T ,	)

(1)

where v� is the ancestor node connected to a leaf node
� with branch length t�, μ and ν denote the type of
codon, and fμ is the equilibrium frequency of codon μ.

The P(ν|μ, t�,	) is the substitution probability from μ to
ν in the time interval t�, and Pv� (Ai|v� = μ,T ,	) is the
likelihood of the parent subtree with the node v� = μ

connected to the leaf node �. The δA�iaν , which repre-
sents a code table, is the Kronecker delta and takes one if
A�i = aν otherwise zero, where aν is the type of amino
acid corresponding to codon ν. We simply assumed equal
codon usage here to estimate the equilibrium frequen-
cies of codons from the amino acid composition in the
alignment.
The posterior frequency of amino acid a in the category

θα of rate or selective constraint is calculated with

fa(θα) ∝
∑

i

∑

s
δAsiaP(θα|Ai, T̂ , 	̂) (2)

where T̂ and 	̂ denote their estimates, and the posterior
probability of site i being at the category θα is

P(θα|Ai, T̂ , 	̂) = P(Ai|T̂ , 	̂, θα)P(θα)

P(Ai|T̂ , 	̂)
(3)

The posterior frequencies of amino acids for each cat-
egory may be used in the next run as the equilibrium
frequencies for each category.

Amechanistic codon substitution model with multiple
nucleotide changes
We assume that substitutions from μ to ν occur with
a constant substitution rate Rμν per unit time and the
detailed balance condition between equilibrium states;
hence, P(ν|μ, t,	) = exp(R(	)t) with Rμν = rμν fν and
rμν = rνμ. The unit of time is chosen in such a way that
the total substitution rate is equal to 1; − ∑

μ fμRμμ = 1.
Thus, only relative values among the exchangeability rμν

are meaningful.
In the mechanistic codon substitution model [26,27],

the substitution rate Rμν is formulated as the product,
Rμν ∝ MμνFμν forμ �= ν, of a mutation rate Mμν and
the average ratio of fixation Fμν that is represented as
Fμν = (fν/fmut

ν )ewμν , where fmut
ν is the equilibrium codon

frequencies of mutation (M), and wμν(= wνμ) represents
selective constraint on mutations between μ and ν. We
assume the selective pressure appears primarily on an
amino acid sequence; if μ or ν ∈ {stop codons}, then
wμν = −∞ otherwise wμν = waμbν

, where aμ and bν

are the amino acid types encoded by the codons μ and
ν, respectively. A code table specific to each gene such as
the standard and vertebrate mitochondrial code tables is
employed. No selection is assumed for synonymous sub-
stitutions; wab = 0 for a = b. We estimated wab by fitting
a substitution probability matrix to each empirical amino
acid substitution frequency matrix such as JTT with a
maximum likelihoodmethod [26]. Because the strength of
selective constraint on amino acid substitutions depends
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strongly on the type of protein, we approximate the selec-
tive constraint for a target protein by a linear function of
that estimated from an empirical amino acid substitution
frequency matrix;

wab = min
[
βwestimate

ab + w0(1 − δab), 0
]

(4)

where negative selection on amno acid replacements is
assumed. Positive selection will be taken into account if
selective constraints are variable over sites. The varia-
tion of selective constraint is approximated by a discrete
gamma distribution [38,39] in which a given number of
categories represent a � distribution with unequal proba-
bilities virtually to increase the number of categories. For
details including the discrete gamma representation for
the variations of selective constraint and also mutation
rate, see Additional file 1.
We represent the codon mutation rate matrix M as fol-

lows by assuming that nucleotide mutations occur inde-
pendently of codon positions but multiple nucleotide
changes can infinitesimally occur.

Mμν ≡
3∏

i=1

[
δμiνi + (1 − δμiνi)mμiνi fmut

νi

]
for μ �= ν

(5)

where mμiνi(= mνiμi) is a mutation exchangeability
matrix between the four types of nucleotides, fmut

νi is the
mutation equilibrium frequency of nucleotide νi, δμiνi
is the Kronecker’s δ, and the index μi denotes the ith
nucleotide in the codon μ; μ = (μ1,μ2,μ3) where μi ∈
{ a, t, c, g } , and fmut

ν=(ν1,ν2,ν3) = fmut
ν1 fmut

ν2 fmut
ν3 . The matrix

(mμν) is parameterized with 9 parameters; one additional
parameter (m) is needed to represent the ratio of multi-
ple to single nucleotide changes. See Additional file 1 for
details.

Protein sequence data used
Amino acid and codon substitution models are evaluated
by using the following three datasets of protein sequences.

1. mammalian-mtProt, which consists of fast-evolving
interspecific mitochondrial protein sequences
concatenating 12 protein-coding genes from 69
mammalian species [34]. The alignments of the genes,
each of which was made with the codon sequences
by the modified version [27] of the ClustalW2 [47],
consist of 3618 sites. The tree topology estimated as
Tree-6 by [34] is used here as the most probable one.
Overlapped segments between genes were removed
from protein sequences.

2. cpProt-55, which consists of closely-related
chloroplast-encoded protein sequences
concatenating 52 protein-coding genes from 55
chloroplast genomes of the major angiosperm

lineages out of the 64 taxa analyzed in [35]. The tree
topology reported in [35] is assumed as the most
probable one in the present analysis. The alignments
of the genes, each of which was made with the codon
sequences by the modified version [27] of the
ClustalW2 [47], consist of 14128 sites. The cpREV64
[28] was estimated from the full set of 77
protein-coding genes in the 64 genomes.

3. HA_Human-Flu-A-H1N1, which consists of
fast-evolving hemagglutinin proteins of Human
influenza A; relatively-dissimilar 1309 sequences out
of 4231 sequences of HA protein from the H1N1
type of human influenza A in the NCBI entire
influenza database. These sequences were aligned by
the MAFFT version 7 with the FFT-NS-2 option
[48], and the tree topology assumed as the most
probable one is the one inferred by the FastTree
version 2 [36] with the JTT and CAT options. In the
present analysis, 408 sites, which do not include
deletions, out of 595 sites in the multiple sequence
alignment are used, because sites with gaps were
excluded in the estimation of FLU [29].

These datasets are chosen, because the empirical amino
acid substitution rate matrices, cpREV64 [28], mtREV [6],
and FLU [29], that were designed as those specific to the
respective protein sequences are available.

Additional file

Additional file 1: Methods. A PDF file in which the details of the
methods are described.
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