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Abstract

Background: Adaptation to different ecological environments is thought to drive ecological speciation. This
phenomenon culminates in the radiations of cichlid fishes in the African Great Lakes. Multiple characteristic traits of
cichlids, targeted by natural or sexual selection, are considered among the driving factors of these radiations.
Parasites and pathogens have been suggested to initiate or accelerate speciation by triggering both natural and
sexual selection. Three prerequisites for parasite-driven speciation can be inferred from ecological speciation theory.
The first prerequisite is that different populations experience divergent infection levels. The second prerequisite is
that these infection levels cause divergent selection and facilitate adaptive divergence. The third prerequisite is that
parasite-driven adaptive divergence facilitates the evolution of reproductive isolation. Here we investigate the first
and the second prerequisite in allopatric chromatically differentiated lineages of the rock-dwelling cichlid Tropheus
spp. from southern Lake Tanganyika (Central Africa). Macroparasite communities were screened in eight populations
belonging to five different colour morphs.

Results: Parasite communities were mainly composed of acanthocephalans, nematodes, monogeneans, copepods,
branchiurans, and digeneans. In two consecutive years (2011 and 2012), we observed significant variation across
populations for infection with acanthocephalans, nematodes, monogeneans of the genera Gyrodactylus and
Cichlidogyrus, and the copepod Ergasilus spp. Overall, parasite community composition differed significantly
between populations of different colour morphs. Differences in parasite community composition were stable in
time. The genetic structure of Tropheus populations was strong and showed a significant isolation-by-distance
pattern, confirming that spatial isolation is limiting host dispersal. Correlations between parasite community
composition and Tropheus genetic differentiation were not significant, suggesting that host dispersal does not
influence parasite community diversification.

Conclusions: Subject to alternating episodes of isolation and secondary contact because of lake level fluctuations,
Tropheus colour morphs are believed to accumulate and maintain genetic differentiation through a combination of
vicariance, philopatric behaviour and mate discrimination. Provided that the observed contrasts in parasitism
facilitate adaptive divergence among populations in allopatry (which is the current situation), and promote the
evolution of reproductive isolation during episodes of sympatry, parasites might facilitate speciation in this genus.
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Background
How organisms adapt to environmental conditions and
how this process promotes speciation is a key question
in evolutionary biology and speciation research. Eco-
logically based selection promotes adaptive divergence
between populations, which may lead to the evolution of
reproductive isolation and, ultimately, to ecological spe-
ciation [1-3]. Much of the evidence for ecological speci-
ation comes from examples of adaptive radiation such as
in three-spined stickleback, Darwin’s finches, Hawaiian
honeycreepers, Anolis lizards, spiders on the Galapagos
and Hawaiian archipelagos, and cichlid fishes [2,4-7].
The extreme diversification of cichlids, in particular the
emergence of hundreds of species in the Great Lakes of
the East African Rift Valley, has been puzzling biologists
for decades. They comprise the most diverse species
flocks of vertebrates on earth [8-10]. Their adaptive
radiations have been attributed to the interaction of ex-
trinsic factors such as ecological opportunities [6], lake-
level fluctuations [11] and habitat diversity [12], as well
as intrinsic factors in the form of adaptively relevant
traits [13]. These include morphological, behavioural
and physiological traits, and are targeted by natural or
sexual selection.
Few relationships are as intimate as those between a

parasite and its host, leading to strong ecological and
evolutionary associations [14-17]. Parasites are increas-
ingly recognized as important drivers of host diversity
[18,19]. They also have been suggested to promote spe-
ciation [20-24] by triggering natural selection (by influ-
encing host fecundity and host mortality [25-28]), as
well as sexual selection (by influencing mate choice [28-
30]). In vertebrates, both natural and sexual selection
have been hypothesized to target the immune system
[21,31]. The vertebrate immune system therefore classi-
fies as a so-called ‘magic trait’ [32], which has the poten-
tial to initiate or accelerate speciation. Indeed, under the
combined challenge of parasitism and associated mating
decisions, the immune system strongly determines indi-
vidual fitness. The result is that species diversification in
vertebrates might have an important parasite-driven
basis [21]. However, how often and how strong parasites
are involved in speciation remains largely unknown [23].
Apart from studies in Lake Malawi [21,33] and Lake

Victoria [25,26], and despite recent renewed interest in
cichlid parasites [34-37], the influence of parasitism and
the immune system on cichlid speciation has hardly
been considered. One reason is that parasite-driven
adaptation at the immunogenetic or behavioural level
might be hard to detect. Nevertheless, most of the sug-
gested drivers of cichlid radiations, such as habitat di-
versification (e.g. substrate type), trophic diversification
(i.e. feeding strategies and diet) and social interactions
(e.g. communication diversification, colour- and odour-based
mate recognition) [38], are likely associated with shifts in
parasite selection pressure. Indeed, diet [39-43], (social) be-
haviour [41,44], and environmental conditions [42,45] have
proven to be important factors structuring fish parasite
communities.
In this study, we investigate the possibility of a role for

parasitism in the diversification among the highly fragmen-
ted eco-morphologically similar colour morphs (lineages)
of Tropheus cichlids from Lake Tanganyika. Species of the
genus Tropheus are obligate near-shore rock-dwelling
philopatric fishes with low dispersal capacity [46-49]. Al-
though currently six nominal species are recognized [50],
the genus comprises more than 100 mostly allopatric
colour morphs, which this taxonomical framework cannot
unambiguously accommodate [51,52]. Therefore, and con-
sidering their stenotopy, populations are mostly referred to
by their catch locality. The spatial distribution of the vari-
ous Tropheus lineages shifted during lake level fluctuations
in the Pleistocene [53], fragmenting populations during
high stands, or forcing them into secondary contact during
low stands [54,55]. These fluctuations strongly influenced
the diversification of Tropheus populations [55,56]. Obvi-
ously, the same fluctuations might also affect communities
of fish parasites. Fragmentation might induce parasite
community diversification through local extinction driven
by drift, or through species sorting and adaptation driven
by local differences in biotic (e.g., the availability of inter-
mediate and final hosts) or abiotic (e.g., turbidity, wave ac-
tion and substrate type) conditions. As a result, fragmented
Tropheus host populations likely end up with divergent
parasite communities, experiencing differences in diversity
or magnitude of infection. We hypothesize that, during
episodes of isolation, these local parasite communities im-
pose different selection pressures on their host popula-
tions, initiating or accelerating adaptive divergence. At
subsequent phases of secondary contact between Tropheus
populations, parasites might then facilitate host speciation
by enhancing the evolution of reproductive isolation. Vari-
ous mechanisms for parasite-driven speciation are possible
[23], the likelihood of which depends on the composition
of the merging parasite communities, as well as their effect
on the fitness of parental types and hybrids.
We start our investigation by studying a first crucial

prerequisite of parasite-driven speciation, i.e. that allo-
patric populations indeed experience different levels of
infection. We also evaluate a second prerequisite, i.e.
that these differences are stable in time, opening op-
portunities for consistent parasite-driven divergent se-
lection and subsequent adaptive divergence. We do so
by analyzing the spatial distribution of parasite taxa
and the composition of parasite communities. For this
purpose, we focussed on allopatric Tropheus colour
morphs along the Zambian shore of Lake Tanganyika
(Figure 1). These colour morphs could be regarded as



Figure 1 A) Sites of eight Tropheus populations sampled along the Zambian shore of Lake Tanganyika in August-September 2011.
Black and sand-coloured shorelines indicate suitable rocky and unsuitable sand shores, respectively. Blue lines represent rivers, and the yellow line
represents political borders. The six easternmost sites were resampled in August-September 2012. B) Bayesian analysis of the genetic structure of
the eight populations. As previous genetic studies on these populations revealed that populations largely cluster according to colour morph
[55,56,58,59], colour morph was used in the analysis as prior information. The colour of each of the four cluster corresponds to the predominant
colour of the assigned individuals (i.e., red/orange for Chilanga and Linangu, blue for Tumbi and Katoto, light olive for Mbita Island and Wonzye
Point, and dark olive for Muzumwa and Toby’s place). C) Visualization of significant differences (after correction for multiple testing) between
neighbouring Tropheus populations for infection presence, abundance, infection intensity and parasite community composition. Full bars indicate
that significant differences were observed in both sampling years. Dashed bars indicate that significant differences were only observed, or only
investigated, in one sampling year.
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potential founder populations of new species. This is
reflected by their strong population genetic structure
[48,49,55,57,58]. Eight populations, belonging to five
different colour morphs, were screened in two con-
secutive years for metazoan ecto- and endoparasites in
order to test for consistent parasite community diversifica-
tion. Differences in parasite communities were compared
with the degree of geographical isolation and the genetic
structure of the Tropheus populations as assessed with
microsatellite markers. We discuss the implications for
the potential of parasite-driven speciation in cichlids.
Results
Parasites infecting the Zambian Tropheus populations were
classified into nine categories (Tables 1 and 2). Parasites
occurring at every single site included the gyrodactylid
monogenean Gyrodactylus on skin and fins, the ancyroce-
phalid monogenean Cichlidogyrus and the copepod
Ergasilus on the gills, and intestinal acanthocephalans
and nematodes. Parasites which were not present at
every single site included the monogenean Urogyrus in
the urinary bladder, branchiurans in the gill cavity or
on the opercula, some intestinal digeneans, and a
number of unidentified helminthic cysts in skin, fin or
gill tissue. While all categories were included in the
multivariate analysis of parasite community compos-
ition, only the five categories occurring at every single
site were analysed in more detail with a univariate ana-
lysis of infection patterns.
Infection patterns
Controlling for standard fish length, sex, day of dissection,
sampling year and observer, significant differences in in-
fection parameters between sites were detected for the five
major parasite categories (Table 3). For acanthocephalans,
the differences were due to lower infection presence
(prevalence), abundance and infection intensity at Tumbi
and Katoto (i.e., the blue morph) compared to all other
sites (Figure 2). For nematodes, infection presence and
abundance were significantly higher at Chilanga, Linangu
and Katoto (i.e., some of the western colour morphs) as
compared to Toby’s place, Muzumwa and Mbita Island
(i.e., the eastern colour morphs). For Gyrodactylus, in-
fection presence and abundance were significantly higher
at Muzumwa than elsewhere (Figure 2). For Cichlidogyrus,
there were various significant contrasts without an obvi-
ous association with colour variation or geography. For
Ergasilus, abundance was higher at Chilanga (i.e., the red
morph) than at most other sites (Figure 2). Finally, an ana-
lysis of differences between neighbouring sites revealed
that all pairs of neighbours (regardless of colour morph)
differed significantly in infection parameters for at least
one group of parasites (Figure 1).
Next to the effect of site, the analyses revealed a few
other significant relationships (Table 3). Infection para-
meters increased with the standard length of the fish for
acanthocephalans and Cichlidogyrus (infection presence,
abundance and intensity), and for Ergasilus (intensity).
Day of dissection affected the numbers of Gyrodactylus
(larger infection intensities on the second day than on the
first day). Males harboured more Cichlidogyrus individuals
than females (abundance and infection intensity). Finally,
significant year-to-year variation in infection parameters
within sites was detected for acanthocephalans, nema-
todes and Cichlidogyrus. However, this variation was gen-
erally smaller than the variation observed between sites
(Table 3; Figure 2), and differences between neighbouring
sites were often stable over time (Figure 1).

Population genetics of Tropheus spp
Seven Tropheus populations harboured comparable levels
of genetic diversity (allelic richness: 11.9-14; observed het-
erozygosity: 0.78-0.83), while the population of Muzumwa
had slightly lower values (allelic richness: 9.7; observed het-
erozygosity: 0.73). Analysis of genetic structure revealed
significant global values for GST and D (GST = 0.042,
P < 0.001, 95% CI = [0.034-0.051]; D= 0.22, P < 0.001,
95% CI = [0.19-0.24]). All pairwise GST and D values
(28 pairs) were also significant (all P < 0.001) and
revealed a significant isolation-by-distance pattern
(GST : R = 0.43, P = 0.022; D: R = 0.45, P = 0.009; Figure 3).
Bayesian clustering analyses (Figure 1) showed an opti-

mal ln likelihood value for K=4. In the West, the
Chilanga population clustered with Linangu (i.e., the red
and the orange morph), while Tumbi clustered with
Katoto (i.e., the blue morph). In the East, Mbita Island
and Wonzye Point (i.e., the light-olive morph) formed a
cluster, while Muzumwa clustered with Toby’s place
(i.e., the dark-olive morph).

Parasite community composition
A global analysis of relative differences in parasite com-
munity composition based on pairwise Hellinger distances
revealed strong differences between host populations for
both sampling years (Table 4). This analysis also revealed
differences between all pairs of neighbouring populations,
except between Mbita Island and Wonzye Point (both
belonging to the light-olive morph), and between Wonzye
Point and the dark-olive population from Muzumwa
(Figure 1).
Correlations between parasite community composition

and the genetic structure of host populations were posi-
tive, but non-significant (Table 5; Figure 4). The correl-
ation between parasite community composition and
geographical distance along the shoreline was non-
significant in 2011 (i.e., including all populations), and
significantly positive in 2012 (i.e., only including the six



Table 1 Sampling site, substrate type, latitude, longitude, year, sample size and prevalence (%) for eight Tropheus populations sampled along the Zambian
shore of Lake Tanganyika in August-September 2011 and 2012

Endoparasites Ectoparasites

Site (substrate) Latitude Longitude Year NT/NG Acanthocephala Nematoda Urogyrus Digenea cysts (Gills/Fins) Gyrodactylus Cichlidogyrus Ergasilus Branchiura

Chilanga (r/s) 08° 33’ 22.4” S 30° 37’ 09.7” E 2011 50/40 92 16 0 0 5/4 2 97.5 57.5 0

Linangu (r/s) 08° 32’ 03.5” S 30° 38’ 25.2” E 2011 50/40 94 22 0 0 0/0 4 81.4 45 0

Tumbi (R/s) 08° 42’ 10.7” S 30° 55’ 20.9” E 2011 50/41 73.47 16.33 0 0 7.32/6 4 88.37 24.39 0

2012 40/30 50 0 10 0 13.3/7.5 5 70 33.33 0

Katoto (R/ns) 08° 47’ 51.6” S 31° 01” 11.8” E 2011 55/40 30.77 13.46 7.27 1.92 0/1.82 5.45 100 47.5 2.5

2012 40/31 72.50 25 7.50 2.50 0/2.5 12.50 93.55 29.03 0

Mbita Island (r/s) 08° 44’ 57.1” S 31° 05’ 14.2” E 2011 60/42 86.21 3.45 1.69 0 0/0 1.67 79.07 35.71 2.38

2012 41/30 92.68 4.88 9.76 0 10/2.44 2.44 96.67 46.67 3.33

Wonzye Point (r-sr/ss) 08° 43’ 07.6” S 31° 08’ 12.6” E 2011 50/40 86 10 0 0 2.5/0 4 95.56 40 0

2012 40/29 85 15 2.5 0 3.45/0 5 86.21 27.59 3.44

Muzumwa (r-sr/sss) 08° 42’ 05.7” S 31° 11’ 59.8” E 2011 50/45 95.91 10.20 2 0 0/4 20 95.56 31.11 0

2012 40/30 92.5 5 2.5 0 6.67/0 20 90 36.67 0

Toby’s place (r/ss) 08° 37’ 18.9” S 31° 11’ 59.9” E 2011 50/40 90 6 0 0 0/2 4 76.19 25 2.5

2012 40/30 77.5 5 5 0 0/0 2.50 66.67 30 3.44

Substrate type is categorized according to rock (r: small rocks; R: large rocks; sr: solid rock) and sediment (ns: no sediment; s: few sediment; ss: some sediment; sss: much sediment). NT: total number of individuals
screened for parasites. NG: number of individuals screened for parasites on the gills. Groups of parasites which are known from Lake Tanganyika fishes [87], but which were not observed in this study, include
pentastomids [88,89], cymothoid parasitic isopods, lernaeid copepods [90], cestodes [89,91] and leeches [92,93]. Of these, the isopods and copepods ([90]; Vanhove pers. obs.), pentastomids [94], cestodes ([95];
Vanhove & Pariselle, pers. obs.) were also observed in cichlids, as well as bivalves on the gills (Vanhove & Grégoir, pers. obs.) and the ancyrocephalid monogenean Enterogyrus sp. in the digestive tract (Pariselle,
Vanhove, Bamps, Grégoir, Hablützel & Raeymaekers, unpublished data).

Raeym
aekers

et
al.BM

C
Evolutionary

Biology
2013,13:41

Page
5
of

16
http://w

w
w
.biom

edcentral.com
/1471-2148/13/41



Table 2 Mean abundance/median intensity in eight Tropheus populations sampled along the Zambian shore of Lake Tanganyika in August-September 2011
and 2012

Endoparasites Ectoparasites

Site Year Acanthocephala Nematoda Urogyrus Digenea Gill cysts Fin cysts Gyrodactylus Cichlidogyrus Ergasilus Branchiura

Chilanga 2011 5.74 / 5 0.20 / 1 0.00 / - 0.00 / - 0.05 / 1 0.04 / 1 0.02 / 1 20.38 / 17 1.75 / 2 0.00 / -

Linangu 2011 6.54 / 5 0.26 / 1 0.00 / - 0.00 / - 0.00 / - 0.00 / - 0.08 / 2 3.44 / 4 0.60 / 1 0.00 / -

Tumbi 2011 1.57 / 2 0.22 / 1 0.00 / - 0.00 / - 0.10 / 1 0.06 / 1 0.12 / 3 6.81 / 5.5 0.46 / 1 0.00 / -

2012 1.43 / 2 0.00 / - 0.13 / 1 0.00 / - 0.13 / 1 0.08 / 1 0.08 / 1.5 5.13 / 3 0.67 / 2 0.00 / -

Katoto 2011 0.48 / 1 0.17 / 1 0.07 / 1 0.02 / 1 0.00 / - 0.02 / 1 0.07 / 1 15.07 / 11 0.80 / 1 0.03 / 1

2012 3.93 / 4 0.48 / 1 0.13 / 1 0.03 / 1 0.00 / - 0.03 / 1 0.25 / 2 14.06 / 10 0.48 / 1 0.00 / -

Mbita Island 2011 5.21 / 4 0.05 / 1.5 0.02 / 1 0.00 / - 0.00 / - 0.00 / - 0.02 / 1 5.44 / 6 0.83 / 1 0.05 / 2

2012 10.95 / 9.5 0.05 / 1 0.22 / 2 0.00 / - 0.1 / 1 0.02 / 1 0.05 / 2 15.8 / 11 1.17 / 2 0.03 / 1

Wonzye 2011 3.48 / 4 0.10 / 1 0.00 / - 0.00 / - 0.03 / 1 0.00 / - 0.08 / 2 6.8 / 6 0.63 / 1 0.00 / -

2012 4.88 / 5 0.15 / 1 0.05 / 2 0.00 / - 0.03 / 1 0.00 / - 0.08 / 1.5 6.55 / 5 0.41 / 1 0.03 / 1

Muzumwa 2011 6.67 / 4 0.12 / 1 0.02 / 1 0.00 / - 0.00 / - 0.06 / 1.5 0.38 / 1 14.47 / 10 0.53 / 1 0.00 / -

2012 6.15 / 5 0.05 / 1 0.03 / 1 0.00 / - 0.17 / 2.5 0.00 / - 0.48 / 2 12.57 / 11 0.5 / 1 0.00 / -

Toby’s place 2011 6.62 / 5 0.06 / 1 0.00 / - 0.00 / - 0.00 / - 0.02 / 1 0.08 / 2 2.98 / 3 0.40 / 1.5 0.03 / 1

2012 6.38 /7 0.05 / 1 0.13 / 2.5 0.00 / - 0.00 / - 0.00 / - 0.03 / 1 4.17 / 4 0.43 / 1 0.03 / 1
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Table 3 Fixed effects of general and generalized linear models for infection levels in eight Tropheus populations

Infection presence Abundance Infection intensity

Parasite group Effect Num DF Den DF F P F P F P

Acanthocephalans site 7 605/483 9.01 < 0.0001 23.46 < 0.0001 11.92 < 0.0001

day 2 605/483 0.76 0.4673 1.02 0.3622 01.25 0.2886

sex 1 605/483 0.01 0.9100 0.04 0.8484 0.04 0.8351

SL 1 605/483 12.62 0.0004 57.06 < 0.0001 47.92 < 0.0001

year(site) 6 605/483 5.02 < 0.0001 7.57 < 0.0001 5.02 < 0.0001

Nematodes site 7 605/47 2.38 0.0210 2.64 0.0106 1.32 0.2640

day 2 605/47 0.63 0.5336 0.78 0.4591 2.41 0.1005

sex 1 605/47 1.09 0.2974 1.36 0.2434 1.17 0.2843

SL 1 605/47 0.10 0.7557 0.05 0.8185 1.39 0.2436

year(site) 6 605/47 0.89 0.5011 2.19 0.0428 0.74 0.6009

Gyrodactylus site 7 616/24 3.95 0.0003 5.47 < 0.0001 0.83 0.5692

day 2 616/24 0.90 0.4091 0.37 0.6927 4.88 0.0167

sex 1 616/24 0.30 0.5811 0.09 0.7607 1.16 0.2926

SL 1 616/24 0.26 0.6093 0.27 0.6016 1.25 0.2751

. year(site) 6 616/24 0.35 0.9071 0.60 0.7344 0.93 0.4933

Cichlidogyrus site 7 476/418 2.85 0.0064 18.85 < 0.0001 15.14 < 0.0001

day 2 476/418 2.80 0.0617 5.50 0.0043 2.54 0.0803

sex 1 476/418 3.62 0.0578 7.58 0.0061 4.00 0.0462

SL 1 476/418 6.60 0.0105 77.90 < 0.0001 74.38 < 0.0001

year(site) 6 476/418 2.80 0.0108 3.68 0.0014 1.73 0.1131

Ergasilus site 7 476/158 1.73 0.1001 2.40 0.0201 1.86 0.0792

day 2 476/158 0.70 0.4984 0.14 0.8729 1.36 0.2602

sex 1 476/158 0.15 0.6978 0.10 0.7479 0.00 0.9537

SL 1 476/158 0.58 0.4485 3.28 0.0708 5.30 0.0227

year(site) 6 476/158 0.70 0.6489 0.55 0.7696 0.23 0.9667

Fixed effects included sampling site, processing day, sex, standard length (SL), and sampling year (nested in site). Observer effects were included as random (not
shown), except for Gyrodactylus sp. for which there was only one observer. The model for infection presence assumes a binomial distribution and models the logit
of the probability of infection. For the models for abundance and infection intensity, the dependent variable was square-root transformed. Note that the
denominator degrees of freedom (Den DF) are higher for the infection presence and abundance model (before the dash) than for the infection intensity model
(after the dash). P-values in bold indicate significance at α = 0.05.
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easternmost populations). Hellinger distances in 2011
were positively correlated with Hellinger distances in
2012 (R = 0.69, P = 0.0261; Figure 4), indicating that
parasite communities were stable over this period of
time. Accordingly, pairwise Hellinger distances between
parasite communities from the same site but different
years were on average smaller than distances between
neighbouring sites, and smaller than distances between
all other site pairs (Mantel test between all distances and
a vector assigning values 0,1 and 2 to each of these re-
spective categories: R = 0.20; P = 0.028).

Discussion
There are three main prerequisites for parasite-driven spe-
ciation [1-3,23]. First, different populations or ecotypes
should experience divergent infection levels. Second,
divergent infection levels should cause divergent selection
and facilitate adaptive divergence. Third, parasite-driven
adaptive divergence should facilitate the evolution of re-
productive isolation. Below we discuss indications for
parasite-driven speciation in Tropheus and other cichlid
species by providing an overview of the support currently
available for each of these prerequisites.

First prerequisite
Divergent parasite communities have been described in
closely related sympatric cichlid fish from Lake Malawi
[21] and Lake Victoria [25]. The differences in these sys-
tems were mainly caused by intestinal nematodes, and
by gill parasites such as ergasilid copepods and the
monogenean Cichlidogyrus. Our analyses of infection
levels and parasite community composition revealed



Figure 2 Prevalence (left), mean abundance (middle; square-root transformed) and mean infection intensity (right; square-root
transformed) of acanthocephalans, nematodes, Gyrodactylus, Cichlidogyrus, and Ergasilus in eight Tropheus populations from southern
Lake Tanganyika. Error bars represent standard errors.
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Figure 3 Isolation-by-distance in eight Tropheus populations from southern Lake Tanganyika. A) Geographical distance along the
shoreline vs. genetic differentiation as quantified with pairwise D; B) Geographical distance along the shoreline vs. standardized variance in allele
frequencies (GST).
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considerable variation in parasitism among eight
Tropheus populations from Lake Tanganyika, belonging
to five allopatric colour morphs. Two common groups
of endoparasites (acanthocephalans and nematodes) and
three common ectoparasites (the monogeneans Gyro-
dactylus and Cichlidogyrus and the copepod Ergasilus)
Table 4 Permutational multivariate analysis of variance
on Hellinger distances between parasite communities in
individuals from eight (2011) or six (2012) Tropheus
populations

Year Effect Num DF Den DF SS MS F R2 P

2011 site 7 307 16.84 2.41 12.22 0.21 <0.0001

day 2 307 0.81 0.40 2.05 0.01 0.08

sex 1 307 0.23 0.23 1.18 0.003 0.28

SL 1 307 0.40 0.40 2.04 0.005 0.11

2012 site 5 168 4.42 0.88 3.05 0.08 0.0003

day 1 168 0.05 0.05 0.17 0.001 0.97

sex 1 168 0.65 0.65 2.24 0.01 0.07

SL 1 168 0.29 0.29 0.99 0.005 0.39

The model included sampling site, processing day, sex, and standard length
(SL). P-values in bold indicate significance at α = 0.05.
contributed to this effect. A number of less common
parasite groups with a patchy distribution (e.g. Digenea
only observed at Katoto) further enhanced the differ-
ences between sites. The differences remained after cor-
rection for observer, hence representing a true biological
effect. Most of the differences also remained after cor-
rection for sex and standard length, which implies that
they were not due to the size distribution or sex bias of
the sampled populations. As all samples were collected
within three weeks, and nearby sites were often visited
in the same week or on the same day, it is unlikely that
Table 5 Mantel correlations between parasite community
differentiation (Hellinger distance), the genetic structure
of Tropheus host populations (pairwise D and pairwise
GST), and geographical distance along the shoreline

Hellinger
distance (2011)

Hellinger
distance (2012)

R P R P

D 0.13 0.2803 0.37 0.1396

GST 0.02 0.4255 0.20 0.2589

Geographical distance −0.14 0.6983 0.55 0.0369

Significant P-values are in bold.



Figure 4 Determinants of parasite community differentiation (Hellinger distance) among eight Tropheus populations from southern
Lake Tanganyika. A) Genetic differentiation as quantified with pairwise D vs. Hellinger distance; B) Standardized variance in allele frequencies
(GST) vs. Hellinger distance; C) Geographical distance along the shoreline vs. Hellinger distance; D) Hellinger distance as quantified in 2011 vs.
Hellinger distance as quantified in 2012. Panels A, B and C combine data from 2011 (black dots) with data from 2012 (white dots). Dashed lines
(superimposed on non-significant relationships) were obtained with a lowess function. Full lines (superimposed on significant relationships)
represent least-square linear regression lines.
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seasonal environmental fluctuations represented a main
contributor to the observed variation. We conclude that
the allopatric Tropheus populations showed true para-
sitological differences, supporting the first prerequisite
for parasite-driven speciation. This is a conservative
conclusion, because the differences between host popu-
lations in parasite species composition are likely to in-
crease with higher taxonomic resolution. Preliminary
data on Cichlidogyrus do suggest this, as the Tropheus
populations concerned harbour at least seven Cichlido-
gyrus species, most of which occur at different localities
(Grégoir et al., unpublished).

Second prerequisite
Divergent infection levels open opportunities for
parasite-driven divergent selection and subsequent
adaptive divergence, i.e. the second prerequisite for
parasite-driven speciation. Importantly, only consistent
parasite-mediated selection might lead to adaptive diver-
gence [23]. This requires a reasonable degree of tem-
poral stability of the parasite metacommunity. Our
analysis over a one year time span showed no major
shifts in parasite distributions, and hence was indicative
for temporal stability. The stability of communities of
fish parasites is influenced by the environment, which
for lake cichlid systems might include factors such as
the availability of host species, substrate type, turbidity
and temperature. Our study sites certainly differ in these
respects, some environmental characteristics of which
are stable. Substrate type (Table 1), for instance, is a
stable factor, and for Tropheus as an algae scraping cich-
lid, the variation from pebbles to plain rock may highly
influence infection risk. At the same time substrate type
also influences hiding opportunities and predation risk,
and hence it can strongly influence the chances of para-
sites to pass from intermediate hosts (e.g. cichlids) to
final hosts (e.g. fish-eating birds). Furthermore, the sta-
bility of the parasite metacommunity might also depend
on host dispersal. In confirmation of previous studies
[55,56,58,59], our genetic analysis showed that host dis-
persal was limited, especially between populations from
different colour morphs. Furthermore, we observed a
non-significant correlation between parasite community
diversification and the genetic structure of host
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populations, suggesting that the relationship between
parasite distributions and host dispersal is weak. This
implies that host dispersal might be too low to
homogenize parasite communities, or that the local en-
vironment is a stronger determinant of parasites distri-
butions than host dispersal. Either way, it is likely that at
least part of the parasite community is restricted to local
Tropheus populations, imposing divergent selection.
Reversing the arrow of causality, we might as well con-

sider the possibility that contrasting parasite communities
reduce host dispersal. However, as spatial isolation repre-
sents a much stronger factor reducing host dispersal, this
relationship cannot be unambiguously analysed. It also
remains unclear whether divergent infection levels can fa-
cilitate chromatic differentiation, as seems to be the case
in a pair of cichlid species from Lake Victoria [25]. Inter-
estingly, neighbouring populations belonging to different
colour morphs had highly divergent parasite communities
(Figure 1), but neighbouring populations belonging to the
same colour morph were also rather divergent in parasit-
ism (with the exception of the light-olive populations - i.e.
the only pair without a major barrier to Tropheus dis-
persal; Figure 1). Therefore it might be that parasites
represent a stronger diversifying force than the factors
underlying chromatic differentiation. Alternatively, para-
sites themselves might be more influenced by spatial isola-
tion or environmental heterogeneity than the factors
underlying chromatic differentiation.
The potential to adapt to parasite-mediated selection

might include adaptation at the behavioural as well as the
immunological level. A number of studies provide evi-
dence for the potential of adaptation to contrasting para-
site environments in other teleosts, in particular through
specialized immune functions (reviewed in [23,29]. In
cichlids from Lake Malawi, it was shown that two sympat-
ric species harbouring divergent parasite communities
were different at the immunogenetic level [21]. So far
immunogenetic adaptation has not been investigated in
Tropheus.

Third prerequisite
In general, reproductive isolation might be composed of
one or multiple reproductive barriers, including geograph-
ical isolation, habitat choice, assortative mate choice, and
natural selection against migrants or hybrids [1,3,60,61].
Mechanisms of how parasites might facilitate host speci-
ation include reduced viability or fecundity of immigrants
and hybrids, assortative mating as a pleiotropic by-
product of immunogenetic adaptation, and ecologically-
based sexual selection [23].
At the moment, there is no evidence for the evolution

of parasite-mediated reproductive isolation in Tropheus.
A combination of allopatry, philopatric and stenotopic
behaviour and mate discrimination are believed to
maintain the differentiation between the colour morphs
[59,62]. Partial colour-assortative female mate choice has
been observed for the populations in our study area
based on paternity tests in a human-mediated admixis of
colour morphs in the harbour of Mpulungu [59,63], as
well as in mating trials among colour morphs from
Moliro, Chimba, Chaitika, Nakaku and Mbita Island
[62,64]. However, the females in these studies could also
rely on other cues, in particular olfaction and sound
which have been proposed to influence mate choice in
cichlids as well [65,66]. As such there is no direct
evidence that colour influences mating decisions in
Tropheus. Currently, there is also no indication that
colour intensity affects intra-population mating decisions
in Tropheus [67]. Therefore additional, nonexclusive
mechanisms affecting mating decisions might be consid-
ered, including those which invoke a role for parasitism.
Assortative odour-based mate choice linked to the im-
mune competences of potential mates [20] represents one
pathway of how reproductive isolation might evolve
among populations with divergent parasite communities.
A study on a pair of Lake Victoria cichlids suggested that
parasite-mediated sexual selection might contribute to the
divergence of female mating preferences for male color-
ation, strengthening reproductive isolation [25]. Consist-
ent with parasite-mediated sexual selection, males had
higher parasite loads (e.g. Cichlidogyrus) than females in
this system [26], something which we also observed in this
study.
The evolution of parasite-mediated reproductive isola-

tion also depends on the fitness of parental types and
hybrids [23]. There is empirical evidence that hybrids
differ from purebreds in parasite infection rates by being
more or intermediately susceptible [68-71], or by being
more resistant [72,73] to a particular parasite species.
Furthermore, hybrid genotypes within a population can
differ from each other in parasite susceptibility [68]. In
Tropheus, various scenarios with contrasting outcome
may be observed, ranging from full reproductive isola-
tion between colour morphs when parental types are
able to deal better with parasites than hybrids, to consid-
erable levels of introgression and even hybrid speciation
when hybrids are able to deal better with parasites than
parental types. The occurrence of at least two ancient
Tropheus hybrid zones within our study area is interest-
ing for further investigation in this context [56].

Conclusions
Allopatric Tropheus populations revealed considerable
and consistent variation in parasite community compos-
ition. The observation of divergent parasite communities
between distinct colour morphs suggests that Tropheus
represents a good system for parasite-mediated adaptive
divergence and speciation. At the moment it is unknown
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whether the current diversification in Tropheus has been
influenced by differential parasite load in the past. Nei-
ther do we know whether the current differences in
parasitism contribute to adaptive divergence and speci-
ation in the future. Tropheus colour morphs have been
subject to alternating episodes of isolation and secondary
contact because of lake level fluctuations. Our results
imply that during phases of secondary contact, merging
populations might come in contact with different para-
site communities. The outcome of this process is hard
to predict, but it will likely affect the fitness of different
colour morphs and their potential hybrids differentially.
This certainly influences the process of admixing; further
studies are needed to evaluate how this might influence
the evolution of reproductive isolation. Our future work
will aim at increasing the taxonomic resolution of para-
site identification, improving our understanding of the
factors structuring parasite communities, and evaluating
the likelihood of immunogenetic adaptation.

Methods
Sampling
Sampling was conducted during August-September
2011 and 2012 along the Zambian shoreline of Lake
Tanganyika (Table 1, Figure 1). In 2011, eight sites were
included, while in 2012 the six easternmost sites were
re-sampled. The choice of the eight sites was based on
the distribution of five allopatric Tropheus colour
morphs [46,58,59,62,64]: the red morph (sampled at Chi-
langa), the orange ‘Llangi’-like morph (sampled at
Linangu), the blue morph (sampled at Tumbi and just
west of Katoto), the light-olive or yellow-blotched morph
(sampled at Mbita Island and Wonzye Point), and the
dark-olive morph (sampled at Muzumwa and Toby’s
place). The morphs are to variable degrees isolated by
distance and habitat unsuitable for Tropheus (Figure 1).
Nuclear and mitochondrial phylogenies reveal partially
independent evolutionary lineages for these allopatric
colour morphs [55,56,59]. Fifty to sixty fish per site were
caught by chasing fish into standing nets. After transport
in oxygenated water to a near-shore tank facility (Toby’s
place), the fish were kept in tanks of 0.8 m × 0.8 m × 1.2
m depth or 2.0 m × 0.8 m × 1.2 m depth. Before usage,
tanks were cleaned, dried and filled with lake water. At
every site, substrate type was determined according to
rock type (small, large or solid rock) and sediment pres-
ence (no, few, some or much sediment).

Parasitological survey
Within three days after capture, all live stock Tropheus
were dissected. The parasitological survey was per-
formed in the field using a field stereomicroscope. Indi-
vidual fish were killed with an overdose of MS222. For
each fish, the observers performing the dissections were
recorded in order to keep track of observer bias. The
outer surface of the fish was screened by a single obser-
ver (JAMR). The gills were screened by two observers in
2011 and four observers in 2012. The intestines were
screened by four observers in 2011 and four observers in
2012. The day of dissection after capture (day 0, 1 or 2)
was recorded in order to keep track of changes in para-
sitological parameters while the fish were kept in the
tanks. The dissection of each fish started with screening
its outer surface for monogeneans and crustaceans
(copepods, branchiurans, isopods), and any kind of hel-
minthic cyst. The mouth cavity was then inspected for
parasitic isopods and branchiurans. At least fourty fish
in 2011 and thirty fish in 2012 per site were inspected
for gill parasites including branchiurans, copepods,
bivalves, monogeneans, and any kind of helminthic cyst.
To do so, the gills were immediately dissected and
stored on 100% ethanol for later processing. At least fifty
fish in 2011 and fourty fish in 2012 per site were screened
for intestinal monogeneans, digeneans, acanthocephalans,
nematodes, and any kind of helminthic cysts. To do so,
stomach, intestines, gall and urinary bladder were imme-
diately dissected and inspected in a petridish with lake
water. Finally, the sex of the fish was determined by visual
inspection of the genital papilla and gonad development.
Processed fish were wrapped in cheese cloth, preserved on
formalin, and deposited in the RMCA as vouchers (sam-
ples 2011: collection RMAC B1.23; samples 2012: collec-
tion RMAC B2.38).
All parasites were counted and identified to genus or

class level and preserved as follows. Monogeneans were
isolated using dissection needles and were either mounted
on slides in ammonium picrate glycerine [74] for further
morphological research, or stored on 100% analytical etha-
nol (EtOH). Acanthocephalans and nematodes were
stored on 80% EtOH, while intestinal monogeneans, bran-
chiurans, copepods, any kind of helminthic cysts, bivalves
and unknown groups were stored on 100% EtOH.

Population genetics
Genomic DNA of 24 individuals per population (all cap-
tured in 2011) was isolated from 10–20 mg fin tissue with
the Nucleospin Tissue kit (Macherey & Nagel, Düren,
Germany) following the manufacturer’s recommendations.
Ten neutral microsatellite loci were amplified in three
multiplex reactions with annealing temperatures 54°C
(reaction I and III) or 56°C (reaction II) using the
QIAGEN PCR kit. Reaction I amplified loci Ppun5 and
Ppun7 [75], and locus Pzeb3 [76]. Reaction II amplified
loci HchiST06, HchiST38, HchiST68 and HchiST94 [75].
Reaction III amplified loci TmoM11 [77], UME003 [78],
and UNH130 [79]. Genotyping was performed using an
ABI 3130 Sequencer (Applied Biosystems). Allele sizes
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were estimated using Genemapper v4.0 (Applied biosys-
tems) and verified visually.
Allelic richness (AR) and expected (HE) and observed

(HO) heterozygosity were calculated for all loci and sam-
pling sites using Arlequin v3.5 [80]. Tests for linkage dis-
equilibrium among all pairs of loci were performed using
the Markov Chain algorithm implemented in Genepop
v4.0, with 104 dememorizations, 500 batches and 5 000
iterations per batch. To test for significant deviations from
Hardy-Weinberg equilibrium, the exact test implemented
in Arlequin was used, with 106 steps in the Markov Chain
and 104 dememorizations per population.
Global and pairwise population differentiation (D; [81])

and the global and pairwise standardized variance in allele
frequencies (GST) were quantified using the R package
DEMEtics [82]. Confidence intervals for all estimates were
obtained by bootstrapping over loci. Furthermore, a struc-
ture analysis in Structure v2.3 [83] was run in order to de-
termine the most likely number of differentiated clusters
(1 < K < 8). The analysis used an admixture model
with correlated allele frequencies. Colour morph was
used as prior information, given the suboptimal reso-
lution of microsatellite markers, and given that the
populations in this study have been repeatedly shown
to cluster genetically according to colour morph based
on mtDNA (i.e., control region [55,56,59]), AFLP [56,58],
or microsatellite data [55,59]. For every K, five replicates
with 106 iterations after a burnin of 105 iterations were
run. The optimal K was determined using Bayes’ Rule.

Data analysis
Prevalence, infection presence, abundance and infection
intensity were calculated for each group of parasites fol-
lowing the terminology of Rózsa et al. 2000 [84]. Infec-
tion presence (yes/no) was analyzed with a generalized
linear model assuming a binomial error distribution
using proc GLIMMIX in SAS v9.1 (SAS Institute, Cary,
NC, USA). Site, sex, day of dissection and sampling year
were included in the model as fixed factors, and obser-
ver as a random block factor. Sampling year was nested
in site in order to test for local year-to-year variation in
infection presence. The standard length of the fish was
added to the model as a covariate. In case of overall sig-
nificance of the site effect, post hoc comparisons of least-
square infectivity means between pairs of sites were
computed. Abundance and infection intensity were
square-root transformed in order to improve normality,
and compared between sites using a general linear
model using proc MIXED in SAS. As above, site, sex,
day of dissection and sampling year (nested in site) were
included as fixed factors, observer as a random block
factor, and standard length as a covariate. In case of
overall significance of the model, post hoc comparisons
of mean ranks for all pairs of sites were computed.
Dissimilarities in parasite community composition
between host individuals were assessed by calculating
Hellinger distances using the R library vegan [85]. Hel-
linger distances are based on square-rooted proportional
abundances [80], and therefore reflect relative differ-
ences in parasite community composition. For each year,
a permutational multivariate analysis of variance on Hel-
linger distances with factors host population, sex, day of
dissection and size as a covariate was performed using
the Adonis function in vegan [86]. Statistical significance
was obtained through 104 permutations of the data. This
analysis was then repeated for each pair of host popula-
tions separately, applying a significance level corrected
for multiple comparisons (2011: 28 pairwise compari-
sons, α = 0.0018; 2012: 15 comparisons, α = 0.0033). In
order to test the expectation that the differences in para-
site communities are correlated with geographical isola-
tion and the extent of genetic differentiation between
host populations, pairwise Hellinger distances between
parasite communities were compared with pairwise D,
pairwise GST and pairwise geographical distances be-
tween the host populations. In order to test for the sta-
bility of parasite communities over time, pairwise
Hellinger distances between parasite communities for
2011 were correlated with the distances for 2012. All
correlations were tested for significance using a Mantel
test implemented in vegan.
Because Tropheus populations from neighbouring sites

might merge as a result of lake level fluctuations, differ-
ences in parasite distributions might crucially affect the
evolution of parasite-driven reproductive barriers. There-
fore all significant differences in infection presence, abun-
dance, infection intensity and parasite community between
the seven pairs of neighbouring sites were visualized in a
single figure, along with their degree of geographical isola-
tion (i.e. length of unsuitable stretches of sand, or length of
suitable stretches of rocky outcrops). Habitat suitability was
determined based on observations on site complemented
with visual inspection of satellite pictures.
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