BMC
Evolutionary Biology

Continental phylogeography of an ecologically
and morphologically diverse Neotropical
songbird, Zonotrichia capensis

Lougheed et al.

O BioMed Central Lougheed et al. BMC Evolutionary Biology 2013, 13:58

http://www.biomedcentral.com/1471-2148/13/58



Lougheed et al. BMC Evolutionary Biology 2013, 13:58

http://www.biomedcentral.com/1471-2148/13/58
P BMC

Evolutionary Biology

RESEARCH ARTICLE Open Access

Continental phylogeography of an ecologically
and morphologically diverse Neotropical
songbird, Zonotrichia capensis

Stephen C Lougheed'’, Leonardo Campagna'?, José A Davila, Pablo L Tubaro? Dario A Lijtmaer?
and Paul Handford”

Abstract

Background: The Neotropics are exceptionally diverse, containing roughly one third of all extant bird species on
Earth. This remarkable species richness is thought to be a consequence of processes associated with both Andean
orogenesis throughout the Tertiary, and climatic fluctuations during the Quaternary. Phylogeographic studies allow
insights into how such events might have influenced evolutionary trajectories of species and ultimately contribute
to a better understanding of speciation. Studies on continentally distributed species are of particular interest
because different populations of such taxa may show genetic signatures of events that impacted the continent-
wide biota. Here we evaluate the genealogical history of one of the world’s most broadly-distributed and polytypic
passerines, the rufous-collared sparrow (Zonotrichia capensis).

Results: We obtained control region DNA sequences from 92 Zonotrichia capensis individuals sampled across the
species’ range (Central and South America). Six additional molecular markers, both nuclear and mitochondrial, were
sequenced for a subset of individuals with divergent control region haplotypes. Median-joining network analysis,
and Bayesian and maximum parsimony phylogenetic analyses all recovered three lineages: one spanning Middle
America, the Dominican Republic, and north-western South America; one encompassing the Dominican Republic,
Roraima (Venezuela) and La Paz (Bolivia) south to Tierra del Fuego, Argentina; and a third, including eastern
Argentina and Brazil. Phylogenetic analyses suggest that the Middle American/north-western South American clade
is sister to the remaining two. Bayesian and maximum likelihood coalescent simulations used to study lineage
demographic history, diversification times, migration rates and population expansion together suggested that
diversification of the three lineages occurred rapidly during the Pleistocene, with negligible gene flow, leaving
genetic signatures of population expansions.

Conclusions: The Pleistocene history of the rufous-collared sparrow involved extensive range expansion from a
probable Central American origin. Its remarkable morphological and behavioral diversity probably represents recent
responses to local conditions overlying deeper patterns of lineage diversity, which are themselves produced by
isolation and the history of colonization of South America.
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Background

Phylogeographic studies provide insight into the influ-
ence of geological and paleoclimatic events on contem-
porary species distributions and colonization history,
and contribute to understanding the processes that
might lead to new species [1]. Species with distributions
on the scale of continents are particularly useful as they
are often not at evolutionary equilibrium throughout
their range, with distinct populations containing genetic
signatures of events that have differentially impacted the
continent-wide biota [2]. Phylogeographic research has
focused on northern hemisphere temperate and boreal
taxa, especially evaluating the influence of glaciation and
postglacial dynamics; phylogeographic studies of taxa
from the southern hemisphere are not as common [3].

While most of South America’s continental biota has
not been as deeply influenced by glaciations (e.g., [4,5];
but see [6,7]), over the last several million years, the
continent has experienced marked topographic, climatic
and vegetational changes, even at low and mid latitudes
(e.g., [8-10]), much of this associated with orogenesis at
the continent’s western margins (e.g., [11-13]). The
interaction of these factors has been proposed to under-
lie much of the hyperdiversity evident in the Neotropics
(e.g. [14-17)).

The rufous-collared sparrow, Zonotrichia capensis, is
an excellent species for examining the influence of a dy-
namic continental history on intraspecific evolutionary
patterns. It is one of the most wide-ranging New World
birds, distributed from Chiapas, Mexico (10°N) to Tierra
del Fuego, Argentina (55°S). It breeds in virtually all
open habitats from sea level to > 4,000 metres above sea
level, being absent only from continuous closed forest,
including much of the Amazonian basin ([18]; see
Figure 1A). Its four congeners (Z. albicollis, Z. atricapilla,
Z. leucophrys, and Z. querula) are found only in temperate
North America. This distribution has been taken by Chap-
man [18] to imply a Nearctic origin for the genus and,
accordingly, a southward expansion of the Z. capensis an-
cestor from the northern temperate zone into South
America. However, the historical scenario put forward by
Chapman [18] is based simply on taxon concentration
and does not consider the phylogenetic relationship
among Zonotrichia species. Phylogenetic analyses of the
genus show Z. capensis to be sister to all North American
taxa [19-21]. This suggests that the reconstruction of the
distribution of the Zonotrichia ancestor is uncertain and
thus a Central or South American origin of the genus
(reflecting the range of Z. capensis) could also be possible.
Contrary to Chapman’s scenario [18], such a Central or
South American origin would imply an expansion and di-
versification towards the North, generating the clade
found currently in North America, and the expansion of
the Z. capensis lineage within Central and South America.
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Recently Barker et al. [22] found Zonotrichia to be em-
bedded within a clade with three other exclusively
North American genera: Junco, Passerella and Spizella;
where Junco was sister to the remaining genera. This
supports a North American origin of Zonotrichia and
suggests that the ancestor of Z capensis subsequently
expanded into South America (ie, Chapman’s 1940
scenario [18]). Regardless of the specific origin of the
genus, it is likely that the ancestor of Z. capensis expe-
rienced many of the factors that have driven recent
speciation in the Neotropics while expanding to occupy
most of South America.

Zonotrichia capensis is one of the most polytypic avian
species, with more than 20 described subspecies [18,23,24].
Morphological variation is accompanied by remarkable vari-
ation in vocal behaviour: low-latitude populations exhibit in-
dividual song repertories (e.g., Costa Rica [25]; Ecuador, P.H.
personal observation), while others (~20-40°S) show individ-
ual stereotypy and geographical dialects, which correspond
with natural vegetation types, but not with subspecies desig-
nations [23,26-30]. The rufous-collared sparrow also shows
substantial variation in migratory habit, from lowland trop-
ical populations that appear sedentary, through populations
that undergo altitudinal migrations (e.g., altiplano popula-
tions in southern Bolivia and northern Argentina), to those
that are long distance latitudinal migrants (e.g., Z. ¢. australis
and choraules where some populations migrate more than
30° in latitude). Handford [24] showed that the majority of
subspecies are only weakly differentiated morphologically.
The present study will help us to understand the
origins and significance of such phenotypic traits in Z.
capensis by comparing the patterns of morphological,
cultural and behavioral diversity with that of historical
lineage diversification.

Previous work on genetic variation in Z. capensis
in northwestern Argentina showed differentiation be-
tween Andean and lowland populations in allozyme
frequencies [31], and in mtDNA restriction fragment
length polymorphisms [32]. Moreover, Cheviron and
Brumfield [33] found differences in mtDNA se-
quences across altitudinal transects but not across
latitudinal control transects in Peruvian populations
of Z. capensis. Cheviron et al. [34] reported vari-
ation in transcriptomic profiles between lowland and
highland environments; however these differences
were not observed when birds were transplanted to
a control lowland site, suggesting plastic expression
patterns that allow adaptation to high altitude con-
ditions in this species. Significant mtDNA sequence
divergence between Costa Rican and Bolivian exem-
plars of Z. capensis (2.1% in cytochrome b) was
noted by Zink et al. [20] and Zink and Blackwell
[21]. While these data provide provocative evidence
of genetic differentiation, the aforementioned studies
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Figure 1 (See legend on next page.)
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Figure 1 Phylogeography of the rufous-collared sparrow inferred using mitochondrial control region sequences. (A) Approximate
geographic range of Zonotrichia capensis in grey (following [18]; distribution in northern South America and Central America is patchier than
represented here). Sampling localities are indicated by colour-coded circles to show haplotype origin in subsequent figures. Localities are also
numbered (1 to 33 from north to south); details in Table 1 follow this numerical code. Finally, the distribution of Z. capensis individuals belonging to
the three intraspecific lineages identified is indicated with black lines (labeled A, B and C as in the main text). (B) Median-joining network showing the
relationship among the 44 CR haplotypes found. Circles represent distinct haplotypes with size proportional to the number of individuals in the
sample that contained it (the smallest circles represent one individual, while the largest corresponds to 23). Haplotypes are colour-coded following
sampling localities. The length of the lines that connect circles is proportional to the number of mutations in which haplotypes differ. Dotted lines
indicate comparisons of divergence between lineages, with values of percent p distances facing the interior of the network and those corresponding
to @s7 calculations on the exterior (p < 0.001 in all cases for the latter). Asterisks show haplotypes contained by samples that were chosen for further
sequencing. (C) Bayesian 50% majority rule consensus tree produced using 396 bp of CR sequences from the CR dataset with posterior probabilities
indicating node support. Z capensis individuals are represented by the locality where they were sampled (colour-coded as in Figure 1A and
numerically coded as in Table 1); lineage membership is indicated. Note that Brazilian localities (coded in white) are shown with a dark background for
increased contrast. Low posterior probabilities (below 0.90) were omitted for simplicity. Asterisks as in (B).

were too narrow in geographic scope to permit def-
inite conclusions about the diversification history of
the entire species.

Here we use mitochondrial and nuclear DNA se-
quences from individuals across the range of Z. capensis
to examine the phylogeographic structure of this widely
distributed emberizine songbird and address three
questions:

1. What does the pattern of genetic diversification
imply about the origin and historical demography of
Zonotrichia capensis?

2. To what degree have population fragmentation and
range expansion played a role in shaping
genealogical patterns within the species?

3. How does phylogeographic structure relate to
morphological and behavioral variation and to
subspecies designations?

Our analyses revealed three main lineages within Z.
capensis that diversified without gene flow during the
Pleistocene, expanding to colonize South America from
a probable Central American origin. These patterns of
lineage diversity are likely the consequence of geograph-
ical isolation and the colonization of South America and
do not coincide with variation reflected in subspecies
designations. The remarkable morphological and behav-
joral diversity in the species probably represents a more
recent response to local environmental conditions.

Methods

Specimen information, DNA extraction and sequencing
We obtained samples from 93 Z. capensis individuals
from 33 sites across the entire breeding range (one to
seven individuals per locality; Table 1, Figure 1A). We
included single individuals of two congeners as outgroups:
Zonotrichia querula (Harris’ sparrow) and Zonotrichia
albicollis  (White-throated sparrow). Tissue sources
include ethanol-preserved blood from live-caught and

released specimens (53 individuals); preserved pectoral
muscle, liver or heart tissue from specimens subse-
quently prepared as museum skins (23 individuals),
and toe pad tissue from museum skins from critical
sites (16 individuals, Table 1).

A portion of the mitochondrial control region (CR)
was amplified from all individuals. We chose this locus
for initial surveys because it has proved useful in similar
studies of other birds [35]. We amplified and sequenced
six additional markers from a subset of 32 individuals
with representative divergent CR haplotypes (using fresh
tissue) to help resolve phylogenetic structure. These se-
quences included three mitochondrial regions, cyto-
chrome ¢ oxidase subunit I (COI), 16 S rDNA (16 S)
and NADH dehydrogenase subunit 2 (ND2); two Z-
linked markers, chromodomain-helicase-DNA binding
protein (CHD1Z) and maternal embryonic leucine zip-
per kinase (MELK); and one autosomal intron, intron 5
of the B-fibrinogen gene (Fib5).

Genomic DNA from fresh tissue was extracted using
either a standard phenol chloroform protocol [36] or the
DNeasy Tissue Kit (Qiagen, Mississauga, Canada), fol-
lowing the manufacturer’s instructions. DNA from toe
pads was extracted using the latter method. For de-
graded DNA obtained from museum skins, we amplified
a segment of the CR in small overlapping fragments gen-
erally shorter than 200 bp, using a series of primer pairs
of our own design (see Additional file 1). For DNA from
fresh tissue, an approximately 760 bp segment of the CR
was amplified using primers ZnGIluF3 and LCAI-
REV271 (Additional file 1). PCR cocktails were prepared
in a final volume of 25 pL KCI PCR buffer (Fermentas,
Burlington, Canada) with the following composition:
10-20 ng of genomic DNA, 2.5 mM MgCl,, 0.5 uM of
each primer, 0.5 mM of dNTPs, 1 U of Taq DNA poly-
merase (Fermentas). Negative controls were included for
all PCRs. The thermocycling profiles were as follows:
initial denaturation at 94°C for 2 min; 35 cycles with
30 s at 94°C, 20 s at designated annealing temperatures



Table 1 Details of the Zonotrichia capensis samples used in this study

Locality (Locality code)® Lat./Long. Sample type® Sample ID¢ CR col ND2 16s CHD1Z MELK Fib5

NW San Cristobal, Chiapas, Mexico (1) 16°45" N, 92°40' WSS AMNH 766634  KC693420 - - - - - -

Chichicastenango, Quiché, Guatemala (2) 14°56' N, 91°07' WSS AMNH 397960  KC693421 - - - - - -

Republica Dominicana (3) 19°20" N, 71°43' W BS RD-ZCA KC693437 - - - - - -
RD-ZCA-2 KC693436 - - - - - -
RD-ZCA-3 KC693439 - - - - - -
RD-ZCA-4 KC693438 - - - - - -
RD-ZCA-5 KC693440 - - - - - -

La Georgina, San José, Costa Rica (4) 9°34'N, 83°44'W  MLHS LSUMZ B16204  KC693418  KC693338  KC693306 KC693272  KC693466 KC693207  KC693240
LSUMZ B16236  KCE693419 KC693339  KC693307 KC693273  KC693467 KCE693208  KC693241

Curagao (5) 12°10"N, 69°00' WSS AMNH 174800  KC693428 - - - - - -
AMNH 174801  KC693429 - - - - - -

El Junquito-Colonia Tovar, Aragua, Venezuela (6) 10°25'N, 67°13' W MLHS GFB3125 KC693414 KC693346 KC693314  KC693280 KC693474  KC693215 -
GFB3126 KC693415 KC693347 KC693315 KCE93281  KC693475 KC693216  KC693248
GFB3129 KC693413 KC693348 KC693316  KC693282 KC693476  KC693217  KC693249
GFB3142 KC693417 KC693349 KC693317  KCE93283  KC693477  KC693218  KC693250
GFB3162 KC693416  KC693350 KC693318  KC693284 KC693478  KC693219 -

Laguna de La Herrera, Sabana de Bogotd, Colombia (7) 4040’ N, 74°16' WSS AMNH 803019  KC693430 - - - - - -
AMNH 803020  KC693431 - - - - - -
AMNH 803021  KC693432 - - - - - -

Summit Mt. Roraima, Roraima, Venezuela (8) 5014' N, 60°47' WSS AMNH 237128  KC693427 - - - - - -
AMNH 237131 KC693426 - - - - - -

Quito, Pichincha, Ecuador (9) 0°13'S, 7830 W MLHS PH-QUITO-2 KC693444 - - - - - -
PH-QUITO-4 KC693441 - - - - - -
PH-QUITO-6 KC693443 - - - - - -
PH-QUITO-7 KC693442 - - - - - -

Rio Tocantins— Baido, Pard, Brazil (10) 2°50'S, 49°36' W SS AMNH 431444 KC693424 - - - - - -
AMNH 431447 KC693425 - - - - - -

Hudnuco-La Unién Rd., Huanuco, Perd (11) 9°53'S, 76°32' W MLHS LSUMZ B3603 KC693412 - - - - - -

Cushi, Hudnuco, Pert (12) 9°55'S, 75°45' W MLHS LSUMZ B8084  KC693409 KC693344 KC693312  KC693278  KC693472  KC693213  KC693246
LSUMZ B8131 KC693410 KC693345 KC693313  KCE93279  KC693473  KC693214  KC693247

Oxapampa, Pasco, Peru (13) 10°34'S, 7524 W MLHS LSUMZ B1875 KC693411 KC693342 KC693310 KCE93276  KC693470  KC693211  KC693244
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Table 1 Details of the Zonotrichia capensis samples used in this study (Continued)

Garanhuns, Pernambuco, Brazil (14) 8°54'S, 36°29" W SS AMNH 245037  KC693422 - - - - - -
AMNH 245038  KC693423 - - - - - -
Chuspipita, La Paz, Bolivia (15) 16°18'S, 67°47° W MLHS LSUMZ B1277 KC693408 KC693335 KC693303  KCE93269  KC693463  KC693204  KC693237
Catarata Arco lIris, Santa Cruz, Bolivia (16) 13°55"S, 60°45' W MLHS LSUMZ B14823  KC693406 KC693336 KC693304 KC693270 KC693464 KCE693205 KC693238
LSUMZ B14829  KC693403  KC693337  KC693305 KC693271  KC693465 KC693206  KC693239
Charagua, Santa Cruz, Bolivia (17) 19°48'S, 61°50' W MLHS LSUMZ B18743  KC693404 KC693340 KC693308 KC693274 KC693468 KCE693209  KC693242

LSUMZ B19108  KC693407 KC693343 KC693311 KC693277  KC693471  KC693212  KC693245
LSUMZ B18745  KC693405 KC693341  KC693309 KC693275 KC693469  KC693210  KC693243
LSUMZ B18751  KC693402 - - - - - -

Yavi, Jujuy, Argentina (18) 22°8'S, 65°28' W BS SCLO55 KC693359 - - - - - -
SCLO56 KC693360 - - - - - -
SCLO60 KC693361 - - - - - -
SCLO62 KC693362 - - - - - R
SCLO63 KC693363 KC693322 KC693288  KC693254  KC693448  KC693189  KC693223
SCLO66 KC693364 - - - - - -
Tres Cruces, Jujuy, Argentina (19) 22°55"S,65°35' W BS SCLO71 KC693365 - - - - - -
SCLO72 KC693366 - - - - - -
SCLO74 KC693367 - - - - - -
Iguazy, Misiones, Argentina (20) 25°34'S,54°34° W BS SCL505 KC69339% - - - - - -
Taff del Valle, Tucuman, Argentina (21) 26°52' S, 65°41"W  BS SCLO84 KC693368 - KC693289  KC693255 KC693449 KC693190  KC693224
SCLO85 KC693369 - - - - - -
SCLO86 KC693370 - - - - - -
SCLO88 KC693371  KC693323  KC693290 KC693256  KC693450  KC693191  KC693225
Rd. 42 30 k. SE of El Pefion, Catamarca, Argentina (22) 26°4"S, 67°11" W MLHS SCLO09 KC693372 - - - - - -
Quimilf, Santiago del Estero, Argentina (23) 27°38' S, 62°25' W BS SCLO37 KC693353 - - - - - -
SCLO38 KC693354  KC693321 KC693287  KC693253  KC693447  KC693188  KC693222
SCLO44 KC693355 - - - - - -
SCLO48 KC693356 - - - - - -
SCLO51 KC693357 - - - - - -
SCLO52 KC693358 - - - - - -
Reserva Natural del Iberd, Corrientes, Argentina (24) 28°06' S, 57°06' W BS SCL507 KC693397 KC693334 KC693302 KC693268  KC693462  KC693203  KC693236
SCL508 KC693398 - - - - - -
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Table 1 Details of the Zonotrichia capensis samples used in this study (Continued)

Mendoza, Mendoza, Argentina (25)

La Reja, Buenos Aires, Argentina (26)

Magdalena, Buenos Aires, Argentina (27)

Isla de Mocha, Arauco, Chile (28)
Puerto Montt, Llanquihue, Chile (29)
Golfo de Ancud, Palena, Chile (30)
Trelew, Chubut, Argentina (31)

Guer Aike, Santa Cruz, Argentina (32)

Ushuaia, Tierra del Fuego, Argentina (33)

32°53'S, 68°49' W

34°40 §', 58°50" W

35°04' S, 57°32' W

38023'S, 73052' W
41°28'S, 72°56' W
43°37"S, 71°48' W
43°15'S, 65°18' W

51°39'S, 69°35' W

54°48'S, 68°18' W

BS

BS

BS

SS
SS
SS
BS

BS

BS

SCL502
SCL503
SCL504
SCLO10
SCL110
SCL111
SCL112
SCL113
SCL115
AMNH 387432
AMNH 182548
AMNH 182547
SCLO89
SCLO90
SCLO91
SCL092
SCLO93
SCLO9%%6
SCL097
SCLO98
SCLO99
SCL100
SCL101
SCL102
SCL103
SCL104
SCL105
SCL106
SCL107
SCL108

KC693399
KC693400
KC693401
KC693390
KC693391
KC693392
KC693393
KC693394
KC693395
KC693433
KC693435
KC693434
KC693373
KC693374
KC693375
KC693376
KC693377
KC693378
KC693379
KC693380
KC693381
KC693382
KC693383
KC693384
KC693385
KC693386
KC693387
KC693388
KC693389

KC693332
KC693333

KC693328
KC693329
KC693330
KC693331

KC693324
KC693325
KC693326
KC693327

KC693300
KC693301

KC693296
KC693297
KC693298
KC693299

KC693291

KC693292
KC693293
KC693294
KC693295

KC693266
KC693267

KC693262
KC693263
KC693264
KC693265

KC693257

KC693258
KC693259
KC693260
KC693261

KC693460
KC693461

KC693456
KC693457
KC693458
KC693459

KC693451

KC693452
KC693453
KC693454
KC693455

KC693201
KC693202

KC693197
KC693198
KC693199
KC693200

KC693192

KC693193
KC693194
KC693195
KC693196

KC693235
KC693231
KC693232
KC693233
KC693234

KC693226

KC693227
KC693228
KC693229
KC693230

Localities from which Zonotrichia capensis individuals were sampled; genes amplified for each sample are indicated together with their GenBank accession numbers.

#Zonotrichia albicollis and Zonotrichia querula individuals obtained from Kingston, Ontario, Canada and Churchill, Manitoba, Canada, respectively were used as outgroups. GenBank accession Numbers: KC693445;
KC693351; KC693319; KC693285; KC693479; KC693220; KC693251; KC693446; KC693352; KC693320; KC693286; KC693221; KC693252

PMLHS, pectoral muscle, liver or heart sample; BS, blood sample; SS, museum study skin.
“AMNH, American Museum of Natural History; LSUMZ, Louisiana State University Museum of Zoology.
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for each primer pair (Additional file 1), 30 s at 72°C;
final extension at 72°C for 5 min. ND2, 16 S and MELK
were amplified following PCR conditions outlined for
CR, with the annealing temperatures and MgCl, con-
centrations specified in the Additional file 1. COI ampli-
fication was conducted following Kerr et al. [37], while
PCRs for CHD1Z and Fib5 followed Campagna et al.
[38]. The small CR fragments amplified from toe pad
DNA were electrophoresed in 0.5% agarose gels, and
then excised and purified by the “freeze-squeeze”
method [39]. The remaining PCR products were visual-
ized on a 2% agarose gel using ethidium bromide and
purified with the QIAquick PCR purification Kit
(Qiagen). Most PCR products were sequenced bi-
directionally (see Additional file 1 for primers) at the
London Regional Genomics Centre (London, Canada).
All sequences were deposited in Genbank; see Table 1.

We thus created two datasets: one of 92 ingroup plus
2 outgroup individuals with 396 bp of exclusively CR
DNA sequences (hereafter, the CR dataset), and another
of 32 ingroup plus 2 outgroup individuals with ~4200 bp
of seven molecular markers (hereafter, the multilocus
dataset). Note that 92 of 93 individuals are represented in
the CR dataset (see Table 1 for details).

Genetic variability and phylogenetic analyses

Sequences were aligned using BIOEDIT v7.0.9.0 [40],
and those coding for proteins were visually inspected to
confirm lack of indels and translated into amino acids to
verify absence of stop codons. The phylogeographic
structure within Z. capensis was initially assessed by
constructing a median-joining network using the CR
dataset and NETWORK v4.6.1.0 (Fluxus Technology, Lt.).
Differentiation between lineages identified by the network
analysis was measured using @gr values calculated with
ARLEQUIN v3.5.1.2 [41] and average p distances using
MEGA v5 [42]. For the former, significance was tested
through 1000 random permutations. We also performed a
Bayesian phylogenetic analysis using MRBAYES v3.1.2
[43,44], with the model of nucleotide evolution
selected using JMODELTEST v0.1.1 [45]. The model
that best fit the CR dataset according to the Akaike
information criterion was the TrN [46] with a propor-
tion of invariable sites (+I). The Bayesian analyses
included two simultaneous runs of seven million
generations using four incrementally heated Markov
chains and default priors for all parameters. The
analysis was run until the standard deviation of split
frequencies was < 0.01, indicating convergence. We
sampled trees every 100 generations, and after discar-
ding the first 25% as burn-in, a 50% majority rule
consensus was obtained from the combined posterior
tree distribution of both runs. The potential scale reduction
factor [47] was close to one for all parameters, implying
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that we had adequately sampled the posterior distribu-
tions. Finally, we used the ‘cumulative’ and ‘compare’
functions implemented in the software AWTY [48] to
confirm that runs had reached stationarity.

We also conducted Bayesian phylogenetic analyses (as
above) with the multilocus dataset using different
partitioning strategies. We created trees using all seven
loci, using mtDNA data alone (CR + COI + 16 S +
ND2), using exclusively nuDNA (CHD1Z + MELK +
Fib5), and using the DNA sequence data for each
marker separately. For the seven-locus, concatenated
dataset, we used two different strategies: 1. Specifying
separate partitions for each gene and allowing them to
vary independently according to the model of evolution
selected by JMODELTEST. 2. Using a two-partition
scheme, one for mitochondrial and one for nuclear loci,
again each with separate models of evolution. Partitions
were unlinked, estimating parameters separately while
producing a posterior tree distribution from which a
50% majority rule consensus was obtained. To explore
how different phylogenetic approaches might impact
tree topology, we also performed Maximum Parsimony
(MP) analyses using TNT v1.1 [49]. Heuristic searches
consisted of 1000 random addition sequences with the
TBR branch-swapping algorithm (retaining 100 trees per
replication). A strict consensus was obtained from all
resulting equally parsimonious trees. We assessed node
robustness by performing 1000 standard bootstrap
pseudoreplicates [50], each consisting of 100 random
addition sequences followed by TBR (saving ten trees
per pseudoreplicate).

Estimations of diversification times

We estimated node ages using time to most recent com-
mon ancestor (TMRCA) with the Bayesian software
BEAULti/BEAST v1.6.1 [51]. We calculated TMRCAs in
absolute time using ND2 data with an approximate sub-
stitution rate consistent with the widely used clock cali-
bration of =2% divergence per million years [52,53]
(estimated for cytochrome b in birds). In a study on Ha-
waiian Honeycreepers, Lerner ef. al. [54] estimated sub-
stitution rates for various genes, including cytochrome b
and ND2, finding an average mitochondrial divergence
rate of 1.8% per million years. Cytochrome b was found
to diverge approximately 2.8% per million years, while
estimations for ND2 were nearly double: 5.8% diver-
gence per million years. Given that divergence rates
could also differ between ND2 and cytochrome & in Z
capensis, as well as varying among lineages [55], we used
a range of divergence values (1, 2, and 5% per million
years) to analyze the sensitivity of time estimates to vari-
ations in clock calibrations. Analyses were run for 100
million generations using the nucleotide substitution
models selected with JMODELTEST (GTR + I + G [56]).
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We used a relaxed uncorrelated lognormal clock and
carried out calculations twice, once assuming constant
population size and again using exponential growth.
Because similar TMRCA estimates were obtained
regardless of prior specified we only report the former.
TRACER v1.5 [57] was used to assess convergence in
parameter estimates by verifying that trends were not
observed in traces of parameter values and that effective
sample sizes exceeded 200.

Population expansion tests and estimations of migration
We combined mitochondrial and nuclear data to explore
the demographic history of Z. capensis. Mitochondrial
data were derived either from the 92 CR sequences
(396 bp) in the CR dataset or from the four mitochondrial
loci from the 32 individuals in the multilocus dataset. In
the latter case the four loci were concatenated (totaling
~2700 bp) as they are physically linked in the mitochon-
drial genome. We inferred nuclear haplotypes for each
locus (CHD1Z, MELK or Fib5) with DNASP v5.10 [58],
using the data in subsequent analyses only if all sites had
assignment probabilities > 0.95. The three nuclear loci
tested negative for recombination (p > 0.05) using the Phi
test [59] implemented in SPLITSTREE v4 [60].

We tested for population demographic expansions or
contractions by performing Fu's Fs test [61] using
ARLEQUIN and by calculating the exponential growth
parameter ¢ with LAMARC v2.1.8 [62]. Both Fu’s Fs test
and the population growth parameter g were calculated
independently for lineages A, B and C. Fu’s Fs test was
conducted separately for the CR dataset, the combined
mitochondrial data, and for inferred haplotypes from
each of the CHD1Z, MELK and Fib5 datasets. Signifi-
cance was assessed using 1000 simulated replicates and
departures from neutrality were interpreted as consistent
with population growth. The exponential population
growth parameter g was calculated twice by placing either
the CR dataset or the combined mitochondrial data and
the inferred haplotypes from the three nuclear loci in four
independent partitions. We ran LAMARC in maximum
likelihood mode with the Felsenstein 84 [63] and GTR
mutation models for nuclear and mitochondrial loci,
respectively. Two simultaneous searches were conducted
differing by 10% in the relative amount of heating incor-
porated. Each search consisted of two replicates of 20 ini-
tial and 5 final chains, saving 2000 and 10000 genealogies
respectively in intervals of 20 generations.

Finally, we estimated migration since lineages A, B and C
split using the isolation with migration model implemented
in the program IMa2 [64]. We used a three-population
model; the relationship between lineages followed the
topology shown in Figure 2. The program was run using
the CR dataset and inferred haplotypes from the three nu-
clear loci and applying the HKY model [65] for each locus.
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Figure 2 Phylogenetic affinities of the three main Z. capensis
lineages inferred using multilocus data. Bayesian 50% majority
rule consensus tree with posterior probabilities indicating node
support derived using =4.2 kbp from the multilocus dataset. Each of
the seven molecular markers was placed in a separate partition.
Posterior probabilities below 0.90 were omitted for simplicity.

Lineages A, B and C coincide with clades in the tree.

We also estimated effective population sizes and splitting
times, and simplified the model by estimating one migra-
tion rate parameter per population pair. Runs in M mode
showed adequate mixing with 100 chains, the geo-
metric heating model, and a burn-in period of 250
000 generations. IMa2 was run four times with diffe-
rent random seeds until at least ~ 190 000 genealogies
were saved. Joint-posterior density estimations of model
parameters were obtained in L mode.

Results

Phylogeographic structure

The 92 individuals in the CR dataset contained 44
distinct haplotypes, differing at 1-13 sites (p distances from
0.25 to 3.28%). Average sequence divergence (p distances)
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between Z. capensis haplotypes and those of the two
outgroups, Z. albicollis and Z. querula, was 6.61 + 0.48%
and 6.94 + 0.45%, respectively. The median-joining network
analysis (Figure 1B) identified three lineages (hereafter
referred to as A, B and C) comprising haplotypes separated
by at least two mutational steps. Pairwise p distance and
@gt between these three groups ranged from 1.48 to 2.51%
and 0.66 to 0.74, respectively (Figure 1B). Lineage A
includes haplotypes from northwestern South America
(western Bolivia, Peru, Ecuador, Colombia and northern
Venezuela), the Dominican Republic and Central America,
including Chiapas, Mexico. Lineage B includes haplotypes
from the Dominican Republic, Roraima (Venezuela), Santa
Cruz (Bolivia), northwestern and central Argentina,
Corrientes (Argentina), Chile and Patagonia (Argentina).
Lineage C includes haplotypes from northeastern
Argentina and eastern Brazil. Note that two localities
show admixture of two lineages: haplotypes from A and B
were found in the Dominican Republic (site 3, coded in
orange in Figure 1A) and haplotypes from B and C were
found in Corrientes, Argentina (site 24, coded in grey).

Figure 1C shows the Bayesian phylogeny from the CR
dataset, where all Z. capensis individuals comprise a
well-supported clade relative to congeneric outgroup
taxa (posterior probability of 1.00). Among the three lin-
eages identified by the network analysis, C was the only
one that corresponded to a highly supported Bayesian
clade (posterior probability of 0.99). Individuals from
lineage B were embedded in a polytomy with clade C,
while individuals from lineage A formed a polytomy that
also included the clade composed of all haplotypes from
lineages B and C (Figure 1C).

To improve resolution, we carried out analyses on the
multilocus dataset (individuals marked with asterisks in
Figure 1B and Figure 1C). The Bayesian phylogeny
obtained by treating our seven loci in this dataset as
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separate partitions (Figure 2) is well resolved and most
nodes are highly supported. The three lineages indentified
in the network analysis correspond to clades in this tree,
although support for clade A was low (posterior probabil-
ity of 0.73). The topology shown in Figure 2 suggests clade
A is sister to a clade comprising clades B and C. This ana-
lysis also found two subclades within clade B, one exclu-
sive to Patagonia (Argentina) and the other deriving from
central and northwestern Argentina and Santa Cruz
(Bolivia). Alternative analyses suggest that this topology is
robust, but mostly reflects information contained within
the mitochondrial data (see below). Neither the Bayesian
analysis that considered the mitochondrial and nuclear
markers as separate partitions, nor the tree generated
using maximum parsimony (Additional file 2) have
strongly supported nodes contradicting those in Figure 2.
Trees from the Bayesian analysis of mitochondrial data
(placing each gene in a separate partition) and maximum
parsimony of mitochondrial data resemble that of Figure 2,
while trees derived solely from nuclear data were com-
pletely unstructured (Additional file 2; see Additional file
3 for individual gene trees), probably because of incom-
plete lineage sorting. Although we did not find fixed
differences between lineages in the nuclear markers,
there were significant haplotype frequency differences
between lineage A and B (CHD1Z: Fsy = 0.056; MELK:
Fsr = 0.141; Fib5: Fgr = 0.120).

Demographic history

Lineage B was the only one showing strong evidence of
population expansion consistently across the markers
surveyed. With the exception of Fib5, the remaining loci
each displayed negative and statistically significant Fu’s
Fs values (Table 2). Moreover, the exponential growth
parameter g was positive and statistically significant
when calculated combining the CR dataset with the

Table 2 Tests for demographic expansions or contractions in the three Zonotrichia capensis lineages

A B C

F p Fs p Fs p
CR dataset -3.15 (25) 0.046 —25.23 (55) <0.001 -3.77 (12) 0.006
Combined mitochondrial -1.68(11) 0.150 -5.74 (16) 0.003 —148 (5) 0.096
CHD1Z —2.68 (20) 0.006 -1.79 (28) 0.036 —-0.182 (8) 0.191
MELK 6.61 (18) 0.989 —2.188 (30) 0.043 —0427 (6) 0.180
Fib5 251 (16) 0.900 0.67 (24) 0.640 3.70 (6) 0.950
g (CR dataset + nuDNA) 165.77™ (79) 669.98" (137) -30.74™ (32)
g (combined mitochondrial + NnuDNA) —47.43™ (65) 124.83" (98) 45267™ (25)

Results from Fu’s Fs test and calculations of the exponential growth parameter g for Zonotrichia capensis lineages A, B and C (number of sequences used in each
case indicated in parenthesis). Fu’s Fs test was performed on mitochondrial loci from the CR dataset, the combined mitochondrial data and for inferred
haplotypes from nuclear markers. Statistically significant p values (< 0.05) are indicated in bold. For g, statistical significance was assessed through confidence

intervals (see text for details).
*99% confidence interval does not include 0.
ns, not statistically significant (95% confidence interval includes 0).
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nuclear markers, providing further evidence of popula-
tion growth. The signals of demographic expansions or
contractions in lineages A and C were weak, with mark-
edly smaller Fu’s Fs absolute values which were generally
not statistically significant, and estimations of g with
95% confidence intervals that overlap zero (Table 2).
The events that generated the three clades most likely
occurred during the Pleistocene (ca. 0.01 to 2.6 million
years ago). The deepest split, the node that separates
clade A from B and C in Figure 2, has a mean TMRCA
of 1.45 million years assuming 2% divergence per million
years (Table 3). If the limits of the 95% high posterior
density intervals are considered, the former splitting
time overlaps with that separating clades B and C. More-
over, if we consider alternative “slow” (1% divergence
per million years) or “fast” (5% divergence per million
years) molecular clock calibrations, these estimates also
overlap with the split within clade B (Figure 2, Table 3).
These results imply that the major cladogenic events in
Z. capensis occurred close in time, an assertion that is
also suggested by the short internode distances in
Figure 2 and the extensive overlap in the posterior prob-
ability curves from splitting times estimated using IMa2
(Additional file 4). Finally, estimates of migration be-
tween pairs of lineages had 95% high posterior density
intervals that overlapped with zero (Additional file 4).

Discussion

Our analyses of sequence data from samples obtained
across the range of Z. capensis revealed three major line-
ages within the species: a Middle American and north-
western South American lineage that also includes the
Dominican Republic (A); a lineage encompassing the
Dominican Republic, Roraima (Venezuela) and a large
swath from La Paz (Bolivia) south to Tierra del Fuego,
Argentina (B); and a lineage spanning the eastern
portion of the species range (C: eastern Argentina and
Brazil). Phylogenetic analyses suggest that clade A is
sister to the other lineages. The events that gave rise to
these lineages most likely occurred during the Pleistocene
and were near-coincident in time. Demographic analyses
implied no gene flow among lineages during their diversi-
fication; hence localities with individuals from more than
one lineage in the Dominican Republic and Corrientes
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(Argentina) may represent areas of repeated colonization
or of secondary contact (Figure 1) and should be the focus
of future studies with more in depth sampling. Finally, the
most widely distributed lineage shows the strongest signal
of population expansion. It is unlikely that the three Z.
capensis lineages that span the majority of South America
are panmictic and there is evidence of shallow phylo-
geographic structure within A and B (Figure 2), although
different ways of analyzing the data do not always recover
clades within these lineages (see Additional files 2 and 3).
IMa2 assumes lack of population structure within line-
ages; thus we must be careful to not over-interpret our
demographic results. While Strasburg and Rieseberg [66]
found the algorithms employed by IMa2 are robust to
violations of the assumption of panmixia, future studies
with finer geographic resolution should seek to validate
our current findings. Below we discuss these results in the
context of our motivating questions.

Phylogeographic patterns
The deepest split within the species is between lineage A
(Middle and northwestern South America) and all other
South American samples (B and C). This pattern is con-
sonant with previous findings in other Neotropical avian
taxa (e.g., [67-69]), and has been generally interpreted as
the product of vicariant events on widespread ancestral
populations mediated by the uplift of the Andes Moun-
tains. Since splits between Z. capensis lineages date
roughly to the Pleistocene, when Andean uplift was es-
sentially complete [12], and given that the species mostly
inhabits open country, which in tropical latitudes is re-
stricted to higher elevations [18,70], this explanation
seems implausible. Alternatively, Quaternary climatic
processes have also deeply influenced speciation in Neo-
tropical taxa (e.g., [17,71]), particularly through climate
changes related to glacial cycles and their effects on spe-
cies distributions. Thus Pleistocene glaciations may have
helped isolate and shape Z. capensis lineages. The pat-
tern could also reflect a history of geographical isolation
and colonization of South America largely consistent
with Chapman’s model [18] - see below.

It is possible that the genus originated in North
America with subsequent differentiation of the four north-
ern species and a southward expansion of the Z. capensis

Table 3 Estimations of timing of splitting events between Zonotrichia capensis lineages

Mean “fast” clock (5%) Low 95% HPD (2%)

Mean (2%)

High 95% HPD (2%) Mean “slow” clock (1%)

ABC (32) 0.58 0.70
BC (21) 034 040
B (16) 0.15 0.15

145 2.38 2.88
0.86 142 1.71
0.37 0.64 0.74

TMRCA and 95% confidence intervals (in units of millions of years) for three different nodes in the tree shown in Figure 2. Values were estimated using BEAST and
ND2 sequences with a 2% per million year divergence rate [52] (in bold). Sample sizes are in parenthesis after each node. The mean values obtained using
alternative calibrations of 1 and 5% per million years (“slow” and “fast” clocks, respectively) are also reported.
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ancestor that led to the genealogical patterns evident in the
species. We note that the divergence between our two
outgroup taxa (~1.8% p distance in CR between Z. albicollis
and Z. querula) is comparable to that among Z. capensis
lineages, implying a similar timeframe for diversification
between north-temperate Zonotrichia species and lineages
within the single Neotropical species. Other studies of
lower latitude taxa have shown greater neutral genetic di-
vergence and stronger phylogeographic structure than
their temperate counterparts (e.g., [4,5,72]).

Our results are consistent with two South American
colonization hypotheses that assume a Central America
origin for Z. capensis and range expansion facilitated by
open country. One is consistent with Chapman’s [18] in-
ference: An eastward colonization along the margins of
the Caribbean and Atlantic Ocean and then southwards
into Brazil, together with a colonization southwards
along the Andean chain towards Argentina. The second
involves this same southward Andean colonization,
followed by an eastward expansion into low elevation
open habitats south of the southern limits of the
Amazonian forest systems of the eastern Andean slopes
(currently at ~27°S). This expansion would have contin-
ued southward into Patagonia and northeast along the
“arid diagonal” of the chaco-cerrado-caatinga into
eastern Argentina, Paraguay and sub-Amazonian Brazil.
Additional sampling from areas that are poorly represented
in or entirely absent from our study (e.g., southern
Venezuela, Guyana, French Guyana, Suriname, Brazil,
northern Chile and western Bolivia) will allow greater
insight into how this species colonized South America.

In earlier work, Lougheed and Handford [31] and
Lougheed et al. [32] speculated that the genetic differenti-
ation uncovered in northwestern Andean Argentina repre-
sented a secondary contact of two postulated primary
clades representing the major routes of colonization of
South America proposed by Chapman [18]. Our results
show the differentiation that they found is encompassed
within lineage B and perhaps a consequence of more re-
cent distributional changes.

Finally, while we found substantial phylogeographic
structure within Z. capensis, lineages in this species are
not as divergent as those in other Neotropical species
with comparable ranges (e.g., Troglodytes aedon: [73];
Cistothorus platensis: M. Robbins, University of Kansas
Biodiversity Institute, personal communication). Recent
mitochondrial surveys including many Neotropical bird
taxa have also shown deep divergence within species
with much smaller geographic ranges (e.g., see [37,74]).
While future studies should clarify if these deeply
diverged lineages in other taxa are reproductively iso-
lated cryptic species, we suspect that the ecological flexi-
bility of the rufous-collared sparrow, which is known to
rapidly colonize newly-opened terrain, explains the lack
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of deep divergence over a wide range spanning over 70
degrees of latitude.

Lack of correlation between phylogeographic structure
and phenotypic variation

Mitochondrial phylogeographic structure does not reflect
the subspecific taxonomy of the rufous-collared sparrow
[75], consonant with the findings of other studies in many
taxa (e.g., [76-78]). Moreover, Handford [24] showed that
Z. capensis subspecies cannot be recovered even from
morphometric data. This is perhaps not surprising given
that phenotypic responses to local environmental circum-
stances may occur rapidly regardless of historical frag-
mentation of populations (e.g., [79,80]). Furthermore, no
studies have yet been published quantifying heritability in
the traits that differentiate Z. capensis subspecies.

The three diagnosed lineages each include several sub-
species (at least seven in lineage A, eight in lineage B, and
three in lineage C — see [18] for a detailed discussion on
subspecies distributions). Moreover, some subspecies are
represented in two lineages (e.g., Z. c. antillarum in lineages
A and B; Z. c. hypoleuca in lineages B and C). However one
well-supported subclade within lineage B included indivi-
duals exclusively from the southernmost portion of the
species range, all belonging to subspecies Z. c. australis
(Figure 2). This suggests that glaciations in Patagonia might
have played a role in isolating southern populations of
rufous-collared sparrows, which subsequently expanded
their range after the ice retreated, a scenario that has been
documented in other southern Neotropical taxa [7].

Our findings provide no clear evidence that variation in
vocal behavior in Z capensis relates to major phylo-
geographic divisions. Habitat-related geographical vocal
dialects are documented from Argentina in both lineages B
and C, with high levels of song differentiation found
throughout northwestern and central Argentina, which is
occupied by the single lineage B, and similarly differentiated
songs in grassland and wooded environments in the parts
of Argentina occupied by lineage C (Entre Rios, Corrientes,
Buenos Aires). Habitat-related dialects extend at least into
northern Patagonia, with distinctive songs in the Patago-
nian shrub-steppe and Andean woodlands, but we must
acknowledge that vocal behaviour is poorly understood
south of ~40°S in the range occupied by highly migratory
populations. Similarly, though we know that there is
geographical variation in song in Brazil [81], it is too poorly
known for generalizations to be made.

On the other hand, substantial individual repertoires
and an evident lack of habitat-related dialects are known
only from regions encompassed by lineage A (Costa
Rica; Ecuador). This raises the possibility that dialects
are the derived condition (and that the systems of song
dialects that exist in some of the North American
Zonotrichia are independently derived). In any event,
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the association between vegetation structure and vocal
dialects must have developed recently and dialect distribu-
tion is not reflected in the genealogical relationships that
we have reported on here. Thus, we provisionally con-
clude that vocal variation in rufous-collared sparrows is
probably a manifestation of cultural evolution that overlies
deeper intraspecific genealogical patterns.

Conclusions

These results suggest a Pleistocene history of colonization
and population expansion in the rufous-collared sparrow
from a probable Central American origin. Diversification
occurred during the Pleistocene, a time of substantial glo-
bal climate fluctuations and variation in the extent and
distribution of different vegetation types. The impressive
diversity in morphology, migratory habit, and vocal system
of this species most probably represents recent responses
to local conditions and overlies deeper patterns of lineage
diversity that are products of geographical isolation and
the colonization history of South America. That subspe-
cies are not reflected in major phylogeographic divisions is
not surprising in light of patterns exhibited by many other
taxa, but this does not preclude the possibility that local
adaptation may modulate the evolutionary trajectories of
this species.

The deepest split in the species is between a Central
American/tropical Andean clade and all other popula-
tions to the south and east. Phylogeographic patterns are
consistent with two colonization scenarios of South
America following either: a) a colonization southwards
along the Andes and an eastward and then southward
colonization along the margins of the Caribbean and
Atlantic Ocean, or b) this same southward Andean
colonization, followed by an eastward and then southward
colonizations into Patagonia and towards the northeast
into eastern Argentina, Paraguay and Brazil. To enhance
insights into the processes that influenced the evolu-
tionary history of this widespread passerine, future
investigations should increase geographic sampling in-
tensity in the northeastern portion of the species
range and evaluate alternative scenarios through a
more rigorous hypothesis-testing framework (such as
Approximate Bayesian computation).
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Page 13 of 15

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SCL, PLT and PH conceived the ideas; SCL, LC, JAD and DAL collected the
data; SCL and LC analyzed the data and led the writing, with help from the
other authors. All authors read and approved the final manuscript.

Authors’ information

Collectively, we are interested in understanding the origins of biodiversity
from the level of local adaptation and limiting gene flow in single
landscapes, through the genetics of entire species’ ranges, to understanding
the causes of diversification of entire clades. Our research spans the
Americas, with particular emphasis on phylogeography and phylogenetics of
select anurans, squamates and birds.

Acknowledgements

We especially thank Ricardo and Susana Ojeda, Patricia Capllonch, Rubén,
Daniel and Isaac Barquez, and Catalina and Gunilla Olrog for their support
during our Argentine fieldwork. We gratefully acknowledge the help and
hospitality of Gabriel and Andrea Punta, Gonzalo Herrera, Hector and Marcela
Cruz, Coyi Barrientos, Carlos Fermani and Nora Loekemeyer. Additional
samples were kindly provided by George Barrowclough (AMNH), Elderedge
Bermingham (STRI), and Donna Dittmann and Van Remsen (LSUMZ). For our
fieldwork in Argentina we thank all provincial and national authorities for
permission to collect and export/import samples including those from the
province of Tucuman (Claudia Pérez-Miranda), Catamarca (Enrique Fra), and
Jujuy (Rene Cabezas). Daria Koscinski, Hanifah Dostmohamed and Nadine
Sharpe provided laboratory expertise. Funding was provided by NSERC
Discovery grants to Lougheed and Handford, by CONICET, ANPCyT and
IDRC, and by a National Geographic Society Research Grant to Chris Moyes.
We thank two anonymous reviewers for their helpful comments on previous
versions of this manuscript.

Author details

'Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada.
“Divisién de Ornitologia, Museo Argentino de Ciencias Naturales “Bernardino
Rivadavia”, Avenida Angel Gallardo 470, Ciudad de Buenos Aires, Buenos
Aires C1405DJR, Argentina. JInstituto de Investigacion en Recursos
Cinegéticos, Ronda de Toledo s/n, Cuidad Real 13005, Spain. “Department of
Biology, University of Western Ontario, London, ON N6A 5B7, Canada.

Received: 28 November 2012 Accepted: 26 February 2013
Published: 1 March 2013

References

1. Hewitt GM: Speciation, hybrid zones and phylogeography - or seeing
genes in space and time. Mol £col 2001, 10:537-549.

2. Adams SM, Lindmeier JB, Duvernell DD: Microsatellite analysis of the
phylogeography, Pleistocene history and secondary contact hypotheses
for the killifish, Fundulus heteroclitus. Mol Ecol 2006, 15:1109-1123.

3. Beheregaray LB: Twenty years of phylogeography: the state of the field and
challenges for the Southern Hemisphere. Mol Ecol 2008, 17:3754-3774.

4. Mild B, Girman DJ, Kimura M, Smith TB: Genetic evidence for the effect of
a postglacial population expansion on the phylogeography of a North
American songbird. P Roy Soc B-Biol Sci 2000, 267:1033-1040.

5. Lessa EP, Cook JA, Patton JL: Genetic footprints of demographic
expansion in North America, but not Amazonia, during the late
Quaternary. P Natl Acad Sci USA 2003, 100:10331-10334.

6. Zemlak TS, Habit EM, Walde SJ, Battini MA, Adams ED, Ruzzante DE: Across
the southern Andes on fin: glacial refugia, drainage reversals and a
secondary contact zone revealed by the phylogeographical signal of
Galaxias platei in Patagonia. Mol Ecol 2008, 17:5049-5061.

7. Lessa EP, D'Elia G, Pardinas UFJ: Genetic footprints of late Quaternary
climate change in the diversity of Patagonian-Fueguian rodents.

Mol Ecol 2010, 19:3031-3037.

8. Bush MB, Colinvaux PA, Wiemann MC, Piperno DR, Liu K: Late Pleistocene
temperature depression and vegetation change in Ecuadorian
Amazonia. Quaternary Res 1990, 34:330-345.


http://www.biomedcentral.com/content/supplementary/1471-2148-13-58-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-13-58-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-13-58-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-13-58-S4.pdf

Lougheed et al. BMC Evolutionary Biology 2013, 13:58
http://www.biomedcentral.com/1471-2148/13/58

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Sanaiotti TM, Martinelli LA, Victoria RL, Trumbore SE, Camargo PB: Past
vegetational changes in Amazon savannas determined using carbon
isotopes of soil organic matter. Biotropica 2002, 34:2-16.

Ledru MP, Rousseau DD, Cruz FW, Riccomini C, Karmann |, Martin L:
Paleoclimate changes during the last 100,000 yr from a record in the
Brasilian Atlantic rainforest region and interhemispheric comparison.
Quaternary Res 2005, 64:444-450.

Ramos VA: Plate tectonic setting of the Andean cordillera. Episodes 1999,
22:183-190.

Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh
P, Mulch A: Rise of the Andes. Science 2008, 320:1304-1307.

Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J,
Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C,
Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli
A: Amazonia through time: Andean uplift, climate change, landscape
evolution, and biodiversity. Science 2011, 330:927-931.

Haffer J: Alternative models of vertebrate speciation in Amazonia: an
overview. Biodivers Conserv 1997, 6:451-476.

Roy MS, da Silva JM C, Arctander P, Garcia-Moreno J, Fjeldsa J: The
speciation of South American and African birds in montane regions. In
Avian Molecular Evolution and Systematics. Edited by Mindell DP. San Diego:
Academic Press; 1997:325-343.

Hubert N, Renno J-F: Historical biogeography of South American
freshwater fishes. J Biogeogr 2006, 33:1414-1436.

Brumfield RT: Inferring the origins of lowland Neotropical birds. Auk 2012,
129:367-376.

Chapman FM: The post-glacial history of Zonotrichia capensis. B Am Mus
Nat Hist 1940, 77:381-438.

Zink RM: Patterns of genic and morphologic variation among sparrows
in the genera Zonotrichia, Melospiza, Junco, and Passerella. Auk 1982,
99:632-649.

Zink RM, Dittmann DL, Rootes WL: Mitochondrial DNA variation and the
phylogeny of Zonotrichia. Auk 1991, 108:578-584.

Zink RM, Blackwell RC: Patterns of allozyme, mitochondrial DNA, and
morphometric variation in four sparrow genera. Auk 1996, 113:59-67.
Barker FK, Burns KJ, Klicka J, Lanyon SM, Lovette |): Going to extremes:
contrasting rates of diversification in a recent radiation of new world
passerine birds. Syst Biol 2013, 62:298-320.

Handford P: Continental patterns of morphological variation in a South
American sparrow. Evolution 1983, 37:920-930.

Handford P: Morphological relationships among subspecies of the
rufous-collared sparrow, Zonotrichia capensis. Can J Zoolog 1985,
63:2383-2388.

Fotheringham JR: Differences in singing behavior between rufous-
collared sparrows in Costa Rica and Northwestern Argentina. Condor
1995, 97:821-826.

Nottebohm F: The song of the chingolo, Zonotrichia capensis, in
Argentina. Condor 1969, 71:299-315.

Handford P: Trill rate dialects in the rufous-collared sparrow, Zonotrichia
capensis. Can J Zoolog 1988, 66:2658-2670.

Handford P: Latin accents: song dialects of a South American sparrow.
Birding 2005, 37:510-519.

Handford P, Lougheed SC: Variation in duration and frequency characters
in the song of the rufous-collared sparrow, Zonotrichia capensis, with
respect to habitat, trill dialects and body size. Condor 1991, 93:644-658.
Lijtmaer DA, Tubaro PL: A reversed pattern of association between song
dialects and habitat in the rufous-collared sparrow. Condor 2007,
109:658-667.

Lougheed SC, Handford P: Vocal dialects and the structure of geographic
variation in morphological and allozymic frequency characters in the
rufous-collared sparrow, Zonotrichia capensis. Evolution 1992, 46:1443-1456.
Lougheed SC, Handford P, Baker AJ: Mitochondrial DNA hyperdiversity
and vocal dialects in a subspecies transition of the rufous-collared
sparrow. Condor 1993, 95:889-895.

Cheviron ZA, Brumfield RT: Migration-selection balance and local
adaptation of mitochondrial haplotypes in rufous-collared sparrows
(Zonotrichia capensis) along an elevational gradient. £volution 2009,
63:1593-1605.

Cheviron ZA, Whitehead A, Brumfield RT: Transcriptomic variation and
plasticity in rufous-collared sparrows (Zonotrichia capensis) along an
elevational gradient. Mol Ecol 2008, 17:4556-4569.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

Page 14 of 15

Baker AJ, Marshall HD: Mitochondrial control region sequences as tools
for understanding evolution. In Avian molecular evolution and systematics.
Edited by Mindell DP. San Diego: Academic press; 1997:51-82.

Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual.
2nd edition. New York: Cold Spring Harbor Laboratory Press; 1989.

Kerr KC, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL: Probing
evolutionary patterns in Neotropical birds through DNA barcodes.

PLoS One 2009, 4:e4379.

Campagna L, Benites P, Lougheed SC, Lijtmaer DA, Di Giacomo AS, Eaton
MD, Tubaro PL: Rapid phenotypic evolution during incipient speciation in
a continental avian radiation. P Roy Soc B-Biol Sci 2011, 279:1847-1856.
Thuring RWJ, Sanders JPM, Borst P: A freeze-squeeze method for
recovering long DNA from agarose gels. Anal Biochem 1975, 66:213-220.
Hall TA: BIOEDIT: a user-friendly biological sequence alignment editor and
analysis program for Windows 95 / 98 / NT. Nucl Acid S 1999, 41:95-98.
Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs
to perform population genetics analyses under Linux and Windows.
Mol Ecol Resour 2010, 10:564-567.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGAS5:
molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol Biol Evol
2011, 28:2731-2739.

Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic
trees. Bioinformatics 2001, 17:754-755.

Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 2003, 19:1572-1574.

Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008,
25:1253-1256.

Tamura K, Nei M: Estimation of the number of nucleotide substitutions in
the control region of mitochondrial DNA in humans and chimpanzees.
Mol Biol Evol 1993, 10:512-526.

Gelman A, Rubin DB: Inference form iterative simulation using multiple
sequences. Stat Sci 1992, 7:457-472.

Wilgenbusch JC, Warren DL, Swofford DL: AWTY: a system for graphical
exploration of MCMC convergence in Bayesian phylogenetic inference.
http./ceb.csitfsu.edu/awty.

Goloboff P, Farris S, Nixon K: TNT: tree analysis using New technology.
Program and documentation, available from the authors, and at.
http://www.zmuc.dk/public/phylogeny.

Felsenstein J: Confidence limits on phylogenies: an approach using the
bootstrap. Evolution 1985, 39:783-791.

Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol Biol 2007, 7:214.

Weir JT, Schiuter D: Ice sheets promote speciation in boreal birds.

P Roy Soc B-Biol Sci 2004, 271:1881-1887.

Weir JT, Schluter D: Calibrating the avian molecular clock. Mo/ Ecol 2008,
17:2321-2328.

Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC: Multilocus
resolution of phylogeny and timescale in the extant adaptive radiation
of Hawaiian honeycreepers. Curr Biol 2011, 21:1838-1844.

Lovette IJ: Mitochondrial dating and mixed-support for the “2% rule” in
birds. Auk 2004, 121:1-6.

Tavaré S: Some probabilistic and statistical problems in the analysis of
DNA sequences. In Some mathematical questions in biology - DNA sequence
analysis. Edited by Miura RM. Providence, Rhode Island: American
Mathematical Society; 1986:57-86.

Rambaut A, Drummond AJ: Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer.
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of
DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.

Bruen TC, Philippe H, Bryant D: A simple and robust statistical test for
detecting the presence of recombination. Genetics 2006, 172:2665-2681.
Huson DH, Bryant D: Application of phylogenetic networks in
evolutionary studies. Mol Biol Evol 2006, 23:254-267.

Fu YX: Statistical tests of neutrality of mutations against population growth,
hitchhiking and background selection. Genetics 1997, 147:915-925.

Kuhner MK: LAMARC 2.0: maximum likelihood and Bayesian estimation
of population parameters. Bioinformatics 2006, 22:768-770.

Felsenstein J: Distance methods for inferring phylogenies: a justification.
Evolution 1984, 38:16-24.

Hey J: Isolation with migration models for more than two populations.
Mol Biol Evol 2010, 27:905-920.


http://ceb.csit.fsu.edu/awty
http://www.zmuc.dk/public/phylogeny
http://beast.bio.ed.ac.uk/Tracer

Lougheed et al. BMC Evolutionary Biology 2013, 13:58 Page 15 of 15
http://www.biomedcentral.com/1471-2148/13/58

65. Hasegawa M, Kishino H, Yano TA: Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.

66. Strasburg JL, Rieseberg LH: How robust are “isolation with migration”
analyses to violations of the IM model? A simulation study. Mol Biol Evol
2010, 27:297-310.

67. Cracraft J, Prum RO: Patterns and processes of diversification: speciation
and historical congruence in some Neotropical birds. Evolution 1988,
42:603-620.

68.  Brumfield RT, Capparella AP: Historical diversification of birds in
northwestern South America: a molecular perspective on the role of
vicariant events. Evolution 1996, 50:1607-1624.

69. Sedano RE, Burns KJ: Are the northern Andes a species pump for
Neotropical birds? Phylogenetics and biogeography of a clade of
Neotropical tanagers (Aves: Thraupini). J Biogeogr 2010, 37:325-343.

70. Bond J: Origin of the bird fauna of the West Indies. The Wilson Bulletin
1948, 60:207-229.

71. Rull V: Speciation timing and Neotropical biodiversity: the Tertiary-
Quaternary debate in the light of molecular phylogenetic evidence.
Mol Ecol 2009, 17:2722-2729.

72. Chek AA, Austin JD, Lougheed SC: Why is there a tropical-temperate
disparity in the genetic diversity and taxonomy of species? Evol Ecol Res
2003, 5:69-77.

73.  Campagna L, St Clair JJH, Lougheed SC, Woods RW, Imberti S, Tubaro PL:
Divergence between passerine populations from the Malvinas - Falkland
islands and their continental counterparts: a comparative
phylogeographical study. Biol J Linn Soc 2012, 106:865-879.

74.  Tavares ES, Gongalves P, Miyaki CY, Baker AJ: DNA barcode detects high
genetic structure within Neotropical bird species. PLoS One 2011, 6:228543.

75. American Ornithologists Union (AOU): Check-list of north American birds.
7th edition. Washington, D.C: American Ornithologists’ Union; 1998.

76.  Zink RM, Barrowclough GF, Atwood JL, Blackwell-Rago RC: Genetics,
taxonomy and conservation of the threatened California gnatcatcher.
Conser Biol 2000, 14:1394-1405.

77. Scribner KT, Talbot SL, Pearce JM, Pierson BJ, Bollinger KS, Derksen DV:
Phylogeography of Canada geese (Branta canadensis) in western North
America. Auk 2003, 120:889-907.

78.  Zink RM: The role of subspecies obscuring avian biological diversity and
misleading conservation policy. P Roy Soc B-Biol Sci 2004, 271:561-564.

79. Legge JT, Roush R, DeSalle R, Vogler AP, May B: Genetic criteria for
establishing evolutionarily significant units in Cryan’s buckmoth.
Conserv Biol 1996, 10:85-98.

80. McKay BD, Zink RM: The causes of mitochondrial DNA gene tree
paraphyly in birds. Mol Phylogenet Evol 2010, 54:647-650.

81.  Avelino MF, Vielliard JME: Comparative analysis of the song of the rufous-
collared sparrow Zonotrichia capensis (Emberizidae) between Campinas
and Botucatu, Séo Paulo state, Brazil. An Acad Bras Cienc 2004, 76:345-349.

doi:10.1186/1471-2148-13-58

Cite this article as: Lougheed et al: Continental phylogeography of an
ecologically and morphologically diverse Neotropical songbird,
Zonotrichia capensis. BVIC Evolutionary Biology 2013 13:58.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Specimen information, DNA extraction and sequencing
	Genetic variability and phylogenetic analyses
	Estimations of diversification times
	Population expansion tests and estimations of migration

	Results
	Phylogeographic structure
	Demographic history

	Discussion
	Phylogeographic patterns
	Lack of correlation between phylogeographic structure and phenotypic variation

	Conclusions
	Additional files
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

