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two cell compartments and in two clades
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Abstract

Background: The enzyme phosphoenolpyruvate carboxykinase, PEPCK, occurs in its guanosine-nucleotide-using
form in animals and a few prokaryotes. We study its natural genetic variation in Colias (Lepidoptera, Pieridae). PEPCK
offers a route, alternative to pyruvate kinase, for carbon skeletons to move between cytosolic glycolysis and
mitochondrial Krebs cycle reactions.

Results: PEPCK is expressed in both cytosol and mitochondrion, but differently in diverse animal clades. In
vertebrates and independently in Drosophila, compartment-specific paralogous genes occur. In a contrasting
expression strategy, compartment-specific PEPCKs of Colias and of the silkmoth, Bombyx, differ only in their first, 50,
exons; these are alternatively spliced onto a common series of following exons. In two Colias species from distinct
clades, PEPCK sequence is highly variable at nonsynonymous and synonymous sites, mainly in its common exons.
Three major amino acid polymorphisms, Gly 335 ↔ Ser, Asp 503 ↔ Glu, and Ile 629 ↔ Val occur in both species,
and in the first two cases are similar in frequency between species. Homology-based structural modelling shows
that the variants can alter hydrogen bonding, salt bridging, or van der Waals interactions of amino acid side chains,
locally or at one another’s sites which are distant in PEPCK’s structure, and thus may affect its enzyme function. We
ask, using coalescent simulations, if these polymorphisms’ cross-species similarities are compatible with neutral
evolution by genetic drift, but find the probability of this null hypothesis is 0.001 ≤ P ≤ 0.006 under differing
scenarios.

Conclusion: Our results make the null hypothesis of neutrality of these PEPCK polymorphisms quite unlikely, but
support an alternative hypothesis that they are maintained by natural selection in parallel in the two species. This
alternative can now be justifiably tested further via studies of PEPCK genotypes’ effects on function, organismal
performance, and fitness. This case emphasizes the importance, for evolutionary insight, of studying gene-specific
mechanisms affected by natural genetic variation as an essential complement to surveys of such variation.

Keywords: Amino acid polymorphism, Coalescent simulation, Glycolysis, Intramolecular bond variation, Neutral null
hypothesis, Parallel evolution, Phosphoenolpyruvate carboxykinase, Selection hypothesis, Splice variation
Background
Phosphoenolpyruvate carboxykinase, PEPCK, converts
phosphoenolpyruvate (PEP) plus nucleotide diphosphate
and carbon dioxide to and from oxaloacetic acid (OAA)
plus nucleotide triphosphate, in multiple metabolic con-
texts among the domains of life. Its guanosine-nucleotide-
using form (EC 4.1.1.32; for reaction see Figure 1), while
present in some Bacteria and Archaea, occurs mainly in
Animalia and in both cytosol and mitochondrial matrix.
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Its production of PEP from OAA begins gluconeogenesis
or glycerol synthesis from Krebs cycle metabolites, or
through them from dietary amino acids or lipids [1]. Its
production of OAA from PEP may ″replenish″ Krebs
cycle metabolites, or play a role in reaction paths which
produce moderate ATP yields during chronic anoxia in
some invertebrates [2]. In mice, its overexpression in ske-
letal muscle yields striking extensions of exercise capacity,
lifespan, and reproduction [3].
We have studied natural genetic variation in enzymes of

energy metabolism, using Colias (Lepidoptera, Pieridae) as
a test system for evolutionary functional genomics [4,5].
While surveying such variation across all enzyme-coding
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Reaction catalyzed by PEPCK. Abbreviations: PEP, phosphoenolpyruvate; GDP and GTP, guanosine di- and tri-phosphate; CO2, carbon
dioxide; OAA, oxaloacetate.
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genes of glycolysis and its links to other processes, sepa-
rate study of PEPCK was prompted by finding 3 high-
frequency amino acid polymorphisms at the same PEPCK
codons in two Colias species from distinct clades. We first
clarify the basis of dual cell compartment expression of
PEPCK in Colias vs. other animals. We next study PEPCK’s
natural variation in the two Colias species, especially the
high-frequency amino acid variants shared between species.
We locate these variants in PEPCK’s structure and explore
their possible effects on structure-function relations. With
coalescent simulations, we test a population-genetic null
hypothesis of genetic drift as cause of this variation, the
alternative cause being natural selection.

Methods
Animals and basic molecular biology
PEPCK cDNA was made by reverse-transcription (with
Invitrogen MMLV enzyme) of mRNA extracted from
fat body (preserved in Ambion RNAlater) of 18 Colias
eurytheme (randomly sampled near Tracy, California, ele-
vation 25 m) and 18 Colias meadii (randomly sampled
from Cottonwood Pass, Colorado, elevation 3780 m).
Using ButterflyBase [6], we compared PEPCK sequences
from Bombyx mori (BMP026541_1) and Heliconius erato
(HEP05212_1) to design consensus primers for initial PCR
amplification (using Invitrogen HiFi Platinum Taq and
Stratagene Robo-cyclers) of a central sequence fragment
of Colias PEPCK cDNA. Primers matching this fragment
were designed, using Oligo 6 software (Molecular Biology
Insights, Inc.), first to amplify the gene’s 30 end with an
antisense primer matching the cDNA polyA tail (GEN22
(15)-A3end: [4,5]), and then, using the Ambion RLM-
RACE kit, to amplify the 50end (unexpectedly complex, as
discussed below). Colias-specific primers were then
designed (Additional file 1) to amplify and sequence the
whole gene from 50 to 30 untranslated regions (UTRs). Nu-
cleic acids were purified with Qiagen kits and a Qiacube
processing robot. Sequences were read in sense and anti-
sense directions with ABI BigDye 3.1 reagents and an ABI
377 sequencer.
Data processing and bioinformatics
Colias PEPCK sequences were cross-checked and edited
using BioEdit [7]. DnaSP 5.1 [8] was used to estimate
haplotype compositions from individuals’ heterozygous
PEPCK sequences using the PHASE algorithm [9,10],
and to tabulate diverse evolutionary-genetic statistics
from these sequences; previously written filter programs
[5] were used to organize DnaSP analysis of linkage dis-
equilibrium. Sequences of Bombyx mori ’s PEPCK were
retrieved from expressed sequence tag libraries in Butter-
flyBase [6] and from assembled genomic DNA in SilkDB
2.0 [11], using search tools of each site. Drosophila
sequences were drawn from FlyBase [12], and vertebrate
and prokaryotic sequences from GenBank [13].
All sequences were evaluated for cell compartment

specificity using the TargetP server [14]. This server’s
elaborate algorithm assesses mitochondrial targeting of
proteins, as contrasted to properties of proteins retained
by default in the cytosol, on the basis of characteristics
of their N-terminal amino acid sequences: a) richness in
basic (Arg, Lys) and hydroxylated (Ser, Thr) amino acids;
b) absence of acidic amino acids (Asp, Glu); c) certain
secondary structure features [14].
Sequences were aligned with the ClustalW algorithm

as implemented in BioEdit. Additional file 2 lists acces-
sion numbers of all sequences, including those from
Colias as submitted to GenBank. Phylogenetic relation-
ships among sequences were evaluated with PHYML
and PHYLIP software [15,16]. Colias sequences were
matched to the best available structural templates, for
homology-based structural modelling, by the 3D-Jury
metaserver [17]. Template structure files were drawn
from the Protein Data Bank [18]. Homology-based cal-
culation of Colias PEPCK structures using these tem-
plates was done with MODELLER 9.8 [19]; in each case,
5 replicates were run and the best-scoring one (i.e. with
lowest value of the molpdf criterion [19]) was used.
These models were visualized, and their structural fea-
tures measured, with DeepView (Swiss-PDB Viewer)
4.0.1 [20].
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Results
Basic genomic structure of PEPCK in Colias, other insects,
and vertebrates
During primer set development for the autosomal Colias
PEPCK gene, we found two sequence forms, differing in
their 50 ends and 50-untranslated regions (UTRs). Inspec-
tion of Bombyx mori0s PEPCK sequences [6] clarified
this: PEPCK sequence BMP026541_1, closely matching
one of the Colias forms, is annotated to cytosolic expres-
sion, and BMP000643_1, close in sequence to the other
Colias form, to mitochondrial expression. The TargetP
server confirmed this compartment targeting for the two
forms in each species. In each taxon, these sequences
differ only in their 50 ends, being mRNA splice variants
whose alternative 50 exons (each associated with a
unique 50 untranslated region, in which unique 50 ampli-
fying primers are located) are attached to common
exons 2–13. (That the sequences following the 50 exon
are the same, and not parts of fully distinct paralogs,
was shown in Colias by the fact that in every case, in
amplifying from the 50 untranslated region, regardless of
which of the two 50 exons was amplified, all varying base
positions following the 50 exon, whether heterozygous or
variant-homozygous in an individual, were the same
between the alternately amplified sequences.) But in
Drosophila melanogaster, distinct, though closely linked,
paralogous genes code for PEPCK of cytosol and of
mitochondria (12; Figure 2 shows these insects0 PEPCK
50 ends). Pairs of compartment-specific paralogs also
occur in diverse vertebrates [13].
A truncated expressed-sequence-tag sequence from

Bombyx, similar but not identical to BMP026541_1,
occurs in ButterflyBase as BMP026778_1. Consultation
of the Bombyx genome assembly [11] clarified this. The
whole gene corresponding to BMP026541_1, including
the cytosolic exon 1, occupies one locus, punctuated by
12 introns, on the minus strand of scaffold nscaf2789.
Roughly 20 kb beyond this on the minus strand begins
the second locus BMP026778_1, which is interrupted by
base dropouts causing frameshifts in comparison to
Figure 2 50 ends of insect PEPCK amino acid sequences. Abbreviations
eurytheme; cyto, cytosol form; mito, mitochondrial form. Arrow marks the s
exons 2–13 in Bombyx and Colias. The numbering of this figure does not m
pair and amino acid positions used in the rest of the paper: e.g., the splice
numbering.
BMP026541_1; if the first of these is ″repaired″ by subs-
titution from BMP026541_1, more PEPCK-like sequence
is recovered to about codon 235, after which more frame-
shifting results in premature stop codons. Thus this locus
behaves like an incipient, but not yet fully silenced,
pseudogene. We've found no expressed mRNA sequence
evidence of any such locus in Colias.
Bombyx’ mitochondrial exon 1 of BMP000643_1, with

its distinctive 50 -untranslated region, is again on the
minus strand, 15 kb beyond BMP026778_1. It is not
now annotated in SilkDB, so we give its specific location
here: nscaf 2789: exon bp 1207835 – 1207867, 50-UTR
to ~ 1207900.

Evolutionary history of PEPCK
What is the evolutionary history of the alternate PEPCK
expression strategies – paralogs vs. splice variants? One
study has examined the phylogenetic relationships of the
GTP-using (E.C. 4.1.1.32) and ATP-using (E.C. 4.1.1.49)
PEPCK enzymes [21]. It focused on distribution of these
co-substrate types among domains Bacteria, Archaea,
and Eukarya, but did not address the eukaryotic cell-
compartment-specific forms. Therefore we reconstructed,
using protein sequences, the phylogeny of vertebrate and
insect GTP-using PEPCKs, with prokaryotic GTP-using
PEPCKs as outgroups, drawing sequences from sources
listed above. Figure 3 shows that vertebrate mitochondrial
and cytosolic PEPCKs form two compartment-specific
paralogous branches whose most basal members on each
branch are fish sequences. This apparent duplication-
and-divergence event may have been part of the whole-
genome duplications found at the base of vertebrate
evolution [22]. The Drosophila paralogs form a coherent
sub-branch of an Insecta branch, originated independently
of the vertebrate paralogs, evolving the duplication-
and-divergence genomic mechanism for compartment-
specificity in parallel. The apparent Bombyx pseudogene
(bmocyto2; BMP026778_1) groups closely with the
main Bombyx cytosolic gene; it is unrelated to the
Drosophila paralog pair. The exon-splicing mechanism
: dme, Drosophila melanogaster; bmo, Bombyx mori; ceu, Colias
plice break between the alternative 50 exons 1 and the common block
atch the standard numbering (based on the mito form) of Colias base
break occurs between amino acids 11 and 12 in the standard



Figure 3 Maximum likelihood reconstruction of PEPCK gene phylogeny. Numbers at edges are bootstrap support values from 1000 iterations
using a JTT amino acid substitution model in PHYML [15]. Sequences were bootstrapped and iterations compiled with SEQBOOT and CONSENSE from
the PHYLIP package [16]. Abbreviations are those of Figure 2 plus: mycobact, Mycobacterium sp. (Eubacteria); sulfolob, Sulfolobus sp. (Archaea); danio,
Danio rerio (zebrafish); salm, Salmo salar (salmon); gallus, Gallus gallus (chicken); bost, Bos taurus (cattle); mus, Mus domesticus (housemouse); hsap,
Homo sapiens (human).
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of the two Lepidoptera, Bombyx and Colias, is a distinct
alternative to whole gene paralogy for compartment-
specificity of PEPCK.

Overall sequence variation of Colias PEPCK
The cDNA of Colias cytosolic PEPCK includes 1929 bp,
643 codons, and the mitochondrial form includes
1896 bp, 632 codons (omitting the stop in each case).
The length differences lie in the 50 exons of 22 and 11
codons respectively; base pair and amino acid sites for
the gene as a whole are numbered beginning with the
mitochondrial 50 exon. Cytosol form sequences add 11
codons/33 base pairs (bp) to numbers beyond the end of
the cytosol exon 1. The mitochondrion-targeting exon 1
may be excised once its protein has been imported into
mitochondria, as this happens with other such proteins,
ostensibly to prevent further interaction with the mito-
chondrial membranes [23]. If so, this would affect inter-
pretation of both structural and population-genetic aspects
of mitochondrial PEPCK0s functional evolutionary interac-
tions (see below).
18 C. eurytheme and 18 C. meadii were sequenced for

both 50 exons and the common exons 2–13, and haplo-
type phases were estimated for each species as noted
above. Genetic statistics are tabulated in Table 1 for the
common exons 2–13 and for the two 50 exons. PEPCK is
highly variable at both amino acid and DNA levels: e.g.,
for exons 2–13 of Colias eurytheme, in common
between the compartment forms, overall nucleotide
diversity π = 0.0269, synonymous diversity πss = 0.1054,
and θ = 4Neμ = 0.028 (estimated from the number of
segregating sites S). Both 50 exons are less variable than
exons 2–13. In comparison, Colias eurytheme PGI, one
of the most variable animal genes known (maintained
so by strong natural selection [4]), shows πΣ = 0.0267,
πss = 0.0993, and θ = 0.034 [5], while average values for a
sample of Drosophila melanogaster genes are πΣ = 0.0040,
πss = 0.0135, and θ = 0.0040 [24]. Colias’ PEPCK thus
matches its PGI in level of variability. It also shows simi-
larly high estimates of the minimum number of intragenic
recombination events [25], i.e. 60 and 41 for C. eurytheme
and C. meadii respectively, vs. 58 in the 1668 bp of
C. eurytheme PGI [5].

Patterns of allelic amino acid variation
Each unique PEPCK sequence at either nucleotide or
amino acid level of organization constitutes a distinct
genetic allele at that level. We focus here on amino acid
variation as the possible basis of naturally selected
enzyme properties, thence effects on higher-level pheno-
types and eventually on Darwinian fitness. Figure 4
shows all mitochondrial-form amino acid allelic variants
as inferred by PHASE (above). Nearly all the variation
occurs in those exons, 2–13, which are in common



Table 1 Genetic statistics of Colias PEPCK

Taxon and form n subset bp S #var π k θ min recs

C. eurytheme

Common exons 2-13 36 Σ 1863 220 255 0.0269 50.06 0.028 60

nss 1424 27 28 0.0027 3.80

ss 439 193 227 0.1054 46.25

cyto 50 exon 1 36 Σ 66 3 3 0.0143 0.94 0.011

nss 54 1 1 0.0010 0.06

ss 12 2 2 0.0739 0.89

mito 50 exon 1 36 Σ 33 1 1 0.0154 0.58 0.015

nss 26 1 1 0.0197 0.51

ss 7 0 0 0.0000 0.00

C. meadii

Common exons 2-13 36 Σ 1863 158 173 0.0209 38.89 0.020 41

nss 1424 21 21 0.0020 2.89

ss 439 137 152 0.0821 36.02

cyto 50 exon 1 36 Σ 66 1 1 0.0037 0.25 0.004

nss 54 0 0 0.0000 0.00

ss 12 1 1 0.0021 0.25

mito 50 exon 1 36 Σ 33 0 0

nss 26 0 0

ss 7 0 0

Tabulations done with DnaSP 5.1. Abbreviations: n, total number of alleles sequenced; subset, classes of sites within cDNA; bp, base pairs (per subset); Σ, all
substitution sites; ss, synonymous sites; nss, nonsynonymous sites; S, number of segregating sites; #var, number of variants; π, nucleotide diversity per bp; k,
average difference of nucleotides, pairwise among sequences (per whole gene); θ, 4Neμ, estimated from S, where Ne is effective population size and μ is mutation
rate; min recs, minimum recombinations among sequences, estimated by the four-gamete test [25]; cyto, cytosol; mito, mitochondrial. Mean numbers of pairwise
nucleotide differences between species for whole mito form: all sites 52.50, ss sites 47.49, nss sites 5.02. No sites are fixed for different substitutions between the
two species.
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between the compartment forms. 23 codons have single-
ton amino acid variants in C. eurytheme or C. meadii
while 20 codons have major polymorphism (p2 ≥ 0.05) in
either species (the cytosol 50 exons have only one single-
ton in C. eurytheme, none in C. meadii). These combine
into 28 (of 36) distinct alleles in C. eurytheme and 24
(of 36) distinct alleles in C. meadii.
Three polymorphic codons, 335, 503, and 629, have

p2 ≥ 0.05 in both species: Gly/Ser 335, Asp/Glu 503, and
Ile/Val 629. All these changes are charge-neutral. By
exact binomial test [26], corrected for multiple tests
[27], codon 629 differs significantly in its variant fre-
quencies between species, while codons 335 and 503 do
not (Table 2). These variants combine into 8 allele
classes or allele ″macrostates″ [5], which are identified
by one-letter amino acid codes at each position, e.g. GEI
for Gly Glu Ile). Frequencies of these alleles for the two
species are given in Table 3; their differences mostly fol-
low C. eurytheme’s increase in Ile 629 frequency com-
pared to C. meadii.
We asked if there is intragenic linkage disequilibrium

among codon 335, 503, and 629 variants; as Additional
file 3 shows, there is not. For reasons noted below, we
also tested C. eurytheme for disequilibrium between
these 3 codons and the 50-mitochondrial-exon codon 11
Arg/Lys polymorphism of C. eurytheme, but none was
found (Additional file 3). Indeed, scanning whole cDNA
sequences of each species for linkage disequilibrium with
DnaSP and filters (Methods, above) found only one instance
of disequilbrium between nonsynonymous variants (codons
122 and 220 gave a locally significant Fisher’s exact
test at P = 0.001, but this was not significant by DnaSP’s
Bonferroni criterion for multiple testing) in C. eurytheme,
and no such instances in C. meadii. Absence of disequilib-
ria among amino acid variants fits with the finding above
of extensive intragenic recombination in PEPCK of both
species. Some mainly nearby disequilibria involving syn-
onymous variants are seen, but no interpretation is evident
and we omit these data for the sake of brevity.
On a hypothesis of selective neutrality some variable

sites are expected to be shared between species, given
large θ and thus a number of sites variable in each species
at a time [28]. But on this hypothesis, the vast majority of
those variants are expected to be of very low frequency
and destined to be lost by drift to fixation [29]. A finding
of multiple high-frequency variants shared between



Figure 4 Amino acid sequence variation of Colias PEPCK (as
mitochondrial form). Sequence names are formed from species
abbreviations as in Figure 2, “m” or “f” for specimen sex, specimen
numbers, and “mt1” and “mt2” for alleles inferred from heterozygous
sequences with the PHASE algorithm as discussed in the text. “.”
denotes identity with the first sequence listed. The scale at the top
of the figure counts the variant positions, while the vertically
formatted numbers below it identify the codons‘placement in
PEPCK’s amino acid sequence.
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species at even roughly similar frequencies is unusual
on this hypothesis, and so merits study of its possible
causes – neutrality as null hypothesis, or some form of
natural selection as an alternative. Direct study of the var-
iants’ functional effects, and fitness consequences in the
wild, will be the future and final arbiter of this issue. But
we can even now make more use of present data, by
homology-based structural modelling and by population-
genetic simulation, to gain further insight.

Structural nature and potential impacts of amino acid
sequence variation
We summarize PEPCK’s protein structure in order to
study placement of its polymorphic variants in Colias
for clues to their evolutionary meaning. This is a first
step in assessing neutrality or selection in functional
terms: if molecular modelling shows changes in intramo-
lecular protein bonding by amino acid variants, that may
at least suggest variants’ possible functional effects, while
if no such changes are evident, functional neutrality of
the variants is strongly suggested.
PEPCK is one of a few enzymes of glycolysis and

related processes which are active as monomers, without
oligomeric structure. The best homologous modelling
template available, per 3D-Jury [17], is PEPCK of Rattus:
high-resolution crystal structures exist for two catalytic
conformations of this ([30,31], see Additional file 4 for a
Colias-Rattus alignment). Sequence identity between
Colias and Rattus PEPCKs is 0.61, and their Dayhoff
similarity is 0.77. These values support homology-based
modelling, with accuracy of mid-range crystallographic
resolution [19], to explore variants’ potential structural
effects. We modelled both conformations of each amino
acid polymorph allele for each of three compartment-
specific forms: cytosolic exon 1 plus common exons
2–13, mitochondrial exon 1 plus exons 2–13, and exons
2–13 alone in light of the above-noted likelihood that
mitochondrial exon 1 is excized once mitochondrial
PEPCK has reached its target.
Figures 5a,b show that Colias PEPCK’s tertiary struc-

ture is built up from its secondary structure as an ir-
regular lattice of β-strands. This supports α-helices
which form much of the protein’s surfaces. Ends of these
α- and β-structures are connected by loops. The cata-
lytic center includes a mobile ″lid″ loop which when
open (structure PDB 2qew, Figure 5a) allows substrate/
product binding or release, but closes (structure PDB
2qf2, Figure 5b) over these ligands when they are bound
during catalysis [30-32]. Other kinds of changes accom-
pany this lid movement, e.g.:

� the ″p-loop″, including substrate-binding residues
Cys 304 and Lys 306, moves in the catalytic site with
the lid's movement [30,32];



1.18 0.98 3.00

Table 3 Frequencies of 8 PEPCK allele classes sampled
from two Colias species

C. eurytheme C. meadii

Allele Count Frequency Count Frequency

GDV 3 0.083 0 0.000

GDI 1 0.028 1 0.028

GEV 10 0.278 13 0.361

GEI 6 0.167 1 0.028

SDV 2 0.056 3 0.083

SDI 1 0.028 0 0.000

SEV 3 0.083 14 0.389

SEI 10 0.278 4 0.111

All 36 36

Allele names, based on the 3 shared polymorphic amino acid sites, are
composed of standard one-letter symbols for amino acids segregating at
codons 335, 503, and 629 (see the text).

Table 2 Major PEPCK amino acid variation shared by Colias species

Taxon Codons

335 503 629

n p aa n p aa n p aa

CEU 20 0.56 Gly 7 0.19 Asp 18 0.5 Ile

16 0.44 Ser 29 0.81 Glu 18 0.5 Val

CME 15 0.42 Gly 4 0.11 Asp 6 0.17 Ile

21 0.58 Ser 32 0.89 Glu 30 0.83 Val

x* −

P 0.24 0.33 0.003

CEU, C. eurytheme; CME, C. meadii; n, variant counts; p, variant frequencies; aa, amino acids; x*, test parameter (normal deviate) for Goldstein’s exact binomial test
for frequency difference [26]; P, probability of as much or more difference between samples by chance. Given n = 3 codons to test simultaneously, the corrected
(Dunn-Sidak) minimum significance level α0 = [1 – (1– α)1/n] = 0.017 [27].
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� amino acids 592–610 form an α-helix when the lid
is open, but the helix appears to shorten to 592–609
when the lid is closed (see Figures 5a,b);

� invariant and polymorphic amino acids can change
spatial relations and resulting bond patterns when
the lid is open vs. closed, as seen in Figure 5 and
supplemented by Figure 6.

Figures 5a and b also locate the polymorphic amino
acid sites shared between species, which are illustrated
in more detail in Figures 6, 7, and 8. Each can have dif-
ferent interactions with nearby invariant amino acids,
depending on their own or other polymorph segrega-
tions, on catalytic stage as above, and on different com-
partment forms, e.g.:

� Gly/Ser 335 begins a very short loop connecting two
β-strands, Gly 318 – Asp 334 and Val 338 – Ile 342.
Gly’s ″side chain″ is one immobile proton, while Ser’s
hydroxymethyl side chain is much larger, more polar,
and can hydrogen-bond via its mobile hydroxyl
proton. Either Gly or Ser can hydrogen-bond between
its backbone nitrogen and the side-chain carboxyl of
Asp 334; Ser's hydroxyl can hydrogen-bond with the
carboxyls of either Asp 334 or Asp 336. Bonding
alternatives for Gly/Ser 335, tracking segregation of
Ile/Val 629, are illustrated in Figure 6.

� Asp/Glu 503 is in α-helix Phe 501 – Ser 510. Asp
and Glu differ in length of side chains (1 vs. 2 –
CH2– groups), each ending in a carboxyl group. The
guanidino side chain of nearby Arg 272 can form a
salt bridge with the carboxyl of Asp/Glu 503, or
hydrogen-bond to the backbone carbonyl group of
Glu 503. Arg 506’s guanidino side chain, in the same
α-helix as Asp/Glu 503, can also form a salt bridge
with their carboxyl. These bonding possibilities,
again tracking segregation of Ile/Val 629 but in the ″
lid closed″ configuration of the cytosol form, are
shown in Figure 7.

� Ile/Val 629 is near one end of the 30 α-helix Asn 616
– Gln 630. Their nonpolar side chains, whose
volumes differ by one –CH2– group, make van der
Waals contact with Trp 595, and often Leu 596, in a
different α-helix starting with Lys 592. In
comparison to salt bridges or hydrogen bonds, van
der Waals contacts occur over a wider range of
carbon-carbon distances (hence different values of
contact energy), which may be grouped: contact
2.95 – 4.5 Ǻ, marginal contact 4.5 – 5.2 Ǻ, no
contact > 5.2 Ǻ cf. [33]. Figure 8 shows the absence
or presence of van der Waals contact with Leu 596
for Ile 629 vs. Val 629, with the other polymorphic
sites the same in each case.

Polymorphic variants may alter their nearby bonding
contacts by changes of volume or polarity, as in



Figure 5 Homology-based models of a) “lid-open” and b) “lid-closed” conformations of Colias PEPCK. Models represent the cytosol form
of allele Ser 335 – Glu 503 – Ile 629 (SEI). Ribbon model color code: green, β-strands; yellow, α-helices; red, loops. Space-filling model color code:
red, substrates bound into catalytic center in b); dark blue, mobile lid loop; orange, polymorphic amino acid sites 335, 503, and 629 (standard
numbering) which are shared between species; light blue, invariant amino acid sites Arg 272, Asp 334, Arg 506, and Leu 596. Note changes from
structure a) with lid closure in structure b): separation of side chains of Asp 334 and Ser 335 with loss of hydrogen bond (cf. Figure 6); movement
of Glu 503 to the right, and Arg 272 down, relative to Arg 506, forming 503–506 salt bridge (cf. Figure 7); loss of strong van der Waals contact
between Leu 596 and Ile 629; shortening of the left end of the α-helix containing Leu 596.
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absence/presence of a salt bridge to Arg 506 with the ex-
tension of 503’s side chain between alleles SDI and SEI
(Figures 7a,c). Further, variants’ changes in properties can
propagate their effects across PEPCK0s structure to alter
distant bonding patterns, as, e.g., shown by responses of
Ser 335 (Figures 6b,c) or Asp 503 (Figures 7a,b) bonding
patterns to segregation of Ile/Val 629.
Additional file 5 lists all combinations of the eight

allelic variants’ intramolecular bonding across catalytic
stages and compartment forms. No two alleles display
the same combination of bonds. Some additional sug-
gestive patterns emerge from this file, for example:
Figure 6 Hydrogen bond alternatives for PEPCK polymorphic site Gly/Se
Color codes: polymorphic amino acid yellow, others’ carbon skeletons white w
334 backbone nitrogen and Val 338 carbonyl, Asp 334 carboxyl and Asp 336
nitrogen are invariant, while others change with alleles. a) allele GEV, Gly 335
bonds; c) allele SEI, Ser 335 hydrogen bonding between its backbone nitroge
sidechain hydroxyl and the carboxyls of either Asp 334 or Asp 336. These mo
in case of multiple such bonds per atom.
� among the 48 cases, there is just one of side-chain
polar bonds – hydrogen bond or salt bridge –
occurring at both 335 and 503 sites in the same
allele (GEV, in closed conformation of the full
mitochondrial form), though four would be
expected at random from the frequencies of those
bonds0 occurrences. This might represent a mutual
steric constraint.

� GDV and GDI alleles never show polar bonding
between Asp 503 and Arg 272 in 12 cases, in contrast
to the other 6 alleles which show 13 such bonds
among 36 cases (exact binomial test [26] ×* = 2.44,
r 335. Models are of the cytosol form in lid-open conformation.
ith oxygens red and nitrogens blue. Hydrogen bonds between Asp

backbone nitrogen, and Asp 334 carbonyl and Gly 337 backbone
with no hydrogen bonds; b) allele SEV, Ser 335 with no hydrogen
n and Asp 334’s carboxyl, and also hydrogen bonding between its
dels do not prioritize among alternative potential hydrogen bonds



Figure 7 Salt bridge alternatives for PEPCK polymorphic site Asp/Glu 503. Models are of the cytosol form in lid-closed conformation. Color
codes as for Figure 6. a) allele SDI, no salt bridge; b) allele SDV, salt bridge between the carboxyl of Asp 503 and a nitrogen of the guanidino side
chain of nearby Arg 272; c), allele SEI, salt bridge between Glu 503 carboxyl and the guanidino side chain of Arg 506, near Asp/Glu 503 in the
same α-helix, as shown in coarser scale by Figure 5b. Arg 272's side chain can sometimes hydrogen-bond to the backbone carbonyl of Glu 503
(not shown).
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P < 0.02). This may arise from the combination of Gly
335’s small volume and Asp 503’s short side chain,
keeping Arg 272 and Asp 503 side chains distant from
one another.

� the full mitochondrial form shows the fewest polar
bonds by variants at site 335 (1/16) compared to the
cytosol and the 50-exon-excised mitochondrial forms
(13/32; ×* = 2.47, P < 0.02).

� The cytosol form shows generally greater van der
Waals contact distance between Ile/Val 629 and Leu
596 when closed than when open. This effect is less
pronounced in the full mitochondrial form and is
slightly reversed in the 50-exon-excised
mitochondrial form.

In summary, these results show that each allelic bond
combination may make a different potential energy con-
tribution to the stabilization of the protein’s structure as
a whole, or of one part of the catalytic cycle (i.e. open or
Figure 8 Absence or presence of van der Waals contact with Leu 596
conformation of the 50-exon-excised mitochondrial form. Color codes as fo
makes van der Waals contact with Trp 595's β-CH2 group with some part o
contact between 596 and 629; b) allele SDV, strong van der Waals contact
the indicated atoms in Å units.
closed) vs. the other. By such effects, the alleles might
alter either catalytic function or thermal stability, or
both, of the PEPCK enzyme, and might do so differently
among compartment-specific forms.

Population-genetic testing of hypotheses for shared
PEPCK polymorphisms
The species studied here, Colias eurytheme and C. meadii,
represent in North America the lowland species complex
and an alpine/northern species complex, respectively. They
are fully reproductively isolated [34] and are well separated
in phylogeny [35]. We now test population-genetic expla-
nations for their sharing of 3 major (p2 ≥ 0.05) PEPCK
polymorphisms, at codons 335, 503, and 629, and their
close similarity of allele frequencies at codons 335 and 503
(above). Obvious alternative hypotheses are that some form
of balancing selection maintains these polymorphisms in
the two species, or instead that the variation is selectively
neutral and subject to genetic drift.
for PEPCK polymorphic site Ile/Val 629. Models are of the lid-open
r Figures 6 and 7 except that Leu 596 is orange. Ile/Val 629 always
f its side chain, but the part varies. a) allele SDI, no van der Waals
between 596 and 629. Small yellow numbers are distances between
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We first consider the null hypothesis of selective neu-
trality. We assume the two Colias species diverged from
an ancestral species t generations before the present. A
non-synonymous polymorphism shared by the two species
could result from a single mutation that occurred in the
ancestral species and drifted to the observed frequencies in
the descendant species. The probability of this approaches
zero as t increases. It is also possible that independent
mutations occurred in each descendant species after the
split and drifted to the observed frequencies.
We have used the coalescent simulation program ″ms″

[36] to simulate this scenario with a symmetric two-allele
mutation assumption, so that mutations can occur both in
the ancestral species and in the two descendant species.
The simulations are used to assess the probability, given
the null hypothesis that the variants are drifting neutrally,
that the variants' frequencies in the descendant species
would be as similar as or more similar than their observed
values. We denote the frequency of the second allele at
a particular codon in species A (C. eurytheme) and B
(C. meadii) by p2A and p2B, respectively. From the ms pro-
gram's output we estimate the probability that |p2A - p2B|
is less than or equal to the observed allele frequency differ-
ence. This probability will be a function of time since
species A and B split from their common ancestor, scaled
by effective population size: i.e., t/2Ne. To choose a focal
set of simulation outcomes from which to estimate this
null probability, we set the condition that (p2A + p2B) =
observed value. This allows an unequivocal ordering of
|p2A – p2B| values from maximum to minimum agree-
ment with the null hypothesis, hence minimum to ma-
ximum agreement with its selective alternative.
We estimate overall θss = 4Neμss [Ne = effective popu-

lation size, μss = synonymous (= neutral) mutation rate],
a central parameter for these simulations, based on
values of Sss, the number of segregating synonymous
sites, from glycolytic genes of each Colias species: gly-
ceraldehyde phosphate dehydrogenase GAPdH, phos-
phoglycerate kinase PGK, phosphoglycerate mutase
PGAM (C. eurytheme only), pyruvate kinase PK, and
triose phosphate isomerase TPI. These genes give no evi-
dence of balancing or positive-directional selection on non-
synonymous sites, which if present could bias estimates
by causing neutral variants to "hitchhike" on such sites
(W. Watt et al., unpublished). We correct estimates from
sex-linked TPI for its Ne being a priori ¾ that of the other
genes. The average value among estimates from these genes
is θss = 0.0556. We subdivide this following the common
observation that transition mutants are twice as common
as transversion mutants overall, and the fact that for any
base pair one transition and two transversions are possible
as single mutants. Thus, in our primary simulation analysis,
to test transition polymorphisms we set θss-tr = 0.037, and
for transversion polymorphisms we set θss-tv = 0.009.
We do not use a value of θss from PEPCK itself in our
primary analysis, as on the alternative hypothesis of select-
ive maintenance of the shared polymorphisms, θss might
well be elevated (by hitchhiking) above neutral expecta-
tions, biasing any further calculations. However, a variant
of the neutral null hypothesis would invoke a PEPCK-
specific elevation of the mutation-rate component of θss to
explain high levels of PEPCK variation. We can, therefore,
ask what is the probability of finding |p2A - p2B| less than
or equal to the observed allele frequency difference using
PEPCK θss in simulations, to see if elevated mutation rate
could explain observed results on a neutral assumption.
The overall θss value averaged between C. eurytheme and
C. meadii = 0.0892, so θss-tr = 0.059 and θss-tv = 0.015 for
these additional simulations.
Next, what should be the “choice rule” for which PEPCK

codons to test? Test power would be poor for small total
numbers of the second allele at each codon, so our rule is
that the total counts (n2A + n2B) be ≥ 10 (out of 72, given 36
sequences for each species). Therefore, on one hand, besides
the shared codons of primary interest, we should also test
codon 11 of the mitochondrial PEPCK form, polymorphic
for Arg/Lys. This has (n2A + n2B) = 16, which satisfies the
choice rule although it is polymorphic only in C. eurytheme,
not C. meadii, as this is a possible outcome of the null
hypothesis. But on the other hand, if the mitochondrial-
targeting exon which includes codon 11 is indeed excised
after PEPCK enters the mitochondrion (above), codon
11's polymorphism would not be expressed, would be syn-
onymous in functional terms, and should not be tested with
the other codons. Hence we report our significance testing
both with and without inclusion of codon 11.
We ran 2 × 107 simulations of 36 sampled sequences for

each of two species and for each of the codon polymor-
phisms (codons 11, 335, and 629, transitions, and codon
503, transversion), filtered their output for cases satisfying
[(p2A + p2B) = observed value], and tabulated the fraction
of those with (|p2A – p2B| ≤ observed value) at intervals of
t/2Ne between 0.2 and 2.6 as our null-hypothesis probabi-
lity. Table 4 presents these results.
For comparison to Table 4, we estimate t/2Ne for our

two Colias species via genetic statistics of synonymous
(assumed neutral) variation at Colias GAPdH, hexoki-
nase HK, PGK, PK, PGAM (both species), and TPI. We
define these symbols: πssA or πssB = synonymous nucleo-
tide diversity in species A or B; πssAB = between-species
synonymous nucleotide diversity; πssCA = synonymous
nucleotide diversity in the most recent common ances-
tor (MRCA); μ =mutation rate; Ne = effective popula-
tion size; t = time in generations since MRCA; E(x) =
expected value of x. Next, we assume πssA ~ πssB
~ πssCA. πssA ~ πssB is evident for all 6 genes (W.B. Watt
et al., unpublished); that these values also reflect πssCA
is reasonable, given present patterns of Colias speciation by



Table 4 Probabilities under genetic drift of observed or
greater frequency similarity of PEPCK codon variants
between species

Codons

θss from 5 genes θss from PEPCK

11 335 503 629 335 503 629

t/2Ne

0.2 1.0 0.340 0.221 0.675 0.342 0.234 0.679

0.4 ″ 0.215 0.092 0.431 0.210 0.097 0.430

0.6 ″ 0.144 0.047 0.275 0.142 0.049 0.286

0.8 ″ 0.073 0.032 0.188 0.091 0.036 0.205

1.0 ″ 0.059 0.021 0.138 0.061 0.027 0.154

1.2 ″ 0.043 0.016 0.101 0.043 0.016 0.123

1.4 ″ 0.028 0.013 0.083 0.029 0.014 0.103

1.6 ″ 0.020 0.011 0.070 0.024 0.015 0.092

1.8 ″ 0.018 0.011 0.067 0.019 0.014 0.086

2.0 ″ 0.014 0.008 0.059 0.016 0.014 0.082

2.2 ″ 0.012 0.007 0.056 0.015 0.013 0.083

2.4 " 0.011 0.007 0.052 0.012 0.012 0.077

2.6 " 0.009 0.006 0.052 0.012 0.012 0.072

Outcomes for values of species’ separation time (t) scaled by effective
population size (2Ne), calculated by simulation using “ms” software [36] as
described in the text. Alternative sources of θss for simulations are explained in
the text. P values for codon 11 are the same for both θss sources.
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differentiation of large "semispecies" populations without
evident bottlenecking or founder effects [37,38]. Then:

E πssABð Þ ¼ 2μt þ πssCA

Assuming πssCA ∼ πssA, E(πssAB - πssA) = 2μt

E πssAð Þ ¼ 4Neμ

E πssAB � πssAð Þ=πssA½ �≅2μt=4Neμ ¼ t=2Ne
Table 5 Probabilities, on null hypothesis, of frequency similar

Amino acid polymorph

counts

Codon C. eurytheme C. meadii

11 16 K, 20 R 36 K, 0 R

335 20 G, 16 S 15 G, 21 S

503 7 D, 29 E 4 D, 32 E

629 18 I, 18 V 6 I, 30 V

x2 = − 2Σ ln P:

Probabilities of joint neutrality

including codon 11, df = 8

omitting codon 11, df = 6

Site-specific probabilities estimated by simulation as described in the text and give
Fisher’s method [27] is used to assemble joint probabilities of neutrality. Analysis us
analysis using θss from PEPCK tests whether an elevated mutation rate component
By a parallel argument, E[(πssAB - πssB)/πssB] ≅ 2μt/4Neμ = t/
2Ne.
Estimates of t/2Ne were made for each species in turn at

each of the 6 genes listed above, again correcting estimates
from TPI for its smaller Ne. The final average t/2Ne over
all 6 genes and 2 species is 1.828 ± 0.635 (mean ± standard
error of mean).
Table 5 applies “Fisher’s method” of combining probabil-

ities [27] to the joint analysis of “ms” simulation results for
the three polymorphic codons shared among species, with
and without the mitochondrial codon 11 polymorphism as
discussed above. We used t/2Ne = 1.80 as the closest tabu-
lated value less than our averaged estimate. As Table 5
shows, using θss estimated from the five genes as above, it
is highly unlikely that these polymorphisms would be
as or more similar than observed due to neutral drift,
whether (P = 0.004) or not (P = 0.001) codon 11 is
included in the analysis. This is so even though at codon
629 the polymorphism does differ significantly in fre-
quency between species (above). Using θss from PEPCK it-
self does not change these conclusions importantly:
including codon 11 in the simulations, P = 0.006, while
without codon 11 P = 0.002. Thus an elevated PEPCK-
specific mutation rate combined with neutrality is also
rejected as an explanatory hypothesis for the shared poly-
morphisms. These results support the alternative working
hypothesis that codon polymorphisms 335, 503, and 629
are shared between species because they are maintained
by parallel natural selection in the two species.

Discussion
PEPCK and PGI: different forms of chronically maintained
polymorphism?
We have found that neutral drift is quite unlikely to ex-
plain the sharing of PEPCK’s amino acid polymorphisms
ities at PEPCK polymorphic codons in two Colias species

Probability calculations

(t/2Ne = 1.8)

θss from 5 genes θss from PEPCK

P ln P P ln P

1.0 0.0 1.0 0.0

0.018 −4.02 0.019 −3.96

0.011 −4.51 0.014 −4.29

0.067 −2.70 0.086 −2.45

22.46 21.40

P = 0.004 P = 0.006

P = 0.001 P = 0.002

n in Table 4. t/2Ne estimate (actually 1.828) calculated as described in the text.
ing θss from 5 genes tests basic neutral hypothesis vs. selective alternative;
of θss could allow the null hypothesis to be sustained. See the text for details.
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between Colias species. Thus it makes sense that
PEPCK, as a candidate for selectively maintained chronic
polymorphism among species, shows very high levels of
genetic variability comparable to those of Colias’ PGI
gene, whose amino acid polymorphism is maintained
widely across the genus by strong balancing selection
[4,39,40].
However, the cases differ in detail. PGI polymorphism

is maintained in C. eurytheme and C. meadii without
preserving allelic identity between species. At PGI, a
two-transversion change, Gly 370 GGG→ Ser 370
TCG, was fixed by a selective sweep in the midst of
chronic polymorphism at other codon sites [4], some-
where in phylogeny between more basal C. meadii and
derived C. eurytheme [35]. This increases the eurytheme
PGI genotypes’ thermal stabilities compared to those of
meadii [41], fitting with differences in thermal ecology
between the species. In contrast, PEPCK’s polymorphism
engages the same 3 codons between species although, des-
pite the inter-species similarity of amino acid variant fre-
quencies at codons 335 and 503, the increase of p2
frequency at codon 629 from basal C. meadii to derived
C. eurytheme does change several multicodon allele fre-
quencies (Table 3).
The amino acid polymorphs of PEPCK and PGI have

one structural feature in common: they occur outside their
enzymes' catalytic centers. This is often so for natural
variants that change catalytic (or stability) properties of
enzymes without altering their reaction mechanisms [42].
But other structural aspects of these polymorphisms differ
between the genes. PGI, with interpenetrated dimeric
structure, is completely inactive as a dissociated monomer,
so that no separable allelic properties exist beyond se-
quence differences themselves, and the genotype is the
minimum unit of function and thus of performance or
fitness effects. In contrast, PEPCK is active catalytically as
a single polypeptide, so allelic structural and functional
properties exist distinct from genotypic properties, which
would be linear combinations of allelic ones. If PEPCK’s
genotypes do differ in function, they could, for example,
increase heterozygotes’ breadth of function across the
range of a state variable such as temperature, or differ in
balances of alternate metabolic roles (below).
Molecular evolutionists have long recognized the

prevalence of conservation of sequence via stabilizing
(“purifying”) selection across broad clades. In contrast,
polymorphism is often seen as transient, whether
neutral or selected, with “exceptions” recognized for
recombination-suppressing inversion blocks as in
Drosophila [43], or for frequency-dependent cases
such as host-pathogen “arms races” [44-46] or self-
incompatibility systems [47]. Cases such as PGI, phos-
phoglucomutase [48-50], and now probably PEPCK,
demonstrate that chronic polymorphism may often be
a long-term, stable response to multiple-scale environ-
mental variation, albeit perhaps predisposed by com-
plexities of protein structure (PGI) and/or metabolic
role (PEPCK).
Accordingly, studies of the kinetic properties and

thermal stabilities of the PEPCK variants will be of high
priority, testing the present working hypothesis of se-
lective maintenance for their polymorphism. If func-
tional differences are indeed found, these may well give
clues to the genotype-phenotype-environment interac-
tions responsible for variants’ maintenance – as was the
case for Colias PGI. Field studies to test those interac-
tions will follow in turn.

Compartmentation: functional rôles and expression
strategies among taxa
The concept of “elementary flux modes” expresses how a
group of enzyme steps can be deployed to execute differ-
ent reaction series serving distinct metabolic functions –
e.g., glycolysis vs. gluconeogenesis, or interactions of
glycolysis with the pentose shunt [51]. As seen above, ex-
pression of PEPCK in both cytosol and mitochondria may
support alternative elementary flux modes. Krebs cycle
carbon skeletons derived from dietary or stored lipids or
amino acids could be converted by mitochondrial PEPCK
from OAA to PEP, then moved to the cytoplasm (by the
tricarboxyl transporter [52]) for reverse-glycolytic support
of glycerol synthesis or storage in glycogen [1]. Otherwise,
cytosolic PEPCK could prime the Krebs cycle to match
large transients in glycolytic flux (such as seen in insect
flight), by diverting part of this flux from PEP into OAA,
thence into mitochondria, perhaps via the malate shuttle,
to react with acetyl-CoA derived from pyruvate [2].
How these flux modes might interact with functional

effects of the Colias PEPCK amino acid polymorphisms
remains to be explored. But in addition, the alternative
strategies for PEPCK forms’ expression – splice variants
in higher Lepidoptera vs. full-scale paralogous genes of
independent origin in vertebrates and in Diptera – be-
speak a level of adaptive specialization on a large scale.
They may, for example, reflect deep clade differences in
nutritional mass-energy budget structures. Thus mul-
tiple levels of evolutionary comparison are evoked by
our present findings.
These expression strategy differences have implications

for studies of clade structure itself. It was proposed that
PEPCK sequences might offer good phylogenetic signal
differentiating Mesozoic to early Cenozoic divergences
of insect taxa, mainly in Lepidoptera but with other
insects including Drosophila as outgroups [53]. The part
of PEPCK studied is in the common block of splice-
variant sequences in Bombyx and Colias, a region also
quite similar between the Drosophila paralogs. However,
what are the most appropriate outgroups, and whether
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basal Lepidoptera concur in the strategy of Bombyx and
Colias, or display another expression pattern which may
complicate sorting out sequence homology vs. paralogy,
are open questions which systematists must address if
they study this gene.

PEPCK and the place of specific-gene studies in a time of
genomic variation surveying
High-throughput sequencing and variation surveys using it
have remarkable power to screen genomes for genetic evi-
dence of evolution [54]. But it is increasingly recognized
that “genomics is not enough” to overcome underdetermin-
ation of genetic variation patterns by theoretically possible
alternative processes [55]. (This problem should be clear
even from simple population genetics: e.g., a heterozygote
deficiency compared to Hardy-Weinberg expectation may
arise from inbreeding or a Wahlund effect or underdomi-
nance in fitness, and only study of process can choose the
right explanation.) Genome-wide surveys can at best evoke
working hypotheses to be tested by study of varying
mechanisms in specific gene systems [56-58]. The focus of
our molecular survey on a central, functionally well-known
pathway has allowed augmentation of PEPCK’s genetic sta-
tistics with initial structural and population-genetic studies,
and poises the case for mechanistic testing. This study of
Colias PEPCK, like our earlier work [39], engages diverse
processes which can shape natural variation, from protein-
specific structural predispositions or constraints to epistatic
interaction among nearby enzyme steps, systemic pathway
organization and enzymes’ roles in it, or “global” issues of
energy allocation or network connectedness. Case studies
of natural variation’s effects are a potent source of
insight into partition of evolutionary causes among
these processes.
This does not imply a surrender to evolutionary par-

ticularism. On the contrary, we seek, with Whitehead
[59], “. . .to see the forest by means of the trees”. The
now-obvious universality of the genetic code, the “unity
of biochemistry”, and other unifying concepts of mo-
lecular and physiological evolution were established by
detailed studies of the molecular mechanisms of diverse
organisms – in complement to the distillation of natural
selection and other early evolutionary generalities out of
many specific cases by Darwin and his successors. In
biology, the path to heuristic generalization runs through
the comparative study of specificity [42,60].
This situation underscores the importance of a diffe-

rence of evolutionary paradigms: an approach which is
self-limited to amechanistic pattern analysis in evolution
[61], vs. a view which values patterns as starting points
but, as in our earlier work and as begun here, tests their
causes by mechanistic studies of genotype-phenotype-
environment interactions [62-64] which are the actual
drivers of natural selection [65]. Increasing focus on the
power of the latter paradigm [66,67] will lead to deeper
insight into evolutionary processes and into realistic gen-
eralities concerning them.

Conclusions
We've pursued diverse approaches to PEPCK’s evolution
in two Colias species:

� phylogenetic comparisons of strategy for expression
of cell compartment forms, finding splice variation
in Colias (like Bombyx) as contrasted to paralogous
gene divergence in other clades;

� finding extensive genetic variation at nucleotide and
amino acid levels, including three amino acid
polymorphisms which are shared among species, in
two cases with similar frequencies;

� homology-based modelling, finding that these three
polymorphisms may have both local structural
impacts and longer-range interactions among their
distinct locations in PEPCK structure;

� population genetic simulation, testing the null
hypothesis of neutrality of amino acid polymorphs
and finding it improbable (0.001 ≤ P ≤ 0.006), leaving
the alternative of natural-selective maintenance.

Each by itself gives important clues to causes of the
gene’s extensive variation in context of the splice-based
evolutionary strategy of compartment-specific PEPCK ex-
pression, in contrast to the paralogy seen in Drosophila
and in vertebrates. Together they offer a coherent hypo-
thesis of selectively maintained polymorphism, chronically
persistent among species. This hypothesis is now poised
for further test, clarifying PEPCK’s genotype-phenotype-
environment interaction by studies of PEPCK’s allelic and
genotypic functions, performances, and fitnesses.
Additional files

Additional file 1: Amplifying and sequencing primers for study of
Colias PEPCK. Amplifying primers are of course used for sequencing as
well. ″5end″ and ″3end″ primers are located in 50- and 30-untranslated
regions (UTRs). S and A denote sense and antisense primer directions,
respectively. Overlapping gene subsets amplified for sequencing: MVY-S-
5end and MLH-S2-5end / A1005 (one each per individual); S511C /
A1519C; and S1487 / A3end. Primer numbers denote primers’ 30-terminal
nucleotide positions in the gene.

Additional file 2: Reference sequences of PEPCK (GTP; EC 4.1.1.32)
from diverse taxa and bioinformatics sources.

Additional file 3: Tests of linkage disequilibrium among varying
amino acid sites. Abbreviations: amino acids, standard one-letter codes;
obs, observed; exp, expected; D, linkage disequilibrium = pX1pX4 –
pX2pX3; GYates(1), G statistic with Yates’ correction and 1 degree of
freedom; Fisher’s exact, test of that name [ref]; P, probability of this or
more extreme result by chance alone. a) tests of sites polymorphic in
both Colias species. Site variant frequencies in main text Table 2.
Correction of significance threshold for multiple tests by Dunn-Sidak
method [ref], 6 tests, α0 = 0.0085. No linkage disequilibria are significant.

http://www.biomedcentral.com/content/supplementary/1471-2148-13-9-S1.docx
http://www.biomedcentral.com/content/supplementary/1471-2148-13-9-S2.docx
http://www.biomedcentral.com/content/supplementary/1471-2148-13-9-S3.docx
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b) tests of Arg/Lys 11, polymorphic only in mitochondrial 50 exon of C.
eurytheme, and the other polymorphic sites in that species. Site
frequencies at site 11: Arg 0.556, Lys 0.444; other site frequencies as
above. 3 tests, α0 = 0.017. No linkage disequilibria are significant.

Additional file 4: Alignment of Rattus PEPCK (PDB 2qew) with
Colias PEPCK (allele GDV) as amino acid sequences. Alignment
generated with Modeller [19]. “*” denotes identity of residue between
sequences.

Additional file 5: Absence/presence of polymorphic amino acid
variable bonds with sidechains of nearby invariant amino acids in
Colias PEPCK. Abbreviations: H bond, hydrogen bond; Ǻ, Ǻngstrom unit
of length; vdW, van der Waals; marg, marginal. Alleles identified by one-
letter amino acid codes at each of the three polymorphic sites shared
between species. Invariant amino acid sites bonding to variable amino
acids are identified by number prior to bond length in Ǻ. 272-503 H
bonds engage the backbone carbonyl of amino acid 503. All bond types,
including distance criteria for marginal or absent van der Waals contacts,
are discussed in the main text and many are illustrated in Figures 6, 7, 8.
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