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Abstract

Background: Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible
variations in response to changes in the internal and/or external environment. Several mechanisms enabling the
accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs)
as an important mechanism for producing CGVs, and examined how interactions between GRNs and the
environment influence the number of CGVs by using individual-based simulations.

Results: Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the
number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted
irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic
variation in a population decreased with increasing strength of selection. On the other hand, increasing the number
of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple
environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were
favored in such heterogeneous environments.

Conclusions: Given the findings that the number of CGVs in a population was largely determined by the size (order)
of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and
sustainable sources of evolvability and hence the origins of biological diversity and complexity.

Background
The speed and direction of phenotypic evolution depends
on the quantity and quality of genetic variations [1,2],
and there have been a number of attempts to quantify
such variations [2,3]. Understanding how biological pop-
ulations generate and maintain genetic variations that
contribute to phenotypic variations is one of the most
important issues in evolutionary biology. When pheno-
typic variations are caused by additive genetic varia-
tions, evolutionary responses to directional selection are
expected to be readily halted because the genetic variation
is exhausted in the process of selection [4,5]. However,
several experiments involving artificial selection have
shown that responses to directional selection can continue
for many generations [6,7]. In addition, a population of
organisms sometimes showsmuch larger phenotypic vari-
ance when it encounters novel environments compared
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with that when it lives in normal environments. Stand-
ing genetic variations that do not translate into pheno-
typic differences in the current genetic and environmental
background but that can become visible in a different
background are called cryptic genetic variations (CGVs).
They are considered to contribute to evolution by gener-
ating phenotypic diversity in response to changes in the
environment and genetic background [8-11].
Various mechanisms are involved in preventing genetic

variations frommanifesting as phenotypic variations. The
ability to retain phenotypes and functions despite internal
and external perturbations is called biological robustness
[12]. The molecular chaperone called HSP90 is a well-
known example of such a mechanism [13,14]. It neutral-
izes non-synonymous substitutions on DNA sequences by
assisting the proper folding of polypeptide chains. Defects
in HSP90 or environmental stresses beyond its capacity
cause the emergence of hidden variations. A system that
contributes to evolvability by hiding and releasing CGVs
is referred to as an evolutionary capacitor [13,15,16]. In
addition, many genes other than HSP90 are suggested to
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be involved in stabilizing developmental processes and
regulating CGVs [14,17]. Apart form the mechanisms
involving a molecular chaperone, redundancy and modu-
larity also produce robustness in organisms [18].
One study [19] proposed a model whereby the release of

hidden genetic variation due to a change in the environ-
ment or genetic background can be explained by epistasis
or genotype–environment interactions. In fact, epistatic
interactions were found to be involved in a number
of directional selection experiments [20]. Recent studies
have also revealed how genes interact with each other dur-
ing early development (in multi-cellular organisms) and
in response to environmental stimuli (in microorganisms)
[21-23]. It has recently been suggested that a phenotype
is not only the sum of gene effects but also the prod-
uct of complex interactions among genes [24-26]. Such
networks of gene interactions are termed gene regula-
tory networks (GRNs), and these are considered to play
crucial roles in cell differentiation and specific biological
functions by modulating the expression of different gene
combinations as well as the extent, site, and time of gene
expression [27,28]. Epistasis and genotype–environment
interactions are generic features of GRNs [29,30], and the
biological properties of networks of interacting genes are
thus fundamental factors that produce CGVs [29-33].
To understand the nature and the evolution of CGVs, we

need to explore the structure and mechanisms of GRNs
that accumulate hidden variations and release these vari-
ations upon exposure to novel environmental stimuli. We
also need to determine howGRNs themselves change dur-
ing evolutionary processes and to explore the conditions
under which evolved GRNs can produce CGVs.
CGVs should be accumulated through population

genetic processes, such as mutations, genetic drift, and
natural selection. However, most studies of the robust-
ness of GRNs [34,35] have not explicitly assumed gene
frequency changes in populations, and in particular, no
attempt has been made to examine how CGVs could be
accumulated through GRNs that have evolved via popula-
tion genetic processes even in studies that have discussed
the evolution of robustness due to changing gene frequen-
cies [36,37]. To understand the role of GRNs in cryptic
variation, we need to construct models that include GRNs
that produce different phenotypes when exposed to differ-
ent environmental stimuli and to examine the number of
CGVs acquired through genetic drift and natural selection
for each phenotype produced by these GRNs.
This study aimed to show how interactions between

GRNs and the environment influence the accumulation
and emergence of CGVs. For this purpose, we constructed
an individual-based model comprising individuals with
plastic GRNs, i.e., GRNs that produce different pheno-
types in response to different environmental stimuli. We
then determined which factors, e.g., strength of selection,

the mode of mutations, the size and properties of GRNs,
and the number of environments that the organisms
encountered, affected the number of CGVs.

Methods
Outline of the model
We constructed an individual-based model similar to
that of Tsuda and Kawata [36]. The model population
comprised unicellular haploids that reproduced asexu-
ally. Individuals had their own genomes, and the genome
of an individual determined the structure of that indi-
vidual’s GRN. The GRN represented a single regulatory
module that controlled gene expression in response to
environmental stimuli (Figure 1). The phenotype of each
individual was defined as the combination of steady-
state expression levels of phenotypic genes induced by
upstream regulatory genes. The initial GRN of each
individual had a random structure. We assumed that
the organisms encountered a number of different envi-
ronments within their lifetime before reproduction and
that they plastically produced different phenotypes in
response to different environmental stimuli. Physical and
biological stimuli such as temperature, light, nutrients,
and proteins were assumed to produce trans-elements
that initiated a gene regulatory cascade. The parameters
for GRNs were essentially chosen from values observed in
real organisms as well as from values used in other studies
[23,36,38-40].
The lifetime fitness of an individual was measured as

the geometric mean of the fitness of the phenotypes for

Figure 1 A schematic example of a gene regulatory network
model. The squares and diamonds represent cis- and trans-elements,
respectively. For simplicity of explanation, only a few of the numbers
used for mutual recognition between these elements are shown;
however, each element had a number. Black arrow-headed lines and
gray bar-headed lines represent transcriptional activation and
repression, respectively, and the line weight denotes the intensity of
the interaction. Note that different genes would be core genes in
different environments.
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different environments, and the fitness for each environ-
ment was calculated on the basis of a fitness function
for the phenotype in each environment. The individu-
als reproduced according to their lifetime fitness values.
When an offspring was produced, mutations (cis- and
trans-regulatory mutations) were expected to occur. Gene
duplications and deletions were not assumed in this
model.
A population of individuals was allowed to evolve over

a number of generations until a mutation-drift balance
was achieved. The genetic and phenotypic diversity and
the network characteristics of these were then measured.
In addition, phenotypic diversity was measured when the
individuals were exposed to novel environmental signals,
i.e., signals that differed from those found in the normal
environments during the evolution of the population.

GRNs
The individuals had Vgenome (20 by default) genes, which
together constituted a GRN. Genes at the downstream ter-
minals, which are known as differentiation gene batteries,
have been suggested to represent genes expressed in a cell
that fulfill a specific function [23,41]. We assumed that
four of the Vgenome genes were phenotypic genes that did
not have any control over the other genes and that the
rest were regulatory genes. Phenotypic genes assigned by
us were twice the genes assigned in a previous study [36]
to enable us to apply distinct pressures upon phenotypes
in different environments. Each gene had a cis-regulatory
region and a coding region. The coding region of each reg-
ulatory gene produced a transcription factor when it was
expressed. Each cis-regulatory region was composed of L
(20 by default) cis-elements that were potentially recog-
nized by specific transcription factors or signals induced
by environmental stimuli. Each cis-element and transcrip-
tion factors had a recognition number (acis and atrans, an
integral number between 1 and 200). Each transcription
factor bound to the cis-elements with the corresponding
number and induced the expression of the gene. A default
value of L and a range of recognition numbers were cho-
sen so that the expected number of target genes for a
regulatory gene (L × Vgenome/200) was 2.0 [40]. Each cis-
element and transcription factor also had an interaction
coefficient (vcis and vtrans, a real number between −1 and
1) that affected the strength of the transcriptional acti-
vation/repression. The absolute value of a coefficient was
chosen from uniform random numbers between 0 and 1,
and its sign was positive with the fixed probability

√
A so

that the expected proportion of positive edges in a GRN
became A. We refer to A as the positive edge bias and set
its default value to 0.6 given the observation that 60% of
the edges in the bacteria GRN are positive [39]. In addition
to the transcription factors, which were the products of
the coding regions, we assumed that each environmental

signal was another type of trans-element bound to the
cis-elements, andwe set the interaction coefficient to +1.0.
The strength of transcriptional activation/repression

was calculated from the interaction coefficients of both
the trans- and cis-element values (vcis, vtrans) as well
as from the concentration of the trans-element (ρtrans).
Assuming an additive effect of each element, the intensity
of the regulatory input to gene i, xi, was calculated as the
sum of the effects of all of the trans-elements that bound
to the cis-elements of gene i.

xi =
∑
cis

∑
trans

δcis trans|vcisvtrans|ρtrans (1)

δcis trans =
⎧⎨
⎩
1 (acis = atrans ∩ (vcis ≥ 0 ∩ vtrans ≥ 0))
0 (acis �= atrans)
−1 (acis = atrans ∩ (vcis < 0 ∪ vtrans < 0))

(2)

The transcription efficiency of a gene is known to show
an S-shaped response to the intensity of the input to the
gene and can usually be approximated by the Hill function
with a Hill coefficient ranging from 1 to 4 [39]. We used a
Hill function with a Hill coefficient of 2 as a transcription
function. Thus, the transcription rate βi of the gene i was
given as follows:

βi(xi) =
{

βmax
1+K2

m/x2i
+ βbasal (x > 0)

βbasal (x ≤ 0)
(3)

where βmax and Km are constants that determine the
maximum transcription rate and the threshold against
regulatory input; both were set to 0.1 so that the nor-
malized expression level ranged from 0.0 to 1.0 and was
balanced with the degradation rate α (described below).
We assumed that the genes without transcriptional regu-
lation (x = 0) were also expressed to some extent; there-
fore, the basal transcription rate βbasal was set to 0.001,
which is consistent with the previous study by Tsuda and
Kawata[36]. However, this parameter may not have greatly
affected the phenotypes observed in this study because we
obtained quite similar results when βbasal = 0.
The concentration of a transcript was determined by

the balance of its production and degradation. The rate of
change in the concentration ρi of the transcripts of gene i
was given as follows:

dρi
dt

= βi(xi) − αρi (4)

where α is a constant that determines the degradation rate
of transcripts. This was set to 0.1 because degradation
rates are generally slower than transcription rates [42].
The following recurrence equation, which was obtained as
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an approximation of the previous equation by employing
Euler’s method, was used in the simulation:

ρi,t+dt = ρi,t + dρi
dt

dt (5)

where the time step dt was set to 1.0 in the numerical cal-
culations. We regarded the expression of the gene to be
constant when the variance of the expression level in 32
recent loops was < 10−6. These values were determined
for computational convenience. Individuals received input
signals from environmental stimuli through a signaling
pathway that functioned via trans-elements that acti-
vated the expression of genes with the corresponding
cis-elements. In this model, each trans-element from an
environmental stimulus also had a random trans-number
(atrans, an integral number between 1 and 200, the same as
the transcription factors described above) and a constant
interaction coefficient (vtrans, +1.0).
All the mutations in our simulation were point muta-

tions on cis- or trans-elements, and they could be
categorized into four types of changes: cis-number, cis-
coefficient, trans-number, and trans-coefficient. Each
type had the same mutation rate (μ), and the default value
was set to 10−4 per individual per generation, which was
in balance with the population size N (described below).

Phenotype and fitness
The level of gene expression reached a stable state after the
GRN was activated by environmental signals. The pheno-
type of an individual was defined as the combination of
the stable-state expression levels of four phenotypic genes.
The phenotypic value of an individual was represented by
a point in four-dimensional space with four axes, each of
which denoted the expression level of a phenotypic gene.
The individuals whose expression levels were very low
(< 0.01) or did not reach stable states after 5,000 loops of
interaction were assumed to be dead. These values were
determined for computational convenience.
The fitness of an individual was defined as a decreasing

function of the distance from the optimal expression lev-
els, which differed in different environments. The fitness
of each individual i in environment j was given as follows:

�i,j = exp (− d2i,j
2σ 2 ) (6)

where di,j is the Euclidean distance from the optimum
defined by the environment j and the phenotypic value
of the individual i, and σ is the parameter that deter-
mined the breadth of the foot of the fitness landscape. For
simplicity of explanation, we used S = −ln2σ 2 to repre-
sent the strength of selection and set it to 3.0 by default.
When S was larger, the selection gradient became steeper
and small changes in phenotypic values were subjected to

stronger selective pressure, i.e., the mutations that pro-
duced phenotypic variations were supposed to be purged
more quickly from the population.
An environmental stimulus induced signals as trans-

elements in all the individuals in a population, and the
corresponding optimal value of the phenotypes was given
in the environment. Individuals experienced H (two by
default) different environments during their lifetime. The
lifetime fitness of an individual was given by the geo-
metric mean of the fitness in all of the environments.
We assumed non-overlapping generations and a constant
population size, N (100,000 by default). Therefore, the
default value of N × μ was 40 per generation, which is
consistent with the estimated values for bacteria and yeast
[38]. The expected number of offspring, Wi, of the indi-
vidual i whose lifetime fitness was �i was calculated as
follows:

Wi = N
�i∑N
k �k

(7)

Simulation procedure
A population of individuals with random genomes was
created and allowed to evolve under normal conditions.
The normal conditions consisted of H different environ-
ments, and all the individuals experienced all the H envi-
ronments during their lifetime. Each environment had
different stimuli-inducing signals and corresponding opti-
mal phenotypic values. Individuals could evolve to adapt
to the normal conditions and increase their lifetime fit-
ness over 20,000 generations. When the lifetime fitness of
some individuals in the population exceeded 0.99, a clone
population was created by copying the individual with the
highest fitness. Thus, the new initial population harbored
only the individuals that were well adapted to the nor-
mal conditions. This clone population was then allowed to
evolve under the same normal conditions for 20,000 gen-
erations. The number of standing genetic variations (G)
in the population could reach a stable state during this
period. This was measured as the number of polymor-
phic GRNs in the population, i.e., genetic variations that
caused no changes in gene interactions were not included
in the count. To evaluate the phenotypic diversity of a pop-
ulation, we divided the phenotypic space into grid cells
(Figure 2). The phenotype of each individual could be
placed in one of these cells. The number of cells in which
the phenotypic values of the individuals in the population
were placed was defined as the phenotypic diversity of the
population. At the end of the simulation, the phenotypic
diversity of the population in one of the environments
under normal conditions (Pnormal) was measured. There-
after, the population was subjected to a novel environment
with a novel stimulus and the phenotypic diversity (Pnovel)
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Figure 2 A schematic example of evaluating phenotypic
diversity. For simplicity, a two-dimensional space is shown; however,
the phenotypic space used in our analysis was four-dimensional. The
two axes denote the expression levels of phenotypic genes 1 and 2,
respectively. The phenotype of an individual gives the coordinate of a
point in this space. The space was divided into grid cells. The
phenotypic diversity of a population was defined as the number of
cells in which the individuals in the population were found. The
circles and triangles denote the individuals’ phenotypes in normal
and novel environments, respectively. In this example, the
phenotypic diversity of the population was four in the normal
environment (dark gray cells) and 13 in the novel environment (light
gray cells and some dark gray cells). In this case, the number of cryptic
genetic variations was calculated to be nine (i.e., 13 − 4).

was again measured. If Pnovel was larger than Pnormal,
CGVs were expected to present. The number of CGVs
(Pcryptic) was thus measured as Pnovel − Pnormal.

Analysis of factors affecting the number of cryptic
variations
To determine which factors associated with the GRNs
affected the number of CGVs, the following network prop-
erties were analyzed: network order, network size, density,
average clustering coefficient, number of self-loops, and
degree assortativity. The methods used for calculating
these properties are described in the next section. In
addition, the number of standing genetic variations in a
population (G, previously defined) was also included as a
properties that affected the number of CGVs. These net-
work properties could not be fixed as parameter values
in the simulations because they were randomly varied at
the initial states and were changed by evolution during the
simulation runs. Thus, they varied among the simulations
even with the same parameter values. The properties were

measured as the average values of all the individuals in a
population and 120 replicated populations under the same
parameter set (default parameter set, Table 1) were used
for the analysis. All statistical analyses were performed
using R 2.15.2 software [43]. We used a generalized lin-
ear model (GLM) for which the response and explanatory
variables were the number of CGVs (Pcryptic) and GRN
features, respectively. We extracted the best predictors
with nested model comparisons by calculating the Akaike
Information Criterion (AIC); explanatory variables were
removed and added to the models to determine the set of
predictors that yielded the lowest AIC.
The number of genes (Vgenome), the number of cis-

regulatory elements per gene (L), and positive edge ratio
(A) were set as the initial parameter values given their
effects on network properties such as order, weighted size,
and density. The population size (N), mutation rate (μ),
strength of stabilizing selection (S), and number of envi-
ronments (H) were also set as the initial parameter values.
The effects of each of these properties on the number
of CGVs were examined by modifying them. The values
for these parameters are shown in Table 1. Simulations
were conducted 20 times for each parameter. The num-
ber of standing genetic variations (G), visible phenotypic
variations (Pnormal), and cryptic variations (Pcryptic) was
measured after the simulations (see the previous subsec-
tion for their definitions). We obtained regression coef-
ficients from a GLM in which G, Pnormal, or Pcryptic was
the response variable, and each of the parameters was an
explanatory variable.

Network properties
The structural properties of biological networks are con-
sidered to be responsible for biological processes such as
environmental response and cell differentiation [44,45].
The following network properties were measured using
NetworkX 1.7, a Python language software package [46].

Network order
Gene duplication was not assumed in our model, and
the number of genes that an individual had was deter-
mined by a parameter (Vgenome). However, not all the
genes were responsible for phenotypic expression in our
model because how the genes interacted with each other
depended on the randomly variable cis-regulatory ele-
ments of the genes. Thus, we defined core genes as the
genes in a GRN that were connected to phenotypic genes
and the network order (Vcore) as the number of core genes.

Network size and density
Genes and the regulatory interactions among them were
represented as nodes and edges, respectively. The network
size (E) was defined as the number of edges among the
core genes. Similarly, the weighted size of the network
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Table 1 Range and default parameters used in the simulations

Symbol Variable Min. Max. Default

μ Mutation rate [gene−1 generation−1] 5.0 × 10−5 1.5 × 10−4 1.0 × 10−4

N Population size 50,000 150,000 100,000

Vgenome Number of genes 10 30 20

L Number of cis-regulatory elements 10 30 20

A Positive edge bias 0.3 0.6 0.9

H Number of environments 1 6 2

S Strength of selection 1.0 6.0 3.0

(Eweighted) was defined as the sum of the weight of all the
edges where the weight of an edge was the strength of the
regulatory interaction. The density of a network denotes
the ratio of the number of existing edges to the maximum
possible number of edges among the core genes and was
calculated as follows:

density = E
V 2
core

(8)

If the two genes showed a regulatory interaction, we
regarded them as being neighbors. The number of neigh-
bors of gene i was defined as degree ki. In our model, the
expected density values were dependent on the number of
genes and cis-regulatory elements of each gene.

Average clustering coefficient
The clustering coefficient Ci of gene i was given as the
ratio of the actual number of edges ei between the neigh-
bors relative to the maximal number. We calculated the
average clustering coefficient C of all the core genes as a
network property as follows:

Ci = 2ei
ki(ki − 1)

(9)

C = 1
Vcore

∑
i∈core

Ci (10)

The average clustering coefficient of a network tends
to increase when the network has more locally dense
compartments, i.e., clusters. Cancerous networks of onco-
genes in humans are known to form a giant, highly
clustered component in the whole signaling network [47].

Number of self-loops
When a gene product regulates its own expression, it is a
form of autoregulation and is denoted by a loop in a net-
work called a self-loop. It is known that negative feedback
stabilizes its expression level and shortens the response
time, while positive feedback delays the response and
results in bistability [39]. A mutagenesis experiment with

yeast confirmed that genes with negative feedback loops
are mutationally robust [48].

Degree assortativity
A network is said to be assortative (or disassortative)
when a high-degree node tends to connect with nodes
of high (low) degree. Protein interactions and GRNs in
yeast and the neural network in nematodes are known
to be disassortative [49,50]. Assortative networks have
higher thresholds for perturbation to change the out-
come and are thus more robust, whereas disassortative
networks are thought to be resilient against small per-
turbations [49,51]. Assortativity was calculated as the
Pearson correlation coefficient of the degree of nodes
at the ends of the ith edge in the core gene network
as follows:

assortativity = 4E
∑

i∈core jiki−[
∑

i∈core ji + ki]2

2E
∑

i∈core j2i + k2i −[
∑

i∈core ij + kj]2

(11)

Positive edge ratio
Whether the expression of a gene was activated or
repressed by the binding of a transcription factor was
determined by the signs of their interaction coefficients.
The expected value of the ratio of positive edges to nega-
tive edges was dependent on the bias parameter A: how-
ever, it randomly varied during the initial state and was
changed by the evolution during the simulation. We mea-
sured the realized ratio of positive edges to negative edges
at the end of the simulation.

Analysis of factors affecting network properties
Network properties evolved during the simulations. We
examined the effects of the number of genes, number of
cis-regulatory elements, mutation rate, population size,
strength of stabilizing selection, and number of environ-
ments on the properties of the evolved networks by alter-
ing these parameter values. Simulations were conducted
20 times for each parameter, and the average values of
the network properties were measured thereafter. A GLM
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was then created with each parameter as a response vari-
able and the average network property as an explanatory
variable.

Results
Cryptic variations in GRNs
In the default parameter set (Table 1), significantly more
phenotypic variations appeared in response to a novel
environmental change (Pnovel) compared with variations
observed under the normal condition (Pnormal) during sta-
bilizing selection over 20,000 generations (Figure 3; V =
5825, P = 4.298×10−14). In the present simulations, phe-
notypic differences were caused by at least one genetic
difference in the GRNs; therefore, the phenotypic varia-
tions were partly due to the total genetic variation. Thus,
Pnovel > Pnormal meant that genetic variations that had
no influence on phenotypic variations when responding
to normal environmental stimuli were accumulated and
these produced phenotypic variations when responding to
novel environmental stimuli in the population of GRNs
during stabilizing selection (i.e., Pcryptic = Pnovel − Pnormal
could be considered indicative of CGVs).

The effect of GRN properties on the accumulation of
cryptic variations
The number of CGVs in each of populations varied
greatly, even with the same parameter sets (Figure 3).
This may be partly because the properties of the initial
and subsequent GRNs varied owing to random factors.
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Figure 3 Comparison of phenotypic diversity between normal
and novel environments. Pnovel was significantly larger than Pnormal

(Wilcoxon signed rank test, V = 5825, P = 4.298 × 10−14).

We thus examined the effects of the properties of variable
GRNs in the same default parameter set on the number
of CGVs (Pcryptic) were examined. Figure 4 shows the rela-
tionships between the number of CGVs and the properties
of the GRNs (the network order, size, weighted size, den-
sity, clustering coefficient, number of self-loops, degree
assortativity, and number of genetic variations). Of these
network properties, only weighted size and genetic varia-
tions were selected as variables that explained the number
of CGVs. The number of CGVs increased along with the
increases in the weighted size of the GRNs (t = 2.463,
P = 0.0153) and in the number of genetic polymorphisms
in the populations (t = 1.908, P = 0.0590). The model
selection statistics for the effect of GRN features on the
number of CGVs (Pcryptic) are shown in Additional file 1:
(Table S1).

Effects of population size, mutation rate, number of genes,
number of cis-regulatory elements, and positive edge bias
on cryptic variations
The effects of the population size (N), mutation rates (μ),
number of genes (Vgenome), number of cis-elements (L),
and positive edge bias (A) on genetic variations main-
tained in the populations (G), visible phenotypic varia-
tion (Pnormal), and accumulation of CGVs (Pcryptic) were
examined by altering these parameter values. Table 2
shows the regression coefficients and statistical signif-
icance of these effects after adjustment for multiple
comparisons [52]. G, Pnormal, and Pcryptic in the popu-
lations were significantly increased with increases in N,
μ, and Vgenome (Figure 5A). G decreased with increasing
numbers of cis-elements (L) under a constant mutation
rate per individual, whereas visible and cryptic pheno-
typic variations (Pnormal and Pcryptic) were not affected
(Figure 5B). On the other hand, positive edge bias
(A) caused a slight increase in the number of CGVs
(Pcryptic; Figure 5C) despite the reduced number of genetic
polymorphisms (G).

Effects of selective pressure and the number of
within-generation environments on the accumulation of
cryptic variations
The effects of parameters related to environmental
factors, the strength of stabilizing selection (S), and
the number of environments that individuals expe-
rienced within their lifetimes (H) were examined
(Table 2). Increased strength of the stabilizing selec-
tion decreased G and Pnormal but did not affect Pcryptic
(Figure 6A-C). The numbers of genetic variations (G)
and cryptic variations (Pcryptic) significantly decreased
with the number of environments that individuals
experienced within their lifetimes, whereas the visi-
ble phenotypic variations (Pnormal) were not affected
(Figure 6D-F).
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Figure 4 Relationships between cryptic variations and network properties under the default parameter condition. The weighted size of the
network, genetic variations, and degree assortativity were selected as the variables that explained the number of cryptic variations using GLM
model selection. Regression lines were drawn on the basis of simple linear regression analysis.

Table 2 The effects of each parameter on population variation

Response variable Explanatory variable Estimate Observed P Rank of P Adjusted α

G N 0.0185 5.479 × 10−25∗
4 0.00952

Pnormal N 9.921 × 10−5 0.000401∗ 11 0.0262

Pcryptic N 0.000249 0.00253∗ 12 0.0286

G μ 1.389 × 107 1.608 × 10−22∗
5 0.0119

Pnormal μ 1.706 × 105 2.936 × 10−9∗
8 0.019

Pcryptic μ 1.421 × 105 0.0327∗ 15 0.0357

G Vgenome 117 1.371 × 10−37∗
1 0.00238

Pnormal Vgenome 0.914 4.877 × 10−11∗
7 0.0167

Pcryptic Vgenome 1.04 0.0132∗ 14 0.0333

G L −21.1 5.302 × 10−5∗
10 0.0238

Pnormal L 0.23 0.0959 17 0.0405

Pcryptic L −0.589 0.15 19 0.0452

G A −720 1.900 × 10−5∗
9 0.0214

Pnormal A 5.52 0.154 20 0.0476

Pcryptic A 20.6 0.124 18 0.0429

G S −294 2.105 × 10−28∗
3 0.00714

Pnormal S −12.6 5.995 × 10−32∗
2 0.00476

Pcryptic S 0.494 0.792 21 0.05

G H −239 3.709 × 10−22∗
6 0.0143

Pnormal H 1.05 0.0443 16 0.0381

Pcryptic H −4.47 0.00687∗ 13 0.031

The effects of population size (N), mutation rate (μ), number of genes (Vgenome), number of cis-elements (L), positive edge bias (A), strength of selection (S), and
number of environments (H) on genetic variations maintained in the populations (G), visible phenotypic variation (Pnormal), and the accumulation of cryptic variations
(Pcryptic) are shown. The α levels were adjusted to control for multiple comparisons using the false discovery rate (FDR) procedure.
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Figure 5 Relationships between cryptic variations and altered GRN parameters. Simulations were repeated 20 times for each parameter value,
and each dot represents a simulation run. Regression lines were drawn on the basis of the linear regression statistics shown in Table 2; solid and
dashed lines denote significant and non-significant correlations, respectively.

Effects of altered parameters on network characteristics
The effects of varying the parameter values on the net-
work properties of evolved populations were also analyzed
Additional file 2: (Table S2). As expected, the mutation
rate (μ) and population size (N) did not affect the network
properties of the evolved populations. The network size
significantly increased with increasing numbers of genes
(Vgenome) and cis-regulatory elements (L). The increasing
number of genes (Vgenome) caused an increase in network
order and a decrease in density, whereas the increasing
number of cis-regulatory elements (L) caused an increase
in network density.
The strength of stabilizing selection (S) did not affect the

network properties of the evolved populations (Figure 7A-
C). The order, size, and density of the evolved GRNs were
significantly increased with exposure to increasing num-
bers of environments within a lifetime (H ; Figure 7D-F).
In other words, larger GRNs with higher connectivity
tended to evolve in heterogeneous environments.

Discussion
Factors affecting the number of cryptic variations
The accumulation and release of CGVs were predicted to
be the outcome of epistasis and genotype–environment
interactions by analytical population genetic modeling
[19]. Hermisson and Wagner (2004) assumed sexual
reproduction and argued that the sex dependence of allelic
effects is an important mechanism for conditional neu-
trality. In the context of a recent categorization [16], their
model corresponds to “post-mutation evolvability under
high recombination,” whereas ours corresponds to “pre-
mutation evolvability under low recombination.” Here we
showed that such epistatic behavior could be produced
as a generic feature of GRNs even without sexual repro-
duction and without an explicit coefficient for hidden
variation as expected from previous stochastic models
[29,34,53-56]. The present study used individual-based

models with explicit implementation of a population of
GRNs that produce phenotypes responding to environ-
mental stimuli, and our findings indicate that the cryptic
phenotypic variations unveiled by a novel environmental
stimulus can accumulate and be maintained in evolved
populations. The signals induced by a novel environmen-
tal stimulus probably initiated different cascades of gene
interactions, which led to novel phenotypic variations due
to standing genetic variations that were invisible under
normal circumstances.
In the present study, we used two methods to exam-

ine the effects of factors that affect the number of CGVs.
First, because genetic variations and some network prop-
erties varied among the simulation replicates for the same
parameter set values, we examined the effects of varying
values of these properties. Second, we altered the param-
eter values and examined the effects of varying parameter
values on the CGVs. In our simulations, the number of
genes, Vgenome, was not assumed to be altered during
the evolutionary process; therefore, the effect of Vgenome
could be examined by altering the initial values of the
parameters.
The number of CGVs accumulated in each of the pop-

ulations increased with increases in the total numbers
of genetic polymorphisms (Figure 4H) when the simula-
tion replicates with the default parameters were analyzed.
This is reasonable because the more polymorphic geno-
types a population has, the more diverse phenotypes it is
supposed to produce. This finding was also supported by
the results of the simulations where only the population
size and mutation rate were altered (Table 2). In addition,
increasing the network order by altering the number of
genes increased the number of total and cryptic genetic
variations even under conditions where the mutation rate
per individual (not per gene) was kept constant.
Under the condition of a fixed number of genes, the

number of CGVs increased with increasing the weighted
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Figure 6 Relationships between variations in a population and environmental parameters. Simulations were repeated 20 times for each
parameter value, and each dot represents a simulation run. Regression lines were drawn on the basis of the linear regression statistics shown in
Table 2; solid and dashed lines denote significant and non-significant correlations, respectively.

size of the GRNs (Figure 4C). The weighted size of a GRN
was expected to increase when increasing the order, size,
and ratio of the positive edges. In the second analysis,
increasing the number of genes caused increases in the
order and size of the GRNs followed by an increase in
the number of CGVs. In addition, it was confirmed that
increasing the ratio of positive edges by altering the pos-
itive edge bias caused increases in the weighted size and
the number of CGVs in the GRNs. The genetic differ-
ence among networks with large weighted sizes may have
been amplified through genetic interactions and resulted
in larger differences in expression outcomes, which would
have contributed to the emergence of CGVs.

These findings indicate that the number of genes could
affect the number of CGVs in two ways. First, a population
of GRNs with a large number of genes would be able to
accumulate a larger number of genetic variations. Second,
a higher network order would have a larger weighted size,
which may contribute to the emergence of more pheno-
typic variations. Thus, we propose that the network order
(i.e., the number of genes) is the most important factor in
facilitating the accumulation and release of CGVs.

Effect of strength of selection and environmental variations
The accumulation of CGVs was affected by the strength
of the selective pressure and the number of environments
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Figure 7 Relationships between GRN features and environmental parameters. Simulations were repeated 20 times for each parameter value,
and each dot represents a population mean of a simulation run. Regression lines were drawn on the basis of the linear regression statistics shown in
Table S2; solid and dashed lines denote significant and non-significant correlations, respectively.

that the individuals experienced during their lifetime.
Increasing the strength of selection and the number of
environments decreased the genetic variation to a simi-
lar extent; however, the effects of these two environmental
factors on the number of CGVs differed. This indicates
that the quality of accumulated genetic variations may
differ depending on the ancestral environments that the
populations experienced through the generations.
We predicted that strong selection usually purges

genetic variation within populations; therefore, increasing
the strength of stabilizing selection decreases the number
of genetic and phenotypic variations. The present find-
ings showed that this prediction was only true for visible
variations and not for cryptic variations. The number of
CGVs increased despite the strong selective pressure. Not

all mutations in the GRNs led to phenotypic differences
in a normal environment. The mutations that caused
phenotypically visible differences were purged by strong
pressure, whereas those that did not affect the phenotype
were free from selection and accumulated in populations
through mutation-drift balance. Therefore, the genetic
variations that did not contribute to the phenotypes in the
normal environments were preserved in the populations
regardless of the strength of the selective pressure.
The number of environments an individual was exposed

to during a lifetime also decreased the accumulation of
genetic variations. Here, the individuals were required
to express different phenotypes in response to differ-
ent environmental signals experienced during their life-
times using appropriate regulatory pathways. When an
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individual experienced a larger number of environments,
more of the GRN should be involved in producing phe-
notypic differences than that in normal environments.
Therefore, exposure to a larger number of different envi-
ronments would probably decrease the number of muta-
tions accumulated through genetic drift. In other words,
populations with high plasticity may have less evolvabil-
ity than those with less plasticity, which would result in
less phenotypic diversity in response to novel environ-
ments. An experimental study indicated that populations
that evolved in rapidly changing environments may result
in genotypes with high levels of pleiotropy and histor-
ical constraints, which in tern could impede the future
evolution [57]. This finding indicates that there may be
intrinsic genetic costs associated with adaptation to vari-
able environments [58-60]. These costs differ from other
types of costs associated with plasticity because they can-
not be directly detected by negative correlations between
individual fitness and plasticity but can instead emerge as
reduced genetic variability on an evolutionary timescale.
However, some predictions [54-56] contradict this. One
possible reason for this discrepancy is a difference in
focus. Espinosa-Soto et al. [54] showed that perturbing
the initial state of each GRN every generation shortened
the time required to discover the genotype of an arbitrary
novel phenotype. Fierst [55] measured the evolutionary
variability of genetic systems toward novel phenotypic
optima without changing the environmental cue. Draghi
and Whitlock [56] emphasized the directionality of plas-
ticity and evolvability. Here we investigated the quantita-
tive tendencies of genetic and phenotypic variations and
detected a negative effect of environmental heterogeneity
on the number of variations present in a population.
On the other hand, environmental heterogeneity would

be expected to have positive effects on the number of
CGVs in the light of GRN evolution. The more hetero-
geneous the environment that individuals experienced
during their lifetimes, the larger and denser the GRNs
tended to become Additional file 2: (Table S2). This was
probably because only small parts of the GRNs were
used in low heterogeneity environments and then unused
genes were then allowed to mutate and become discon-
nected from the GRNs without affecting their fitness. In
other words, populations that evolve in static environ-
ments over long periods may lose the ability to sense
and respond to the environment, and would therefore
show less revealed phenotypic variations in novel envi-
ronments. A previous theoretical study [36] showed that
the evolution of complex GRNs could be remarkably
promoted by the fixation of beneficial gene duplica-
tions under randomly fluctuating environmental condi-
tions and that such GRNs tend to exhibit high mutational
robustness and evolvability. Furthermore, they showed
that large and complex GRNs could not be evolved in

cyclically fluctuating environments. This indicates that
predictable variable environments, including the hetero-
geneous environments that we used here, cannot pro-
mote the evolution of higher evolvability as well as of
larger numbers of CGVs. Therefore, interactions with
variable environments in which higher plasticity has
evolved may promote the accumulation of CGVs by facil-
itating the evolution of larger GRNs in some cases. In
turn, the expansion of GRNs could facilitate evolutionary
adaptation to novel environments and niche construction.
Thus, we propose that the interaction between GRNs and
variable environments could be a sustainable source of
evolvability.

Acquisition of novel traits promoted by cryptic genetic
variations in GRNs
It is believed that CGVs contribute to evolutionary
responses to environmental changes and to long-term
selection by providing phenotypic variations in response
to changes in the background [8,9,61]. Furthermore, some
researchers argue that CGVs also promote the acquisition
of novel traits because of their ability to accumulate and
release multiple mutations in individuals and populations
[62,63].
Several studies support these arguments. For exam-

ple, the black mutant strain of Manduca sexta, which
was originally green, showed variations in thermosensi-
tivity where some larvae turned green and the others
stayed black in response to heat shock over a specific
period [64]. The authors of that study also artificially
selected these variations and successfully established two
lines: one for sensitivity and the other for insensitivity.
CGVs that accumulate during strong stabilizing selec-
tion could contribute to phenotypic evolution in this
manner.
In addition, a previous model study [34] predicted that

GRNs are robust and evolvable enough to cover the broad
genotypic space and to reach genotypes that produce
novel phenotypes through recurrent neutral mutations.
Our individual-based model revealed that CGVs could
accumulate and produce phenotypic diversity to con-
tribute to evolvability in the context of population genetic
processes. It has been proposed that novel phenotypes do
not necessarily require new genes. Rather, changes in the
expression patterns of existing genes are important for
phenotypic evolution [65-68]. Further simulations with
properly defined novel phenotypes will help elucidate the
evolution of novelty.

Conclusions
We constructed an individual-based model of GRNs that
controlled gene expression in response to environmen-
tal stimuli. The model facilitated the analysis of network
properties in the context of population genetics. It showed
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that populations of GRNs accumulate and release cryp-
tic variations, the number of which varies depending on
the properties of the GRNs and the environments to
which they have been subjected across the generations.
Our findings indicate that the expansion of GRNs and
adaptation to novel environments are mutually facilitat-
ing, resulting in a sustainable sources of evolvability. This
study thus provides important insight into the origins of
biological diversity and complexity.

Additional files

Additional file 1: Table S1. Statistics for nested model comparisons.
Model selection statistics for the effects of GRN features on the number of
cryptic genetic variations in a population. Among all possible
combinations, only the models for which the AIC values differed from that
of the null model by ≥ 2 are shown. Note that all these models include the
weighted size of the GRN (Eweighted) as an explanatory variable.

Additional file 2: Table S2. The effects of each parameter on the
evolution of GRNs. The effects of population size (N), mutation rate (μ),
number of genes (Vgenome), number of cis-elements (L), positive edge bias
(A), strength of selection (S), and number of environments (H) on network
properties are shown. The α levels were adjusted to control for multiple
comparisons using the false discovery rate (FDR) procedure.
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