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Abstract

Background: The development of pesticide resistance represents a global challenge to food production.
Specifically for the Atlantic salmon aquaculture industry, parasitic sea lice and their developing resistance to
delousing chemicals is challenging production. In this study, seventeen full sibling families, established from three
strains of Lepeophtheirus salmonis displaying differing backgrounds in emamectin benzoate (EB) tolerance were
produced and quantitatively compared under a common-garden experimental design. Lice surviving to the
preadult stage were then exposed to EB and finally identified through the application of DNA parentage testing.

Results: With the exception of two families (19 and 29%), survival from the infectious copepod to preadult stage
was very similar among families (40-50%). In contrast, very large differences in survival following EB exposure were
observed among the families (7.9-74%). Family survival post EB exposure was consistent with the EB tolerance
characteristics of the strains from which they were established and no negative effect on infection success were
detected in association with increased EB tolerance. Two of the lice families that displayed reduced sensitivity to EB
were established from a commercial farm that had previously used this chemical. This demonstrates that resistant
alleles were present on this farm even though the farm had not reported treatment failure.

Conclusions: To our knowledge, this represents the first study where families of any multi-cellular parasite have
been established and compared in performance under communal rearing conditions in a common-garden
experiment. The system performed in a predictable manner and permitted, for the first time, elucidation of
quantitative traits among sea lice families. While this experiment concentrated on, and provided a unique insight
into EB sensitivity among lice families, the experimental design represents a novel methodology to experimentally
address both resistance development and other evolutionary questions in parasitic copepods.

Keywords: Lepeophtheirus salmonis salmonis, Resistance development, Emamectin benzoate, Common-garden,
Phenotypic variability, Parasite evolution

Background

Aquaculture has become a major global industry. In
Norway, the world’s largest producer of Atlantic salmon
(Salmo salar L., 1758), annual production has grown from
98 tonnes in 1971 [1], to over 1.2 million tonnes in 2012
[2]. This rapid development has been met with a number
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of environmental challenges, for example interbreeding
between farm escapees and wild conspecifics [3-5] and
pathogen transmission [6]. Of the pathogens, the salmon
louse (Lepeophtheirus salmonis Kroyer, 1837) (Crustacea:
Copepoda: Caligidae), has emerged as one of the most
critical economic [7,8] and fish-health related threats
to the salmon farming industry [9,10]. Epizootics of L.
salmonis on wild salmonids have been documented in
fish farming intense areas [11-16] and have been linked

© 2014 Ljungfeldt et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public

Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this

article, unless otherwise stated.


mailto:Kevin.Glover@imr.no
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Ljungfeldt et al. BVIC Evolutionary Biology 2014, 14:108
http://www.biomedcentral.com/1471-2148/14/108

with declines of wild salmonid populations in Europe
[17,18] and North America [19,20].

L. salmonis is a naturally occurring marine ectoparasite
of salmonid fishes in the northern hemisphere [21,22] and
has recently been divided into two sub-species; L. salmonis
salmonis occurring in the Atlantic, and L. s. oncorhynchi
occurring in the Pacific [23] L. s. salmonis has coevolved
with Atlantic salmonid fish hosts (Salmo spp.) [24] and
has developed strategies required for survival, proliferation
and host location in low densities across long distances
[25]. The life cycle of L. salmonis comprises eight stages,
each separated by moults [21,26,27]. The eggs hatch into
the first of two non-feeding nauplii stages, followed by the
infective copepodid stage. After locating and settling on a
salmonid host, the louse develops through two filament-
attached chalimus stages and two motile preadult stages
into the final adult stage. The adult male fertilises the
female immediately after her final moult. Throughout the
rest of her life-time, the female protrudes up to 11 sets
[28] of paired egg sacs (‘egg strings’) where 100—1 000’s of
eggs [29] mature until they are released to hatch in the
surrounding water masses.

A variety of methods for controlling L. salmonis on fish
farms are employed or under development [10]. These
include pest management strategies such as synchronised
delousing [30], coordinated fallowing [31] and temporary
protected zones [32,33]. They also include more direct
control methods such as biological control with cleaner
fish [34,35], selective breeding for resistant fish [36,37]
and, potentially, vaccine development [38,39]. Neverthe-
less, despite the availability of a variety of methods, the
industry is heavily reliant on anti-parasitic chemicals,
applied as bath treatments or orally administered in-feed,
to delouse fish in farms [40].

Reduced sensitivity of L. salmonis to the major chemical
delousing treatments used in salmon farming was first
observed in the early 1990°s when reduced effect of or-
ganophosphate treatments was documented [41,42]. More
recently, reduced sensitivity or resistance to other delous-
ing chemicals has also been documented, including hydro-
gen peroxide [43], pyrethroids [44,45] and the avermectin
emamectin benzoate (EB: Slice®) [46-49]. In addition,
instances of multiple resistance, i.e., reduced sensitivity
or resistance to two or more chemicals at the same time,
have recently been reported for L. salmonis in Norway [50].
Nevertheless, most of the actual mechanisms involved in
resistance towards the main delousing chemicals used in
salmonid aquaculture are at present unknown.

One of the major challenges to the further expansion
of salmonid aquaculture is finding strategies to prevent, or
at least delay [51], the development of pesticide resistance
in sea lice. Bioassays used for testing the sensitivity of sea
lice to different delousing chemicals have been developed
and employed [52,53] as part of resistance management
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strategies in countries where resistance or decreased sen-
sitivity has been reported. These bioassays give average
sensitivity values for populations or groups of tested indi-
viduals, such as the effective concentration (ECsg), which
is defined as the concentration of a compound that immo-
bilise 50% of the target organism (moribund + dead) [54].
Bioassays for given delousing compounds are increasingly
used prior to treatment on commercial salmon farms, in
order to examine the sensitivity level of sea lice present on
the fish. The likely outcome of a treatment is then identi-
fied by comparing the ECs, to the therapeutic concentra-
tion achieved in the fish as a result of treatment by that
compound. Importantly however, these bioassays do not
accurately quantify how a potential reduced sensitivity
is distributed within the population being tested. For
example, does a 30% higher ECsy value at one farm
imply that all lice are approximately 30% less susceptible
than a baseline population, or are 30% of the lice com-
pletely resistant? This question is important in order to
help identify the underlying mechanisms of resistance,
their distribution in the population, and the likely evolu-
tionary consequences of treatment.

Common-garden experiments involve the comparison
of genetically distinct strains, families or populations under
identical environmental conditions. Such experimental pro-
tocols are often used to disentangle the effects of genetic
and environmental variation on the phenotype. Within fish,
common-garden experiments have been widely used to
identify genetic differences among populations, and are
often accompanied with DNA parentage testing in order to
identify offspring to their genetic group of origin that have
been communally reared in artificial [55-57] as well as
natural habitats [58-60]. However, for parasites which
require access to a host, common-garden experiments
are very rare, and none have been described for either
parasitic or non-parasitic copepods. Thus, establishing
a common-garden experimental system for L. salmonis
would be highly valuable for investigating the devel-
opment of resistance in L. salmonis, and specifically,
to quantify susceptibility differences among families
as well as strains. In addition, such a system would
provide a powerful tool to address the evolution of
other traits in this parasite such as fecundity and
virulence [61].

The present study had two primary aims: 1. To estab-
lish a common-garden experimental system for testing
variation in phenotypic traits between full sibling fam-
ilies of lice reared in a communal environment, and 2.
To test the performance of the experimental system by
looking at the distribution of decreased sensitivity among
full sibling families of L. salmonis to emamectin benzoate
(EB) which is the active ingredient in Slice® and the most
commonly used oral medicine against sea lice [40] since
its introduction in 1999.
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Methods

Overall experimental design

In order to establish an experimental framework in which
to investigate variability in phenotypic traits within and
among salmon lice populations, an experimental protocol
was established for producing full sibling family groups to
study in a common-garden experiment (i.e., mixing all
families together in the same environment) (Figure 1).
The protocol, which in this experiment was designed to
address variation in susceptibility to emamectin benzoate
(EB), consists of a sequence of five experimental parts,
summarised as follows: 1. Producing single-strain par-
ental populations of L. salmonis that are synchronised
in developmental timing, 2. Creating full sibling families
by keeping couples of virgin lice separated in individual
fish tanks, 3. Common-garden infection in replicate
multiple-fish tanks with a mixture of copepodids from a
number of selected families, 4. Sampling all individuals
that had survived from the infections, for sensitivity
testing in a post-termination trial, here: for susceptibil-
ity to EB. 5. Genotyping all parents and offspring in
order to identify individuals back to family of origin,
and thus examine family and strain based differences in
performance. Specific details for each of the experimental
components described above are given in the sections
‘Production of parents and experimental families’, ‘Com-
mon-garden infection’, ‘Emamectin benzoate trial’ and
‘Genotyping and parentage testing’ below.
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Animal welfare considerations and rearing conditions

Although salmon lice belong to the systematic entities
that are not protected by animal welfare legislation, the
development of L. salmonis past the infective copepodid
stage requires the attachment to a host fish. The Norwegian
Animal Welfare Act strictly regulates the maintenance of
fish used as hosts for salmon lice. All parts of this study
were conducted in accordance with these regulations,
under the application 2009/186329, in the wet laboratory of
the Institute of Marine Research (IMR) in Bergen. Here,
farmed Atlantic salmon (Salmo salar) in the size range of
ca 200 to 700 g were used as host for cultivation of salmon
lice and experiments involving salmon louse infections.

The fish used for culturing the lice strains were kept in
250 L and 500 L multi-fish tanks. These were hand fed
once daily on a commercial diet. Tank water exchange,
aeration and current was regulated by inlet water flow
kept at ca 60 L-hr* per kg fish (minimum 400 L-hr', in
order to maintain sufficient flow in the tank), of natural
seawater pumped up from 120 m depth and passed
through a column aerator. The water temperature kept
9.0 £ 1°C and salinity 34 +0.5%0 throughout the year.
The tanks were kept indoors at an artificial, 12 hrs daily
(fluorescent) light regime under transparent lids.

The fish used as hosts during the production of full
sibling salmon louse families, by pairing a single male
and a virgin female louse together on a single fish, were
placed individually in an array of 36 plastic tanks, each
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Figure 1 Overview of the experimental design. The five step experimental procedure: 1. Synchronized single-strain parent populations of

L. salmonis are produced from three source populations of different origin. 2. Couples of virgin lice in individual fish-tanks produce full sibling
families 3. A mixture of copepodids from selected louse families common-garden infected into four replicate tanks. 4. Sampled lice exposed to
EB, evaluated and sorted. 5. Family affiliations are resolved by individual genotyping of offspring, sorted by trial outcome, and parents. Full arrows:

Preadult Il female and adult male lice, in pairs of two (——>) or a group of many ﬂ::>) lice. Full black arrows (se———)) denotes

dead lice. Dashed arrows: Egg strings from one (= = =) or many (.‘_‘_‘_‘_‘_‘_':,) female lice. Dotted arrows: Copepodids originating from one
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) female lice.
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of 50 L volume. This setup was similar to that described
by Hamre and Nilsen [62], and are hereafter referred to
as the single-fish tanks. All procedures involved in
propagating, handling and quantification of L. salmonis
were performed using the methods and culturing systems
described in detail by Hamre et al. [63].

Source lice populations

Pesticide resistance is generally defined as the inherited
ability in a strain of pest to tolerate doses of toxicants
that would prove lethal to the majority of individuals in
a sensitive population of the same species [64]. However,
there are a multitude of context-specific definitions for
resistance [65,66], some of which include whether the
population exceeds a specific threshold ratio to a known
sensitive strain. In the present study, three source popu-
lations (strains) of L. salmonis, with different histories of
EB exposure, were used to produce the experimental
families. These strains are here-on referred to as ‘resistant’,
‘sensitive’ and ‘unknown’. This classification was chosen in
order to aid presentation and enable consistency through-
out the paper, despite the fact that the level of sensitivity
for each of these strains had not been accurately quanti-
fied prior to initiating the experiment.

All strains of lice used in this study originated from
the Atlantic, and belong therefore to the sub-species L.
s. salmonis [23]. The ‘resistant’ strain was represented
by L. salmonis collected by the Norwegian Food Authority
(Mattilsynet) in September 2008 at a salmon farm in
Austevoll on the west coast of Norway. This farm had
reported multiple treatment failures with Slice®. After
collection on the farm, >120 egg string pairs were trans-
ported to the wet laboratory facilities at IMR. The strain
had been cultivated for six generations prior to being
used in the present study (without additional exposure
to EB), and sub-sets of this strain have displayed
reduced sensitivity to EB in tests performed on previous
generations [48].

The ‘sensitive’ strain used in the present study con-
sisted of the third generation of an L. salmonis strain
originating from 15 fertilised females collected from wild
sea trout, Salmo trutta L., in Oslofjord, eastern Norway,
in October 2009. The strain was assumed to be susceptible
to EB, thus denominated ‘sensitive; based on the fact that
there is no commercial farming of salmon in this region,
and therefore, salmon lice in this region have not been
recently exposed to EB.

The third experimental strain included in this study
was denominated ‘unknown’” with respect to its suscep-
tibility to EB. This strain was founded by 35 fertilised
salmon louse females collected from a salmon farm lo-
cated on the island of Streno, Hordaland, west of Norway
on 16 April 2010. The farm had not previously reported
treatment failure with Slice’. However, this farm is located
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in a dense farming region where other farms, such as
the one located in Austevoll, had experienced previous
problems of reduced efficacy of EB. After collection, the
females were transported to the laboratory in ambient
seawater from the farm, transferred onto previously unin-
fected Atlantic salmon within three hours and were left
undisturbed for one egg string cycle (ten days) before the
new egg strings were collected.

Production of parents and experimental lice families

The production of synchronised parental strains was
initiated on 26 April 2010. Pairs of egg strings were
collected and incubated from 15 females from six fish
each of the ‘sensitive’ and the ‘unknown’ strains, and
from 37 ‘resistant’ strain females from 14 fish. The egg
strings were maintained in three 2 L flow-through incuba-
tors [for a detailed description, see: 63], each representing
one strain. Fourteen days later, the resulting three batches
of infective copepodids were used to separately infect
three multi-fish tanks, each containing 15 previously
uninfected Atlantic salmon. Thus, at this stage, the strains
were still maintained separately (Figure 1).

Polyandry has been previously documented in L. salmonis
[67]. Therefore, in order to produce full sibling families
where control over both paternal and maternal contri-
bution was maintained, and in order to produce hybrids
between strains, virgin female lice were collected from
each of the experimental strains. These were collected
as preadult II females, 35 days post infection (DPI), to
ensure that they had not been fertilised (which occurs in
association with the moult from preadult II to adult
[68]). At this stage the majority of the males were adults,
ready to fertilise females upon moulting. From the collected
lice, a single female and male couple were placed onto one
salmon, each maintained individually in single-fish tanks, in
order to ensure single paternity. A total of 36 couples were
established as follows; ‘Resistant’ (N = 6), ‘Sensitive’ (N = 6),
‘Unknown’ (N = 12), and the ‘Hybrid’ (N = 12) groups. Hy-
brid couples were produced by pairing a sensitive male
with a resistant female (SxR, N =6), or a resistant male
with a sensitive female (RxS, N = 6).

Each of the 36 single-fish tanks contained a filter to
capture lice that detached from their hosts. This was
checked for lice twice daily in connection with hand
feeding of the fish. Living lice encountered in filters were
reattached to the fish manually using forceps. Lice found
dead in the filter, or alive but unable to reattach to its
host upon multiple attempts, were removed from the
experiment and preserved individually on 99.5% ethanol.

The first pair of egg strings extruded by a female L.
salmonis after fertilization are always shorter [28] and
may exhibit more variable hatching success (pers. obs.)
than all subsequent pairs. On 66 DPI; the majority of the
females had protruded their second set of egg strings.
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On this day, all egg strings were collected from female
lice (N =33) still attached to their host fish. The col-
lected egg strings, 29 pairs and three single strings (one
female carried no egg strings) (Table 1), were incubated
individually in the system for small incubators described
by [63]. The 33 females, and the male lice associated
with them, were preserved on 99.5% ethanol in individu-
ally marked 2 ml tubes, and stored along with those that
had detached from the fish previously.

Common-garden experiment

Fourteen days after incubation of the egg strings from
single families, the hatching success for each family was
evaluated by visual inspection as: ‘Hatched”: living cope-
podids observed, or ‘Not hatched: no living copepodids
and/or unhatched egg strings observed in the incubator.
Families of reduced viability (containing few copepodids,
a large fraction of dead nauplii or copepodids, or notably
low activity among the hatchlings compared to other
families) were rejected from further use. Families resulting
from successfully hatched second egg string pairs, for
which both parents were available for subsequent DNA
parentage analysis, were used in the common-garden
experiment (Table 1). Based on these criteria, 17 fam-
ilies were selected and denoted ‘Family 1’ to ‘Family 17
(Table 2). All copepodids from each of the selected
families were counted in a counting chamber with the
assistance of a stereo microscope. They were thereafter
mixed together into a single glass beaker containing
seawater from the hatchery’s water inlet. The mixture,
containing a total of 4 554 copepodids from 17 families,
was carefully stirred to ensure a random and even distri-
bution. Thereafter, this was split in four equal parts, and
used to infect four replicate 500 L tanks, each containing
20 Atlantic salmon that had not previously been exposed
to sea lice. Lice development and host fish status were
visually inspected daily. In order to compare individuals of
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equal size and age, bioassay tests of tolerance to chemicals
are primarily carried out on preadult lice. By experimental
design, our trial lice were already synchronised in age,
therefore, sampling for the EB challenge was scheduled
for the last point in time in the development when lice of
both genders are equally sized. This occurs when males
are adult, and females are still at the second preadult stage
(which occurs in the same time span since the males’ rate
of development is faster than the females’).

The common-garden experiment was terminated on 1
September 2010, at 316 degree days post-infection (DDPI)
(34 DPI at a mean temperature of 9.3°C). One at a time,
all fish were anaesthetised for 2 to 3 minutes in metomi-
date (5 mg1™") and benzocaine (60 mg1™!) in seawater.
The lice were carefully removed from the fish by
forceps and placed in four 5 L glass beakers containing
seawater, one beaker per tank. The beakers were partially
immersed in running water, in order to keep the
temperature stable. Lice that had fallen off in the anaes-
thetic bath or died during sampling (e.g., due to forceps
treatment), were preserved on 99.5% ethanol in four tubes,
each representing one tank replicate. The surviving lice,
located in the four glass beakers, were subsequently
exposed to a one-dose EB trial.

Emamectin benzoate trial

The one-dose sensitivity trial with EB was performed
using the bioassay methodology detailed in [54]. A work
solution (1 ppm EB) was prepared by diluting 10 ml of
100 ppm stock solution (EB in methanol) with 990 ml of
seawater. EB exposure was started by adding 225 ml of
the work solution to each of the four glass beakers that
contained 4 225 ml of seawater and lice from the replicate
tanks. This resulted in a 50 ppb EB concentration. Beakers
containing lice were thereafter incubated overnight at
9.2°C £ 0.2°C. After 20 hours exposure, all lice were
evaluated and sorted as survivors (living) vs. immobilised

Table 1 Production of L. salmonis families from different experimental groups

Group Couples Egg strings No hatching Hatchlings excluded No male Families produced
Resistant 6 5% 1 2 0 2

Sensitive 6 5x* 1 2 1 1

Hybr (SxR) 6 5 0 1 0 4

Hybr (RxS) 6 5 0 1 1 3

Unknown 12 12 3 2 0 7

Total 36 32 5 8 2 17

Group = experimental group, defined by the strain(s) of the mother and the father, where Resistant = both parents resistant, Sensitive = both parents sensitive,
Hybr = hybrids (SxR: sensitive father and resistant mother; RxS: resistant father and sensitive mother) and Unknown = both parents unknown. Couples = initial
number of L. salmonis couples from each group; maximum number of potential families. Egg strings = number of egg string pairs incubated from each group,
differ from ‘couples’ if the female was lost during the experiment or did not carry egg strings. No hatching = number of egg string pairs that did not hatch within
11 days in incubation. Hatchlings excluded = number of groups of hatchlings containing few, or inactive, copepodids (rejected from further use in the
experiment). No male = number of families excluded due to loss of the male in the single-tank. Families produced = number of families meeting the requirements
for further use in the experiment. Single egg strings were also collected and incubated. *: one female carried only one single egg string. **: two females carried

only one single egg strain each.
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Table 2 Summary of background information and trial results for the 17 families of L. salmonis

Family Background Common-garden infection EB challenge

Nr Group Ny (cops) n Scg % Scg Tank distr % No (lice) n Sgg % Sgg
1 Resistant 278 124 446 23-27 123 57 46.3
2 Resistant 214 97 453 23-32 95 54 56.8
3 Hybr (SxR) 270 117 433 21-33 115 73 63.5
4 Hybr (SxR) 276 128 464 17 -34 123 91 740
5 Hybr (SxR) 91 41 451 15-32 41 16 39.0
6 Hybr (SxR) 191 79 414 22-33 78 32 41.0
7 Hybr (RxS) 181 81 448 20 - 31 81 24 296
8 Hybr (RxS) 582 288 495 23-27 285 117 41.1
9 Hybr (RxS) 384 192 500 19-30 190 133 700
10 Sensitive 171 49 28.7 22-33 49 4 82
" Unknown 325 151 46.5 22-29 149 14 94
12 Unknown 450 195 433 21-30 190 15 79
13 Unknown 318 60 189 20 - 30 57 5 838
14 Unknown 230 91 39.6 22-29 91 13 8.8
15 Unknown 157 77 49.0 21-29 77 29 37.7
16 Unknown 240 103 429 20-33 101 9 89
17 Unknown 196 93 474 23-28 90 27 30.0
All 4 554 1966 432 21-30 1935 713 36.8

Group = experimental group, defined by the strain(s) of the mother and the father, see Table 1. Ny (cops) and Ny (lice) = initial numbers of copepodids and lice.

n S =number of survivors at termination of CG = common-garden infection, and EB = emamectin benzoate trial, respectively. Tank distr % = between-tank

distribution of individuals from the family at termination time, given as the minimum - maximum values from the four tanks. % S = number of surviving individuals

as fractions of the initial numbers, in CG and EB, as described above.

(moribund + dead) and preserved on 99.5% ethanol for
storage and subsequent parentage analysis. This evaluation
was conducted in accordance with the response criteria
detailed in the ‘Handbook in resistance management’ [54],
as follows: Living: Attached to the wall of the beaker or ac-
tively swimming behaviour. Moribund: Not capable of
attaching to a surface (the inside wall of the beaker), using
the flat body as a ‘sucking disc’. Movements of extremities
or internal organs could still be observed. Dead: No
movements, neither extremities nor gut or other organs.
Due to the large number of lice that needed to be quickly
classified, no distinction was made between moribund and
dead lice.

Evaluation of the lice, starting with those from the
‘Tank 1’ beaker, took approximately one hour for each
beaker. Consequently, the duration of EB exposure was
20, 21, 22 and 23 hours in the replicate beakers from
tanks 1, 2, 3 and 4 respectively. In order to test if the ex-
posure time differences affected the results, an exposure
time corrected dataset to be tested in parallel with the
actual survival data was established. This corrected data
set was obtained for each tank from the ratio ‘% dead
lice divided by exposure time’ multiplied by the average
exposure time for all tanks, assuming (which is not
necessarily correct) a negative linear relationship between
survival and EB exposure time.

Genotyping and parentage testing

All offspring sampled in this study were identified back
to their family of origin by screening highly poly-
morphic microsatellite loci and matching their multi-
locus genotypic profiles to pairs of parents using the
genotype-exclusion based family assignment program
FAP v. 3.6 [69].

DNA from all parents and offspring were extracted in a
96-well format using the commercially available Qiagen
DNeasy kit. A minimum of 2 blank controls per tray were
used. All of the samples were analysed with the following
five microsatellite loci amplified in a single PCR reaction.
Multiplex 1= LsalSTAI, LsalSTA2, LsalSTA4, LsalSTAS
[70] and LsNUIGI4 adapted by Todd et al. [70]. A low
number of individuals displayed multiple-locus genotypes
that matched between families with these five loci. For
these individuals, including their parents, it was necessary
to analyse the following loci in another two multiplex reac-
tions in order to conclusively resolve their family of origin.
Multiplex 2 = LsalI03EUVC, LsalI09EUVC, Lsall10EUVC,
Lsall11IEUVC [71] and LsNUIGO09 [72]. Multiplex 3 =
Lsall04EUVC, Lsall0SEUVC, LsallI06EUVC, LsalI0SEUVC
[71], LsalSTA3 [70] and LsNUIG35B [73]. Amplification
conditions are available from the authors, upon request.
All of these loci have been previously used in this
laboratory to examine population genetic structure of
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lice throughout the Atlantic (Glover et al., 2011). PCR
fragments were separated on an ABI 3730XL sequencer
and sized relative to the GeneScan™ 500LIZ™ size standard
by Applied Biosystems. Alleles were scored twice by
independent observers, following automatic binning
implemented in the Genemapper (v. 4.0) software.

Data analyses

Common-garden infection

In order to test for any potential tank-effects, a chi-
square test for goodness-of-fit was applied to the total
number of individuals collected from the four tanks on
termination day. A further three chi-square tests for in-
dependence between tanks were applied to the number
of individuals from different families, experimental groups
and gender, separately.

Generalized linear mixed models were applied to test
the effects of family, parental strain and experimental
group on infection success. There were two parental
strain variables: ‘sire’ (strain of the father; sensitive,
resistant or unknown) and ‘dam’ (strain of the mother;
sensitive, resistant or unknown). The ‘experimental group’
variable was tested twice; as ‘group (1H) where the
seven hybrid families were pooled into one group, and
as ‘group (2H) where the hybrid families were sepa-
rated into two groups; ‘RxS” and ‘SxR’. The groups
‘Resistant’, ‘Sensitive’ and ‘Unknown’ were included in
both of these alternatives. Infection success was en-
tered as a binary response and groups and parental
strain was entered as fixed effects in the models,
assuming binomially distributed error. Family was
entered as a random effect to account for dependency
between individuals within families [74].

Due to the limited number of individuals in some
combinations of levels of these variables, the effects of
groups and parents were tested in separate models. The
effects of these variables were therefore assessed in an a
priori formulated set of competing models (Table 3) fol-
lowing the information-theoretic approach [75]. Assessing
the explanatory power of family as a random factor is
complicated in mixed effects logistic regressions, as
estimation of intra-family correlation is not clear-cut [76].
Therefore, we also included a generalized linear model
with family as a fixed variable only. The models were
ranked (Table 3) and the best model selected using
Akaike’s information criterion (AIC) [75].

Due to large differences in numbers of copepodids
produced per family, the potential relationship between
number of copepodids produced by one family, and that
specific family’s infection success was investigated by
logistic regression. Family 2 (emerging from one single
egg string) and Family 5 (from a short first set pair of
egg strings) were excluded from this analysis, due to
their deviating egg string properties.
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Table 3 Models applied to infection success in the
common-garden experiment, ranked by AIC

Model Fixed effect = Random effect df AIC AAIC
Cops.m5 Family - 17 61360 0
Cops.m0 - Family 2 61574 214
Cops.m1 Group (1H) Family 5 6 158.1 221
Cops.m4 Sire Family 4 61592 232
Cops.m?2 Group (2H) Family 6 61595 235
Cops.m3 Dam Family 4 61606 246
Copsm0OB - - 1 62290 930

A set of generalized linear models (GLM) and generalized linear mixed effect
models (GLMM) testing for the relative importance of different background
covariates on the infection success. GLMs include fixed effect variables, and
GLMMs contain both fixed and random effects. Response variable: Infection
success status (binary) from common-garden trial, where unsuccessful individuals
were lost somewhere between infection and sampling and all individuals
sampled on termination day were defined as successful.

Covariates (fixed and/or random effect variables): Family = Families nr 1-17.
Group (1H) = Resistant, Sensitive, Hybrid, Unknown.

Group (2H) = Resistant, Sensitive, Hybrid SxR, Hybrid RxS, Unknown.

Sire (source strain of the father) = Resistant, Sensitive, Unknown.

Dam (source strain of the mother) = Resistant, Sensitive, Unknown.

Test results: degrees of freedom (df), AIC values and changes in AIC (AAIC).

Emamectin benzoate challenge

A chi-square test for goodness-of-fit was applied to test
for tank effects on total survival (with and without correc-
tion for exposure time) in the EB trial. Chi-square tests for
independence between tanks were then applied to the
survival (with and without correction for exposure time)
of different families, experimental groups and gender, in
separate tests.

Another set of generalized linear mixed models were
formulated in order to compare the different covariates’
influence on the EB trial results.

It is possible that the parental contribution to EB sus-
ceptibility differ in hybrids depending whether the mother
or the father is the less sensitive parent. Therefore, the
results were tested for the two alternative versions of
the ‘experimental group’ variable: ‘group (1H) and ‘group
(2H)’, to see if the hybrids should be considered as one or
two groups in the analysis.

A logistic regression mixed model was fitted to test
which factors influenced survival of the EB treatment,
with exposure time, gender of individuals and experimen-
tal group as fixed variables and family as a random factor.
The covariates exposure time and tank were confounded
since the exposure time had differed for samples from dif-
ferent tanks. The exposure time corrected data set, while
useful for comparing group level results expressed as
ratios (i.e. infection success or EB survival as fractions of
the family or group totals), could not be applied on the
individual level, given the binary nature of the survival
data. To assess potential tank effects redundant of
exposure time, the Pearson residuals of the model were
plotted against tanks and no such effects were observed
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(Additional file 1: Figure S1). Thus, we conclude that the
covariate ‘tank’ was not likely to independently contribute
to the survival frequency in the EB challenge. Again, a
full model including all explanatory variables could not
be fitted, due to the limited number of individuals in
some combinations of levels of these variables, and the
fact that some of the variables were confounded. We
therefore formulated an a priori set of models and
identified the best model based on AIC (Table 4). The
models were formulated with the individuals’ post-trial
status (survivor/immobilised) as the binary response,
family as random intercept, and the rest of the ex-
planatory variables: experimental group, gender, sire,
dam and exposure time, as fixed effects (Table 4). Ex-
posure time was entered as a numeric covariate. Family
was entered as a random effect to account for autocor-
relation within families when assessing the relative
importance of other explanatory variables. As stated
for the common-garden analysis above, we also included
models where family was defined as a fixed effect, in order
to assess the explanatory power of family.

Potential relationship between clutch size and the fam-
ilies’ response in the EB trial was investigated by a separate
logistic regression. Family 2 and Family 5 were excluded
from this analysis as for the infection success.

All statistical analyses were conducted using the com-
puting environment R [77] with mixed-effects models fit
using [me4 [78]. In all significance tests, the tests were
considered significant at the P < 0.05 level.
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Results

Production of experimental families in single-fish tanks
During the stage of family production when louse couples
were kept in single-fish tanks (31 days from couple forma-
tion to sampling), two lice, one of each sex, were found
alive in the filters and were successfully reattached to the
fish. Five female and eight male lice permanently detached
from their host fish. Out of these, seven were recovered
from the filters and sampled onto 99.5% ethanol tubes.
However, a total of three females (one from the resistant,
and two from the sensitive strains) and three males (two
from the resistant, and one from the sensitive strains)
could not be accounted for. These lice were possibly
consumed by the fish.

Due to loss of lice parent(s), absence of egg strings, egg
strings hatching to a low degree or not at all or inactive
copepodids, 19 couples out of the initial 36 were excluded
from further use in the experiment. See Table 1 for a
summary of the rejection statistics. Among the 17 fam-
ilies selected for the remainder of the experiment, seven
originated from the unknown strain, two families repre-
sented the resistant strain, and seven families were hybrids
(resistant sire x sensitive dam (RxS) N =3, and sensitive
sire x resistant dam (SxR) N =4). Only one family from
the sensitive laboratory strain could be used, primarily due
to low hatching results.

In 15 of the selected families, the offspring originated
from a full pair, i.e. two strings of 2" sets of egg strings.
Family 2 (N =214 copepodids) hatched from one single

Table 4 Models applied to survival data from the emamectin benzoate challenge, ranked by AIC

Model Fixed effects Random effects df AIC AAIC
eb.m13 Family, Exposure time, Gender - 19 2084.7 0
eb.m12 Family, Exposure time - 18 20993 14.6
eb.m11 Family - 17 21094 24.7
eb.m1 Exposure time, Gender, Group (1xH) Family 7 21119 27.2
eb.m?2 Exposure time, Gender, Group (2xH) Family 8 21134 28.7
eb.m4 Exposure time, Gender, Dam Family 6 21155 308
eb.m3 Exposure time, Gender, Sire Family 6 21176 329
eb.m5 Exposure time, Gender Family 4 21250 40.3
eb.m6 Exposure time, Group (1xH) Family 6 21260 413
eb.m7 Exposure time, Group (2xH) Family 7 21275 428
eb.m9 Exposure time, Dam Family 5 21301 454
eb.m8 Exposure time, Sire Family 5 21322 475
eb.m10 Exposure time Family 3 21395 54.8
eb.m14 Exposure time - 2 25379 4532

GLMs and GLMMs testing for the relative influence of different background covariates on the EB trial results. The models are ranked based on AIC, where a lower

AIC value reflects a better model fit to the data.
Response variable: Status after the EB challenge; living or immobilised/dead.

Covariates (fixed and/or random effect variables): Family, Group (1H), Group (2H), Sire and Dam = as listed for Table 3. Exposure time = 20, 21, 22 or 23 hours of EB

exposure. Gender = female or male.
Test results: degrees of freedom (df), AIC values and changes in AIC (AAIQC).
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egg string and Family 5 (N =91 copepodids) hatched
from a short 1° set pair of egg strings. The numbers of
copepodids contributed by the 17 families to the infec-
tion batch (268 +119; mean + SD) varied from 157
(Family 15) to 582 (Family 8).

Common-garden experiment

In this study, the term ‘infection success’ has been chosen
to represent the relationship between the number of lice
recovered from the tank at 34 DPI, as a percentage of the
number of copepodids used in the infection. Of the total 4
554 copepodids used to infect the four replicate tanks, 1
966 (492.5 £ 33; mean + SD for tanks) managed to suc-
cessfully attach to fish and survive until the termination
on 34 DPI. This gives an overall infection success of 43%.

There were no significant differences (Goodness of fit:
X*=6.71, 3 df, P=0.082) in overall infection success
between the four tanks. The overall proportion of females
and males in the total population was 52 and 48%, and
there was no significant difference in the gender frequency
between the four replicates (x* = 3.35, 3 df, P=0.34). The
vast majority, i.e., > 98% of the sampled lice, were preadult
II females and adult males.

In order to identify the 1 966 salmon lice recovered
from the four tanks to experimental group and family of
origin, these individuals were subject to parentage test-
ing using microsatellite loci. After genotyping with the
first multiplex combination of five loci the family affilia-
tions were established for a total of 1, 910 individuals
(97%). A second round of analysis for 11 loci, resolved
the pedigree of the remaining (n = 56) individuals, giving
100% family assignment for the data set.

Given the pedigree of all individuals it could be con-
cluded that there were no tank effects in the number of
surviving lice per family (x*=42.6, 48 df, P=0.69), or
experimental group (x* = 3.88, 9 df, P=0.92), in the four
tank replicates on termination day. Thus, infection success
data for groups and families was pooled over the four rep-
licate tanks (Figure 2A and B). Using these pooled data,
the infection success ranged from 19% to 50% between
the families (x2:116.7, 16 df, P<0.0001) (Figure 2B).
Despite differences in the initial numbers of copepodids
used per family (see Table 2), the frequency of surviving
individuals was consistent among groups and families,
with two exceptions that displayed markedly lower infec-
tion success: the ‘Sensitive’ Family 10 (29%), and Family
13 (19%) from the ‘Unknown’ group. If these two families
were excluded from the dataset, there were no significant
difference in infection success between the remaining 15
families (x* = 14.8, 14 df, P = 0.39), suggesting that the low
infection success of these two families accounted for the
observed difference in infection success between families.

As judged by the AIC, the best model for explaining
the infection success was model Cops.m5 (Table 3),
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including family only, as a fixed variable. The variable
was highly significant (Anova, analysis of deviance: df = 16,
P <0.001), and a dispersion factor of 1.004 indicated a good
model fit. However, the model only explained 2% of the
total deviance in the data. The low difference between AIC
values between models Cops.m0 to Cops.m4 indicates that
the influences of experimental group and parental strain
were of minor importance when family was included as a
random factor. However, as previously noted, infection
success for Family 10 and Family 13 deviated from the rest
of the families. In order to investigate how and if these
two families influenced the total family effect on the infec-
tion success, the same set of models was run for a data set
where these two families were excluded. This time, the
model where family was included as fixed effect was
ranked last (Additional file 2: Table S1), suggesting that
the previously identified family effect on the infection suc-
cess could be attributed to these two families primarily.

No relationship was detected between a family’s initial
number of copepodids and infection success (R* = 0.036,
P =0.50), indicating that, in this case, infection success
was independent of clutch size upon initiation of the
experiment.

Emamectin benzoate (EB) trial

Less than 2% (31 of 1 966) of the salmon lice died prior
to the EB trial, as a result of handling during sampling.
These individuals were not included in the one-dose EB
exposure.

In total, 37% of the salmon lice (n = 713) survived the
EB trial. The survival frequency varied significantly
between tanks (x> = 17.9, 3 df, P <0.001), ranging from
31 to 43% (Table 5). However, adjusting the data for
differences in EB exposure time, as described in the
Methods section, narrowed the survival range to 34 to
40% (Table 5), and removed this apparent tank effect
(x*=5.36, 3 df, P=0.15). When survival ratios were
viewed at the group level, the resistant and hybrid groups
demonstrated a distinct advantage over the sensitive and
unknown groups (Figure 3A).

Highly significant differences in survival ratios were
observed between families (x> =432, 16 df, P<0.001).
These ranged from 7.9 to 74% in the data pooled across
the four replicate tanks (Table 2, Figure 3B). As expected,
the survival ratios were relatively high, 46 and 57%, for
both families originating from the resistant strain, and
low, 8.2%, for the only family with two sensitive parents
(Table 2). There was large variability in survival between
the hybrid families (Figure 3B), ranging from 30 to 74%.
Thus, some of the hybrid families displayed survival
higher than the resistant families; while other hybrid
families displayed survival lower than the resistant fam-
ilies. When comparing the survival of families from the
two hybrid combinations (i.e., resistant mother crossed
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Table 5 Summary of common-garden and EB trial results
from the replicate tanks

Tank Common-garden infection  EB challenge

ID No (cops) nsS % S No (lice) NS %S % Scorr
Tank 1 NA 503 1.0 499 216 433 390
Tank 2 NA 443 9.73 437 153 350 335
Tank 3 NA 518 114 507 193 381 395
Tank 4 NA 502 11.0 492 151 307 352
Total 4 554 1 966 432 1935 713 368 369

N, (cops) = initial number of copepodids at infection; the total number of
individuals in the infection batch was split between the four tanks. n S =number
of survivors at termination. % S = ratio of survivors divided by the initial numbers
of individuals. For the common-garden trial, this is given as percentage of the
total number of copepodids (N, (cops)), in the EB challenge as percentage

for each tank. Ny (lice) = initial number of salmon lice in the one-dose EB trial.

% S = survival ratio for exposure time corrected data.

with sensitive father and vice versa), families of both
types were among those displaying higher and lower
survival compared to the two families produced from
the resistant strain.

Variation in survival between the seven families of
unknown susceptibility to EB was high (7.9 to 38%). There
was, however, a distinct pattern: two families out of seven;
Family 15 (38% survivors) and Family 17 (30% survivors)
exhibited markedly lower sensitivity to EB (within the
lower range for the hybrids’ results) than the other five
families, which varied from 7.9 to 9.4% survival, corre-
sponding to the level of the sensitive family, see Figure 3B.

Altogether; 40% of the female salmon lice and 33% of
the males survived the EB challenge. This was also
reflected by higher survival scores for females over males
in 14 out of the 17 families (Figure 4).

Model comparison: Judging by the AIC, the best fitted
model was obtained when exposure time, family and
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gender were included as fixed variables (Table 4), the
model explained 19.6% of the deviance and a disper-
sion factor of 1.02 indicated a good model fit. All three
variables were highly significant (Anova: P < 0.001), but
differed in influence; 18.5% of the total deviance was
independently explained by family, while 0.5% and 0.4% of
the deviance was explained by exposure time and gender,
respectively.

As judged by the low difference in AIC (<2) between
the models eb.m1 and eb.m2 and between eb.m6 and
eb.m7 (Table 4), dividing the hybrid families into two
groups by parental combination did not provide a more
parsimonious description. Thus, there was no indication
whether or not the mechanism involved in EB tolerance
is inherited primarily from either the maternal or the
paternal side. The logistic regression revealed no rela-
tionship (R*=0.0094, P =0.73) between family clutch
size and family survival in the EB trial.

Change in distribution of families throughout the
experiment

Looking at the seven unknown families collected at the
farm, at three stages of the experiment; infection (Figure 5A),
sampling (Figure 5B) and after termination of the EB trial
(Figure 5C), the distribution of family representation in
the overall population changed clearly between the start
of the experiment and after termination of the EB trial
(Figure 5A, C). For example, families 15 and 17 only rep-
resented 18% of the 7-family population at the start of the
experiment, while at the end of the experiment they repre-
sented 50% of the population. Likewise, families 12, 13
and 16 represented 53% of the population at the start of
the experiment, while their representation dropped to
only 26% upon termination. For both the overall data and
the family data, the shifts in distribution of types or fam-
ilies represent the accumulated differential mortality as a
result of infection success and survival in the EB trial.
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Discussion
Development of resistance on fish farms
The development of resistance in target organisms, against
farming pesticides or antibiotics in medical practice are
examples of human-induced evolutionary changes [79,80].
In food production, resistance to pest control agents
represents one of the greatest challenges experienced
on a global scale. Cage-based marine salmonid farming
is dependent upon chemicals to delouse fish at some
stage of the production cycle. This is especially true in
regions of high farm density which tend to suffer higher
infection levels [81]. Considering the limited number of
compounds certified for treatment against sea lice in
aquaculture, and the documented emerging resistance
of L. salmonis to most of these chemicals, this is a critical
situation for the continued development of this industry.
Examples of L. salmonis displaying resistance, or reduced
susceptibility, have been documented for the majority of
the chemicals used to delouse fish in commercial fish

farms. This includes organophosphates (azamethipos, di-
chlorvos) [41,82], pyrethroids (cypermethrin, deltamethrin)
[44,45], avermectin (emamectin benzoate) [46,48,83] and
the disinfectant hydrogen peroxide [43]. Thus far, there
have been no records of L. salmonis displaying reduced
sensitivity or resistance towards the growth inhibitors
diflubenzuron and teflubenzuron. However, resistance
development against diflubenzuron [84] and target-site
mutations conferring resistance towards other chitin in-
hibitors with similar modes of action [85] have been docu-
mented in terrestrial arthropod pests, and it is therefore
possible that L. salmonis will also develop resistance to
diflubenzuron and teflubenzuron.

As a consequence of decreased sensitivity or resistance
towards the major chemicals used for delousing on com-
mercial farms, integrated pest management programs for
sea lice have been extended to cover the handling and
prevention of resistance development to chemicals used
at fish farms [86,87]. Key elements of these strategies

Family 13

A B
Family 12 ' Family 12

C
Family 12

Family
13

Family 13 '

Figure 5 An illustration of experimental selection, as a proportional shift between families during the experiment. The change in
relative representation of individuals between the seven families defined as ‘unknown’, at different stages of the trials. A: Initial number of
copepodids from each family at the infection. B: Number of lice present at termination of the common-garden trial (34 DPI). C: Final proportions
of surviving individuals after the EB trial. Families are ranked by their performance in the EB-trial and plotted in falling order, from the darkest slice
at 12 o'clock, representing the family scoring highest, and descending clockwise.
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include: frequent counts of lice on farms, synchronised
delousing among farms within regions, rotation of chem-
ical treatments, fallowing areas and the development of
bioassays for resistance monitoring. Bioassays, used as
pre-treatment tests for assessing functional doses for spe-
cific chemicals, and designed to detect increased tolerance
towards chemicals before they result in treatment failures
at salmon farms, are considered valuable tools in resistance
management [88]. Results from bioassays are typically
reported as ECso values; which is the concentration of
the chemical intended to be used on the farm that will
immobilise 50% of the individuals [52,54]. However, while
these bioassay techniques are useful for detecting an over-
all change in tolerance in a group of lice, the underlying
genetic structure and the distribution of the sensitivity dif-
ferences within the group of lice is not necessarily directly
inferred from the ECs, value itself [89]. Thus, farms are at
risk of using chemicals to delouse groups of fish when the
bioassay results give a satisfactory sensitivity level on a
sample of lice collected from the fish prior to treatment,
but due to the underlying distribution of reduced sensitiv-
ity in the population, may still be leading to increased re-
sistance. This situation has been illustrated in the present
study where clear differences in susceptibility to EB were
observed among families of lice originating from the farm
located on Streno, despite the fact that the farm had not
reported any treatment failures. Possible consequences of
this were demonstrated by the pronounced shift in family
representation in the group of lice originating from this
farm, before and after the single dose trial was conducted
(Figure 5). Extrapolating our results from the laboratory
to the farm, these results illustrate how the development
of resistance can occur on a commercial farm, even in the
apparent absence of treatment failure in the first instance.
Repeated treatments on that farm would have likely
resulted in a gradual increase in the ECsy value where the
frequency of lice displaying the resistance allele(s) would
have increased. While the experimental system presented
here does not intend to replace bioassays used for routine
testing within the aquaculture industry, it nevertheless
enables the opportunity to investigate the underlying
distribution of heritable variability for chemical resistance
within lice.

Fitness implications of EB resistance

The present study was not designed to specifically address
potential fitness consequences associated with decreased
sensitivity to EB. However, there was no evidence to sug-
gest lower infection success or reduced clutch sizes in
families displaying a higher degree of EB tolerance than in
more sensitive families. Therefore, for these specific traits,
and under the described experimental conditions, no fitness
cost associated with EB tolerance was observed in this
study. This is consistent with results from an experiment
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where no significant differences in reproductive output,
measured as hatching success and copepodid survival, were
detected between a sensitive, a resistant, and a hybrid strain
of L. salmonis reared for multiple generations [48]. Fur-
thermore, in that study, no decrease of EB tolerance was
detected over multiple generations in the absence of
EB-based selection. Thus, taken together, none of the
results from these two studies suggest that development
of EB resistance in L. salmonis is associated with a clear
cost in fitness. For the other chemical groups where de-
creased sensitivity or resistance has been documented in
L. salmonis, there is little knowledge at present regarding
potential fitness costs associated with resistance. However,
the azamethipos-resistant type of the enzyme acetylcholin-
esterase has been confirmed in L. salmonis 3-5 years after
the use of organophosphates was discontinued in the re-
gion [82], which suggests a relatively low fitness costs for
this specific resistance mechanism.

Resistance development and potential fitness costs of
resistance to pesticides have been extensively studied in
insects. There are examples where resistance development
is associated with clear fitness costs [90,91] as well as
studies where no fitness costs could be detected [92,93].
Turning back to the salmonid farming industry and EB
resistance in L. salmonis, the practical consequences of a
‘low fitness cost’ scenario could be that even in the ab-
sence of direct selection pressure, emerging genotypes for
decreased sensitivity or resistance to EB may prevail in sea
lice populations for many generations after the last treat-
ment. This might render the chemical useless for a long
period of time. Also, this could serve as the backdrop for
the emergence of multiresistance if, as part of a treatment
rotation practice, another delousing substance is taken
into use while part of the regional lice population still
carry traits of EB tolerance. Furthermore, given the disper-
sal potential of L. salmonis, manifested by the species’
weak population genetic structuring throughout the At-
lantic [70,94,95], it is likely that the mutations causing the
resistance may quickly spread between regions, further
complicating the management of resistance development.
Thus, the aquaculture industry needs to ensure correct
application of this chemical to delouse commercial salmon
farms in order to prolong its usable life, which should
include more detailed surveys of tolerance levels than
bioassays alone.

Experimental system functionality and implications for
studying evolutionary processes in lice

Evolutionary questions in parasites are notoriously dif-
ficult to address, in part due to the lack of suitable
experimental systems in which it is possible to conduct
reproducible experiments. Firstly, such systems require
the ability to control the life-cycle of the parasite under
experimental conditions. This involves both parasite and
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host-specific considerations. Secondly, such a system must
have the potential to control and manipulate the parasites’
environment, and at the same time control reproduction
and mating in order to be able to evaluate fitness and
adaptation under different conditions. The experimental
system presented here fulfils these critical elements, and
thus, represents a significant advance to address evolu-
tionary questions in L. salmonis. Furthermore, it highlights
the opportunity to build similar systems to address evolu-
tionary questions in similar copepods.

The number of L. salmonis families produced and used
in the current experiment was constrained by numbers
of experimental tanks, the numbers of hosts that could
be accommodated in each tank, and not least, animal
welfare considerations regarding the maximum number
of L. salmonis permitted per host. Thus, by choosing to
include five experimental groups of L. salmonis in the
experimental set-up, the number of families was low for
some of these groups. Specifically the ‘sensitive’ strain
consisted only of one family that also displayed a low
infection success, and the resistant strain was only rep-
resented by two families. As a result, this challenged
quantitative comparisons between some of the strains.
Nevertheless, the main focus of this study was to con-
struct and test an experimental system for comparing
differences between families, which was demonstrated
with high accuracy. This was the first attempt to com-
bine these methods, and the noted challenges could be
avoided in subsequent studies by using larger tanks
with more host fish in them, or alternatively, by restricting
the number of strains to be investigated in each trial.

Despite the somewhat unbalanced distribution of
families between experimental groups, the system demon-
strated its potential to uncover relationships between
phenotype and genotype by displaying differences in
infection success and EB tolerance between families of
L. salmonis. There is a range of other evolutionary
questions linked with this and similar parasites which
are now accessible via this or similar experimental
setups. For copepods in general, very little is known about
their capacity to evolve in response to changing environ-
mental or ecological conditions [96]. While farming-
induced evolutionary changes in life-history and virulence
in L. salmonis have been suggested [61], and adaptations
to other environmental parameters such as temperature
and salinity may exist in this and similar species, these
remain to be addressed and validated. Furthermore, gen-
etic differences in susceptibility to L. salmonis have been
detected between different families [36,97], populations
[98,99] and species of salmonids [100,101]. While much of
these differences are likely to reflect differences between
host individuals in their ability to reject the parasite
[101,102], the experimental system described here also
permits the ability to develop experiments evaluating for
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example host preference of lice families produced from
different strains adapted to different host types.

Conclusions

Overall, the different components of the experimental
setup performed in a robust manner, which permitted
for the first time, quantification of phenotypic differences
in infection and chemical tolerance parameters among
strains and families of L. salmonis. To our knowledge, this
represents the first study where families of any multi-
cellular parasite have been established and compared in
performance under communal rearing conditions in a
so-called common-garden experiment design. This was
achieved by combining predictable and well-established
full life-cycle rearing systems [63], production of fam-
ilies where both paternal and maternal contribution was
controlled from strains with defined backgrounds in EB
tolerance, and high throughput microsatellite genotyping
[94] in order to conduct parentage testing. This represents
a major advance in the tools available to study evolution-
ary questions in L. salmonis, and other caligid copepods in
general.

Availability of supporting data
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available in the Dryad Digital Repository: http://dx.doi.
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distinctly lower infection success (Family 10 and Family 13) were
excluded from the dataset.
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results for production of families in single tanks and for all individual lice
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