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Abstract

Background: The reconstruction of the phylogenetic tree topology of four taxa is, still nowadays, one of the main
challenges in phylogenetics. Its difficulties lie in considering not too restrictive evolutionary models, and correctly
dealing with the long-branch attraction problem. The correct reconstruction of 4-taxon trees is crucial for making
quartet-based methods work and being able to recover large phylogenies.

Methods: We adapt the well known expectation-maximization algorithm to evolutionary Markov models on
phylogenetic 4-taxon trees. We then use this algorithm to estimate the substitution parameters, compute the
corresponding likelihood, and to infer the most likely quartet.

Results: In this paper we consider an expectation-maximization method for maximizing the likelihood of (time
nonhomogeneous) evolutionary Markov models on trees. We study its success on reconstructing 4-taxon topologies
and its performance as input method in quartet-based phylogenetic reconstruction methods such as QFIT and
QuartetSuite. Our results show that the method proposed here outperforms neighbor-joining and the usual
(time-homogeneous continuous-time) maximum likelihood methods on 4-leaved trees with among-lineage
instantaneous rate heterogeneity, and perform similarly to usual continuous-time maximum-likelihood when data
satisfies the assumptions of both methods.

Conclusions: The method presented in this paper is well suited for reconstructing the topology of any number of
taxa via quartet-based methods and is highly accurate, specially regarding largely divergent trees and time
nonhomogeneous data.

Keywords: Tree topology reconstruction, Expectation-maximization, Quartet-based method, Evolutionary Markov
model

Background
Obtaining a good method for reconstructing the phyloge-
netic topology of four taxa is one of the crucial goals in
phylogenetics. The four-taxon trees, if correctly inferred,
can be used as input of quartet-based methods in order
to reconstruct larger trees. But due to the complexity
of real data, the problem of reconstructing four-taxon
trees is not so easy. Most phylogenetic reconstruction
methods assume simple evolutionary models that may
not really fit real data, which leads to incorrect phy-
logenetic inference ([1-5]). For example, many of them
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rely on continuous-time Markov processes with a con-
stant instantaneous mutation rate matrix along the tree
(the so-called global homogeneity), and also assume time-
reversibility (and hence stationarity). On the other hand,
as pointed out in [6], in order to make quartet-based
methods work it is extremely important to obtain 4-taxon
tree reconstruction methods that are not affected by the
presence of long-branch attraction [7].
Most evolutionary models are described by a Markov

process over the tree, that is, conditional rates of change at
two diverging sequences depend only on the current state
and are independent of the previous sates ([8], chapter
8.2).Markov processes on trees are specified by a distribu-
tion at the root of the tree and a transition matrix at each
branch and, in contrast to continuous-time models, the
Markov process on each branch is not assumed to be time-
homogeneous [9] (that is, they are locally heterogeneous).
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These models directly consider as parameters the entries
of the substitution matrices and the root distribution (see
[8], chapter 8, [10], § 4.2). Barry and Hartigan [11] con-
sidered such a general Markov model (henceforth called
GMM), which does not assume any other constraints.
In particular, it is locally and globally time nonhomoge-
neous (instantaneous substitution rates are not constant
on any edge, nor on the whole tree) and it is neither
time-reversible nor stationary. The only restriction under-
lying this model is that sites evolve independently and are
identically distributed (i.i.d. hypothesis). Considering this
model and its submodels is one way of covering more gen-
eral scenarios, in contrast to those phylogenetic methods
that implement time-homogeneous and time-reversible
continuous-time models (GTR and its submodels) cf [9].
The GMM above accounts for 12 parameters per edge

plus three parameters for the root distribution. When
some symmetries on the transition matrices or on the
root distribution are imposed, one obtains the substi-
tution matrices of the corresponding Jukes-Cantor and
Kimura (2 and 3 parameters) models among others (([10],
§ 4.2),[12], seeMethods section). For instance, theMarkov
version of the K81 model [13] (henceforth referred to as
K81*) deals with 3 parameters per edge (one for the condi-
tional probability of transitions, and two for the two types
of transversions, see the Methods section) which makes
a total of 3 ∗ (2n − 3) parameters in unrooted trivalent
trees with n leaves, whereas the usual time-homogeneous
continuous-time version accounts for 2 parameters for
a normalized instantaneous rate matrix constant over
the tree plus one parameter per edge length (that is,
2 + (2n − 3) parameters on an unrooted trivalent tree).
Notice, however, that if one considers a time nonhomoge-
neous continuous-time Kimura 3-parameter model, then
the number of parameters is exactly the same as for K81*.
In this case, the only difference between both models
is that K81* does not even assume local homogeneity
(that is, time homogeneity over each branch), while all
time-continuous models do. The huge amount of param-
eters for nonhomogeneous models makes a maximum-
likelihood approach unfeasible and unreliable for a whole
tree on n taxa if n is large. Nevertheless, there is some hope
that these more general models lead to accurate meth-
ods on 4-taxon trees. In our setting, we only deal with
substitutions of nucleotides (not aminoacids) on 4-taxon
trees and we will always assume the i.i.d. hypothesis (thus
excluding the possibility of heterogeneity across sites).
In this paper we develop a maximum likelihood frame-

work for inferring the best tree topology under (gen-
eral) Markov processes. Our approach is based on the
widely used Expectation-Maximization algorithm. The
Expectation-Maximization algorithm (EM), as introduced
in [14], is an iterative algorithm for findingmaximum like-
lihood estimates of parameters in statistical models that

deal with unobserved data. We have adapted this algo-
rithm to the case of phylogenetic 4-taxon trees in what
we call EMtree. EM iteratively gives an expectation of
the distribution of the nucleotide sequences at the interior
nodes (this is called the E-step) and finds the parameters
thatmaximize the likelihood for these data in the so-called
M-step (because the parameters for which the maximum
likelihood is achieved can be computed in a closed form
for complete data). The EM algorithm has been applied to
many other disciplines (see for example [15]).
The use of the EM algorithm to estimate the continuous

parameters of a phylogenetic tree under a Markov process
(namely, the root distribution and the entries of the tran-
sition matrices) has been already discussed in [9] and [16].
In this paper we focus on the use of EMtree for estimat-
ing the tree topology for four taxa and test its performance
in reconstructing the correct tree topology on simulated
data. We shall see that, although it is a time consuming
algorithm, it can lead to very accurate results.
First of all we test it as a 4-taxon tree reconstruction

method by using the tree space proposed by Huelsenbeck
[17] on data simulated from a general Markov process first
and then restricting to a time-homogeneous (continuous-
time) process. We compare EMtree to neighbor-joining
and to the usual (continuous-time) maximum likelihood
approach under both global homogeneity and nonho-
mogeneity (note that throughout the experiments we
will restrict to time-reversible models to simulate and to
recover trees). As all models considered will be stationary
(and with uniform stationary distribution), we will not be
evaluating compositional heterogeneity but only the effect
of the variation of substitution rates among lineages [18].
Afterwards, we use these three methods as input of two
quartet-based methods: one weighted (Willson’s Quartet-
Suite [19,20]) and one unweighted (MaximumQuartet Fit,
QFIT as implemented in Clann [21]); and compare their
performance on the 12-taxon trees proposed in [6]. Spe-
cially for largely divergent trees, we observe that EMtree
gives the best results and is less subject to long-branch
attraction.

Results and discussion
In this section we present the results of the topol-
ogy reconstruction method EMtree on simulated data
evolving both under homogeneous and nonhomogeneous
Markov processes.
In Figure 1 we present the performance of three dif-

ferent topology reconstruction methods on the 4-taxon
tree space proposed by Huelsenbeck [17] (see Methods
section): Figure 1(a) for the usual neighbor-joining (NJ)
with the K81 distance, 1(b) for the usual maximum likeli-
hood tree (ML) assuming time-homogeneous continuous-
time K81 model, and 1(c) EMtree for K81* model. The
Huelsenbeck tree space covers a wide range of branch
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Figure 1 Results of three different topology reconstruction methods: NJ, ML and EMtree. Results of the three different topology
reconstruction methods NJ (a), ML (b) and EMtree (c) on the tree space proposed by Huelsenbeck on K81* data (x-axis corresponds to parameter
a in Figure 2 and y-axis to parameter b in the same figure). Black cell is drawn if the topology is 100% correctly reconstructed on the simulated data.
White square denotes 0 to 33% success, and the gray scale in between. Left figures correspond to alignments of lengths 300 bp and right to 1000 bp.

lengths for 4-taxon trees: parameters a and b denote
branch lengths as indicated in Figure 2 and they were var-
ied from 0.01 to 0.75. For each pair (a, b) we draw a black
cell if the topology is correctly reconstructed on the 100
simulated alignments; a white cell denotes less than 33%
success; and the gray scale used in between is shown in
the figures. The alignments were generated following the
K81* model (see the Methods section) and had length 300
(Figure 1 left) and 1000 bp (Figure 1 right).
The results show that NJ has difficulties in the Felsen-

stein zone where the long-branch attraction problem is

present (that is, small a and large b) and ML fails for
largely divergent trees (note that trees here have at most
2.25 pairwise divergence, whereas similar studies have
even used divergences of about 7.0 expected substitutions
per site [18]). The EMtree algorithm seems to over-
come these two difficulties and is clearly more accurate
than NJ and ML in this tree space. Nevertheless, we need
to point out that the data were simulated according to
K81* model, which fits the assumptions of EMtree but
not of NJ nor ML methods (indeed, these last two meth-
ods are based on the continuous-time Kimura model and



Ibáñez-Marcelo and Casanellas BMC Evolutionary Biology 2014, 14:132 Page 4 of 12
http://www.biomedcentral.com/1471-2148/14/132

Figure 2 Tree with two parameters as branch lengths.
Four-taxon tree used to simulate data in the Huelsenbeck tree space.
Parameter a denotes the length of the inner and two outer branches
and parameter b is the length of the other peripheral branches.
Branch length is measured as the expected number of substitutions
per site and varies between 0.01 and 0.75 in our simulations.

assume homogeneousmutation rates along lineages). This
model misspecification for ML leads to in incorrect infer-
ence of parameters, which is even more extreme for long
branches [18] (this justifies the bad performance of ML in
the lower right corner of Figure 1(b)). To confront this sit-
uation, we also generated data under time-homogeneous
continuous-time K81 model. The results are depicted in
the left column of Figure 3 and clearly show a similar
success of ML and EMtree in this case.
In order to compare EMtree to time nonhomogeneous

but continuous-time ML, we generated data evolving
under a continuous-time nonhomogeneous K81 model.
This is a special case of K81* and therefore this model
matches both approaches: EMtree (on its K81* ver-
sion) and bppml [22] restricted to a nonhomogeneous
continuous-time K81 model. On Figure 3 (right) we
present the results of these two methods on nonhomo-
geneous K81 data to show that both methods perform
similarly and outperform NJ.
Although EMtree may give more accurate results on

more general data, it is a time consuming algorithm.
Indeed, on 4-taxon trees, EMtree is almost 1000 times
slower than NJ and more than 2000 times slower than
ML. For example on 100 4-taxon alignments of 600bp, the
execution time on a Intel(R) Core(TM) i5-4200U CPU @
1.60GHz (only using one of the four CPU) was 186.66s for
EMtree on K81*, 0.06s for PAML ML on homogeneous
continuous-time K81, 211.45 for bppml on nonhomoge-
neous K81 model, and 0.16s for NJ (with K81 distances).
Now we present the results that test the use of EMtree,

NJ, and (time-homogeneous continuous-time) ML as
methods to obtain the input for the quartet-based meth-
ods QuartetSuite and QFIT on data generated under
K81* model.

For the three topologies on twelve taxa studied here
(called cc, cd, and dd –see Figure 4 and the Methods
section), we give the proportion of the (one thousand)
reconstructed trees whose Robinson-Foulds distance to
the original topology is equal to 0, 2, 4, 6 or > 6, for both
QuartetSuite and QFIT, and for the three input methods
under study. The results are displayed in Figures 5 (Quar-
tetSuite) and 6 (QFIT) for simulated alignments of 600
bp and in Figures A1 and A2 of the Additional file 1 for
300 bp. The figures for both alignment lengths are simi-
lar and present the same trends (slightly better for 600 bp
for all methods, as expected), so we let the results on 300
bp for the Additional file 1. In Figure 5 we also present the
performance of a global NJ and a global ML (estimating
time-homogeneous continuous-time K81 model).
In both quartet-based methods (QuartetSuite and

QFIT), the reconstruction of the cc topology presents the
best results compared to the others, independently of the
algorithm used as input quartets (EMtree, NJ, or ML).
The same tendency is shared by global ML and NJ. Con-
versely, the topology dd is never correctly reconstructed
for any of the methods or branch lengths. It is worth not-
ing that cc is the topology that would have the least long
branch attraction and dd is the one that would have the
most (cd is in between because half of the tree comes
from cc and the other half comes from dd). Therefore our
results are consistent with the observation in [6] that the
success of a quartet based method depends on the capac-
ity of the input method to correctly reconstruct 4-taxon
trees under the long-branch attraction problem.
In both Figures 5 and 6 we observe that the perfor-

mance of ML and EMtree is quite similar in most cases,
although ML never outperforms EMtree. A detailed look
at these figures reveals that for largely divergent trees (that
is, b = 0.1, the last bar in each plot), EMtree is the best
quartet input method among those considered here, as its
results outperform NJ and ML for both QuartetSuite and
QFIT and in all tree topologies. We find the explanation
of this result in the management of long-branch attrac-
tion by the different methods considered. Long branches
lead to similar sequences as a result of multiple substitu-
tions and, as ML estimates have been computed on awrong
substitution model, this method is more influenced by
long-branch attraction. EMtree has also a better success
than a global NJ and a global ML on the trees cd and dd,
but on the “easiest” tree cc, a global ML is more accurate.
For the largely divergent cc tree, a global ML has bet-
ter average performance than EMtree (see also below),
but it never succeeds in fully reconstructing the topology
(whereas EMtree does in about 2% of the alignments).
When considering the QuartetSuite method, NJ is

clearly the worst quartet input method for all tree topolo-
gies and branch lengths. This is probably due to the fact
that the Willson method implemented in QuartetSuite
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Figure 3 Results of three different topology reconstruction methods: NJ, ML and EMtree. Results of the three different topology
reconstruction methods NJ (a), ML (b) and EMtree (c) on the tree space proposed by Huelsenbeck (see Figure 2). On the left, data have been
generated using a time-homogeneous continuous-time K81 model and the topology is estimated by NJ (with K81 distance), ML (estimating a
homogeneous K81 model), and EMtree (on K81*). On the right, data have been generated using time nonhomogeneous continuous-time K81
model and the topology is estimated by NJ (with K81 distance), ML (estimating time nonhomogeneous K81 continuous-time model), and EMtree
(on K81*). The alignments considered in this figure have length 600 bp.

is intended for weighted quartets, whereas NJ quartets
are given only binary weights. On the contrary, for the
unweighted method QFIT, NJ seems to be more accurate
than ML and EMtree for topologies cc and dd but only for
low divergence (b = 0.005 or b = 0.015).
We want to point out that, in general, QFIT gives worse

results than QuartetSuite (except for the NJ algorithm

used as input in the cc and cd topologies with low diver-
gence), reinforcing the idea that weighted methods are
more reliable [6,23].
In Tables 1 and 2 we display the mean of the Robinson-

Foulds distance of the same study on the 12-taxon trees,
and its variance in parentheses (Table 1 for Quartet-
Suite, and Table 2 for QFIT). Results are presented for
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Figure 4 Twelve-taxon topologies used in the paper: cc, cd ,dd. Twelve taxa topologies used in the paper, named according to [6]: cc (left), cd
(middle), dd (right); b is the branch length parameter that varies in {0.005, 0.015, 0.05, 0.1} along the paper.

alignments of 600 bp and have to be interpreted as less
mean, better approximation (results for 300 bp are simi-
lar and appear in the Additional file 1, Tables S1 and S2).
For each tree topology and each choice of parameter b, the
best method (according to the lowest mean) is marked in
bold print.
In these tables we observe that QuartetSuite gives the

lowest distance to the original tree in general and that
the best results for largely divergent trees (b = 0.1) are
obtained by EMtree (for both QuartetSuite and QFIT
and all tree topologies). Whenever the mean of Robinson-
Foulds distance for (quartet-based) ML is lower than the
mean for EMtree, there is no significant difference. Over-
all, EMtree is the method that outperforms the other
two quartet input methods in most cases. As far as global
methods are concerned, it is worth pointing out the bad
performance of a global NJ on trees cd and dd (or cc with
b = 0.05 or 0.1), specially if one takes into account that the
Robinson-Foulds distance for the (less resolved) star tree
is 9.
When inspecting the variances, one sees that EMtree

is the only quartet input method that preserves low vari-
ances in all cases (global methods are the ones presenting
lower variance, though). Conversely, the variances are
extremely large for NJ with QuartetSuite in all differ-
ent scenarios, and they are also huge for (quartet input)
ML when the trees are largely divergent (b = 0.1). QFIT

presents low variances in all cases, for all input methods,
probably because the input information is less “subject
to vary” (the input only considers tree topologies, not
weights). It is worth pointing out that whenever quar-
tet input NJ outperforms ML and EMtree (only for
QFIT), it does so with larger variance than the other two
methods.

Conclusion
We tested the accuracy of the (likelihood-based) method
EMtree as a method to infer 4-taxon topologies under
(time nonhomogeneous) Markov models, and compared
it to NJ and ML (homogeneous and nonhomogeneous).
When EMtree and ML are tested on data satisfying
the assumptions of both methods, they have a similar
performance. Nevertheless, EMtree is based on time
nonhomogeneous models (both local and global time het-
erogeneity), and hence outperforms the other methods
when these assume homogeneity.
There are only few nonhomogeneous continuous-time

models that could be fairly compared to general Markov
processes, and one expects that under more complex evo-
lutionary scenarios (such as non-stationary or not time-
reversible data), the success of usual ML or NJ methods
(based on these assumptions) will be poorer (as shown in
[18]), confirming that an EM approach based on general
Markov processes, could be more recommendable.
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Figure 5 Results of QuartetSuite (quartet-basedmethod) with alignment length equal to 600. Results of QuartetSuite (quartet-based
method) for different topologies and different input methods on alignments of length 600. The first three rows correspond to different methods of
obtaining the quartets: NJ (a), ML (b), EMtree (c), and the two bottom rows correspond to global methods: (d) global ML (estimating
homogeneous continuous-time K81 model), (e) global NJ (with K81 distances). Columns correspond to the three different 12-taxon topologies
simulated: cc (left), cd (middle), dd (right).
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Figure 6 Results of QFIT (quartet-basedmethod) with alignment length equal to 600. Results of QFIT (quartet-based method) for different
topologies and different input methods on alignments of length 600. Each row corresponds to a different method of obtaining the quartets: NJ
(a), ML (b), EMtree (c). Columns correspond to the three different 12-taxon topologies simulated: cc (left), cd (middle), dd (right).

EMtree is a time-consuming algorithm, however, and
the user has to decide whether it is worth performing such
an analysis (we only recommend it for at most 6 taxa).
We have also assessed EMtree, NJ, and ML as input

for the quartet-basedmethods QFIT andQuartetSuite. To
do so, we have considered three different topologies on
twelve taxa evolving under tome nonhomogeneous pro-
cesses, and a wide set of branch lengths values. EMtree
turns out to be the input method that performs best in
most cases on this type of data. Regardless of the quartet-
based method chosen and the tree topology, EMtree

gives the best results for trees with large divergence
among taxa (b = 0.1).
Summing up, an EM approach on Markov models pro-

vides an accurate 4-taxon tree reconstruction method
suited for data not known to satisfy homogeneity and very
useful as input of quartet-based methods, specially for
largely divergent trees. However, the method presented
here is not valid for data violating the i.i.d. hypotheses,
such as data with variation across sites (Gamma-rates,
invariable sites, mixtures, and others), or dependency
among sites. The method should be strongly modified
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Table 1 Mean of Robinson-Foulds distance with QuartetSuite and global ML and NJ (variance shown in parentheses),
600 bp

Mean Robinson-Foulds distane with QuartetSuite, 600 bp

Top. Method b

0.005 0.015 0.05 0.1

cc NJ 7.63 (10.82) 6.55 (18.32) 10.70 (13.04) 12.82 (9.57)

ML 3.70 (4.91) 2.16 (1.46) 3.04 (1.42) 7.37 (19.97)

EMtree 3.77 (4.14) 2.22 (2.33) 3.20 (1.10) 3.62 (3.27)

global NJ 1.68 (3.42) 1.60 (0.64) 6.96 (10.76) 13.16 (1.45)

global ML 1.04 (3.08) 0.0 (0.0) 0.0 (0.0) 3.10 (0.99)

cd NJ 8.01 (14.01) 8.96 (11.61) 11.16 (12.54) 12.31 (10.48)

ML 5.16 (3.56) 3.34 (2.03) 3.39 (1.59) 8.12 (19.28)

EMtree 5.31 (3.96) 3.71 (2.82) 3.67 (1.61) 4.38 (4.12)

global NJ 5.80 (3.72) 5.56 (0.69) 8.44 (0.69) 13.12 (1.31)

global ML 5.04 (3.08) 4.0 (0.0) 4.0 (0.0) 6.60 (0.84)

dd NJ 10.55 (9.53) 9.45 (9.39) 10.90 (13.95) 11.97 (10.91)

ML 7.71 (3.67) 6.42 (1.12) 6.08 (1.58) 9.58 (17.09)

EMtree 7.58 (5.07) 6.87 (1.73) 5.94 (1.44) 6.60 (4.60)

global NJ 9.24 (0.94) 9.60 (0.64) 10.4 (2.88) 13.08 (1.31)

global ML 7.48 (0.77) 8.0 (0.0) 8.0 (0.0) 10.60 (0.84)

in order to accommodate these generalizations, and this
might be an interesting future project.

Methods
EM algorithm
Wehave implemented an expectation-maximization (EM)
algorithm on four-taxon trees evolving under Markov
processes. The core of the EM algorithm for phylogenetic
trees is:

- Input: Data D (multiple alignment of n sequences),
unrooted trivalent tree topology T with n leaves (and
e := 2n − 3 edges), Markov modelM.

- Initialization: Root the tree at some internal node and
provide tentative initial values for the root
distribution π and the substitution matrices Si
(i = 1, . . . , e), and a threshold ε > 0.

- Recursion:

– E-step: Provide complete data cD (for all
nodes in the tree) that maximizes the
posterior probability PT ,M(Si,π |cD) (unique
maximum that can be computed efficiently by
Felsenstein’s algorithm [24]).

– M-step: Compute the parameters Ŝi, π̂ that
maximize the loglikelihood

Table 2 Mean of Robinson-Foulds distance with QFIT and global ML and NJ (variance shown in parentheses), 600 bp

Mean Robinson-Foulds distance with QFIT, 600 bp

Top. Method b

0.005 0.015 0.05 0.1

cc NJ 1.05 (2.22) 0.67 (1.31) 8.12 (8.44) 12.97 (2.55)

ML 4.68 (0.90) 4.36 (0.98) 4.37 (0.80) 5.31 (2.03)

EMtree 4.58 (0.98) 4.21 (0.38) 4.25 (0.44) 4.66 (1.09)

cd NJ 4.60 (1.41) 4.47 (1.11) 9.53 (5.68) 11.56 (2.46)

ML 6.43 (0.88) 6.21 (0.37) 6.28 (0.48) 6.92 (1.18)

EMtree 6.41 (0.98) 6.11 (0.21) 6.20 (0.36) 6.51 (0.76)

dd NJ 7.93 (1.11) 8.41 (1.16) 10.23 (2.51) 9.96 (2.89)

ML 8.17 (0.74) 8.15 (0.27) 8.11 (0.20) 8.75 (1.14)

EMtree 8.14 (0.63) 8.05 (0.11) 8.06 (0.11) 8.44 (0.68)
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l({Si}i,π) = PT ,M,{Si},π (cD) for these
complete data (this maximum is unique and
can be computed in a closed form, see the
Additional file 1, section 2).

– If l({Ŝi}i, π̂) − l({Si}i,π) > ε, then set π = π̂ ,
Si = Ŝi (i = 1, . . . , e), and go back to E-step.

- Output: {Ŝi}i, π̂ and l({Ŝi}i, π̂).

We set up the EM algorithm with ε = 10−3 and forced
it to stop after 100 iterations if it had not finished.
Given four aligned nucleotide sequences s1, s2, s3, s4, we

run the EM algorithm for the three possible trivalent trees
on four taxa: T1 = (s1, s2|s3, s4), T2 = (s1, s3|s2, s4), T2 =
(s1, s4|s2, s3). Our tree reconstruction method returns the
tree topology for which the likelihood output by EM is
higher. This method is called EMtree throughout the
paper.

Models
To test the method proposed in this paper, we mainly used
the K81* model on four-leaved trees. This is, the evolu-
tionary process is a Markov process with uniform distri-
bution at the root and is specified by transition matrices
of type

⎛
⎜⎜⎜⎝

ai bi ci di
bi ai di ci
ci di ai bi
di ci bi ai

⎞
⎟⎟⎟⎠

on each branch ei. In the matrix above, the rows and
columns are labeled by nucleotides adenine, cytosine, gua-
nine and thymine (in this order), so that entry (j, k) stands
for the conditional probability that nucleotide j at the
parent node of edge ei is substituted by nucleotide k at
the child node. When trees evolve under this model, the
root becomes unidentifiable (different root locations may
give rise to the same joint distribution at the leaves, [10])
and, as a consequence, one can only expect to recon-
struct unrooted trees. This model does not assume a
constant instantaneous mutation rate matrix over the tree
and, therefore, trees evolving under this model are time
nonhomogeneous. The more restrictive models K80* and
JC* (Markov versions of Kimura 2-parameter and Jukes-
Cantor models) are obtained by imposing bi = di and
bi = ci = di, respectively ([10], § 4.2). All of them
are time-reversible (and hence stationary), and are part
of the so-called group-based models ([12,25]). The most
general model among Markov processes is the general
Markov modelGMM, which considers transition matrices
and root distribution without any further restriction and
is neither stationary nor time-reversible [10].
The other two methods that are confronted to EMtree

in this paper are Neighbor-Joining (NJ) and a usual

continuous-time maximum-likelihood (ML). The ML esti-
mates for homogeneous continuous-time K81 model [13]
(with a instantaneous mutation rate matrix constant over
the tree) have been obtained by the free software PAML
[26] (baseml program), whereas for nonhomogeneous
continuous-time K81 model we used the program bppml
in the Bio++ package [22]. Neighbor-Joining was imple-
mented considering the K81 distance [13]. When a global
ML was used on 12 taxa, we used PAML and set up the
stepwise addition option on this software.

Simulations
The simulated data in this paper has been produced
using the program GenNon-h of [27] and Seq-Gen [28].
GenNon-h produces directly transition matrices of the
required branch length (for any of the Markov models
described above) and therefore does not assume time-
homogeneity (not globally over the tree, nor locally at
the edges). Seq-Gen was used to generate data evolving
under continuous-time K81 model (both homogeneous
and globally nonhomogeneous). In order to generate non-
homogeneous data, we made the software generate var-
ious edges evolving at different instantaneous rates by
recording ancestral sequences. Alternatively, the software
Hetero [29] could be also used to generate (global) time
nonhomogeneous continuous-time data.

Tree space on 4-leaf trees
In order to test the performance of the proposed method
on four-taxon trees, we based our tests on the tree space
proposed by Huelsenbeck [17], so that it is possible to
compare our results to those obtained there with different
phylogenetic reconstruction methods. In this tree space,
two branch length parameters a, b on trees of four taxa are
varied. Parameter a assigns the branch length to the inter-
nal branch and two opposite peripheral branches, and
parameter b assigns the branch length to the two remain-
ing branches as in Figure 2. Parameters a and b represent
expected number of substitution per site and in this paper
are varied from 0.01 to 0.75 in increments of 0.02.
For each pair (a, b), we simulated one hundred align-

ments of lengths 300 and 1000 basepairs (briefly bp) under
the tree topology 12|34 (see Figure 2) and we inferred the
topology using the three methods EMtree, ML, and NJ.
The results for each method are shown in Figure 1.

Quartet-basedmethods
In order to assess the four-taxon tree reconstruction
method EMtree proposed above, it is important to test
its performance in quartet-based reconstructionmethods.
To do so, we considered two of these methods: Maximum
Quartet Fit (QFIT) and the method proposed by Willson
in [19]. QFIT choses the supertree that shares the maxi-
mum number of quartets with the source trees, whereas
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the other method choses the supertree that optimizes a
certain criterion based on the weights assigned at the
input quartets. We use the implementation of QFIT dis-
tributed in Clann [21] and the implementation ofWillson’s
method called QuartetSuite in [20]. While QuartetSuite
produces a tree that is expected to minimize inconsisten-
cies with quartets, QFIT uses heuristics to search through
the tree space (and we restricted this search to 100000
trees). As our intention was not to evaluate quartet-based
methods but testing our 4-taxon method in comparison
to others, our criterion to choose these two quartet-based
methods was the fact that they were freely available and
that one of them allowed the use of weighted quartets.
In QuartetSuite weights are understood as -log of the

frequency of a quartet, so that weights are nonnegative
and zero denotes the tree with most support. There-
fore we used the opposite of the loglikelihood output
by EMtree and baseml as weights of the correspond-
ing quartets. Weights for NJ were set up to be 0 for the
topology output by NJ and 999 for the other two trees.
We followed [6] to test the performance of our method

as input of quartet-based method. In that paper, the
authors consider three tree topologies on 12 taxa, denoted
as cc, cd and dd (see Figure 4), and fix the proportions
among their branch lengths in order to compare differ-
ent reconstruction methods. A parameter b denoting the
internal branch lengths is varied between 0.005, 0.015,
0.05, and 0.1, which gives a maximum pairwise divergence
along the tree of about 0.1, 0.3, 1.0, and 2.0 nucleotides per
site, respectively. The lengths of the simulated alignments
are 300 and 600 bp.
For each of these scenarios we generated 1000 align-

ments using GenNon-h and the Kimura 3-parameter
model as explained above. For each alignment, the tree
was estimated using QFIT andQuartetSuite with the four-
taxon methods EMtree, ML and NJ as input. Then the
Robinson-Foulds distance to the original tree (that is, the
number of partitions that are present in one tree but
not in the other) was computed using DendroPy sym-
metric_difference function [30]. The results are shown in
Figures 5, 6, A1 and A2 (in the Additional file 1), and
in Tables 1, 2, and S1, S2 (in the Additional file 1), and
explained in the Results section.

Additional file

Additional file 1: A pdf file containing figures A1, A2, and tables S1,
S2 in section 1 and the explicit computation of theM − step for K81*
model in section 2.
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