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Abstract

Background: Across heterogeneous environments selection and gene flow interact to influence the rate and
extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of
phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes
colonization and survival in novel environments and in doing so may increase the potential for future population
differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of
phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait

differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role
of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with
minimal gene flow" in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a
gradient of increasingly cluttered habitats.

Results: Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered

habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern.
Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups

Rhinolophidae

and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences
did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and
geographic distances, best explained echolocation variation in this species. We argue that both selection for
increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have
influenced the evolution of matched echolocation frequencies and habitats across different populations.

Conclusions: Our study reveals significant sensory trait differentiation in the presence of historical gene flow

and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These
results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection,
plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may

act simultaneously and that their relative influence may vary across different environments.
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Background

In populations inhabiting heterogeneous environments
adaptive trait divergence in the absence of gene flow is
both predicted by theoretical models [1-3] and supported
by a large number of studies demonstrating a generally
negative relationship between levels of population con-
nectivity and the degree of adaptive divergence in the
traits under study [4-8]. This phenomenon is centred on
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the prediction that gene flow limits adaptive trait variation
by homogenising gene pools that would otherwise diverge
in response to selection under different ecological regimes
[9-11]. The relationship is, however, clearly more subtle
than this because empirical evidence also supports exten-
sive adaptive variation in the presence of gene flow e.g.
[12-15] highlighting the role of local selection gradients
across different environments. If the selection gradient is
steep enough to reduce immigrant fitness the homoge-
nising effects of gene flow on trait variation are likely to
be minimised [16]. Alternatively, if selection is weak and
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there are minimal costs to immigration, even nominal
gene flow could constrain the evolution of trait variation
and lineage divergence [17].

Undoubtedly there is a complex and dynamic relation-
ship between selection, fitness and gene flow, but the
interaction among these factors together with the role of
trait plasticity is seldom considered in studies of adaptive
population variation [18,19]. Phenotypic plasticity, envir-
onmentally mediated phenotypic changes without changes
in allele frequency [20,21], has traditionally been viewed
as a minor evolutionary process. This is so largely because
environmentally induced phenotypic change does not in-
fluence the genes that an individual transfers to its off-
spring [19]; but see [22] for comment on the role of
heritable epigenetic variation on phenotype evolution. Di-
vergent selection cannot therefore act on genetic variants
in a population and consequently phenotypic plasticity is
thought to minimise rather than enhance selection [18].
Recently, however, there has been renewed interest in elu-
cidating the role of plasticity in promoting diversification
within and between populations and species [20,23-27].
This renaissance is due, in part, to the recognition that
selection for adaptive plasticity can occur if it promotes
successful dispersal and survival in different environ-
ments, increasing the potential for adaptive diversification
under divergent selection regimes [19,28]. High gene flow
between heterogeneous environments may then favour
the evolution of increased phenotypic plasticity, over
adaptive genetic divergence, because it would promote
adaptation to new conditions within one or two generations
[18,29]. Plasticity may in turn promote gene flow if dis-
persers are not selected against in their new environments
[30]. Plasticity would allow a population or individuals to
persist long enough in a new environment for selection to
bring about the evolution of adaptation to the new envir-
onment by acting on the standing genetic variation among
individuals [18,23].

Geographic variation in sensory traits i.e. traits used
by organisms to perceive and respond to information
about their environment [31] is well documented [32]
and directly impacts on individual fitness e.g. via their
role in resource acquisition and species and mate recog-
nition [33]. Acoustic signalling for general communi-
cation as well as mate and food acquisition [34] is used
by a range of organisms including fish [35], insects [36],
anurans [37], birds [38] and mammals [39]. Extensive
geographic variation in acoustic signals is common, and
the role of both phenotypic plasticity [40,41] and sexually
mediated selection have been implicated in promoting
the evolution of population divergence [32,34]. In bats
(Chiroptera) ultrasonic acoustic signalling in the form
of echolocation is used for spatial orientation, prey
detection and communication [42-44]. Bats echolocate
over a wide range of frequencies [45] and the trait can be
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highly flexible both within [46,47] and between species
[48]. This flexibility has been attributed to numerous fac-
tors including differences in foraging habitat [49,50], prey
size [51], variation in body size [52], age [53] and sexual
dimorphism [54]. In the horseshoe (Rhinolophidae) and
leaf-nosed (Hipposideridae) bats a unique echolocation
system has evolved that functions in both resource ac-
quisition and intraspecific communication [55]. The signal
design of horseshoe bats is characterised by long, high
duty cycle calls which have a prominent constant fre-
quency (CF) component preceded and followed by a brief
frequency modulated (FM) component (45). During flight
individuals compensate for Doppler shifts induced by their
own flight speed by lowering the frequency of their emit-
ted pulse. This ensures that the returning echo falls within
the narrow frequency range of their acoustic fovea—a re-
gion of the cochlea with sharply tuned neurons sensitive
to a unique frequency called the reference frequency [56].
Horseshoe bats are able to couple the frequency of the
returning echo to their reference frequency independently
of the size of Doppler shifts with extreme accuracy [57].
The reference frequency is always 150-200 Hz higher than
the frequency these bats emit when stationary, often re-
ferred to as the ‘resting frequency’ (RF). Horseshoe bats
typically forage for insect prey in narrow-space (i.e. highly
cluttered) environments either on the wing (aerial haw-
king), or from a perch (flycatcher style) [58,59]. In both
cases, the long CF component of their echolocation calls
generate echoes from the flapping wings of flying insects
that are characterised by amplitude and frequency modu-
lations resulting in acoustic glints against a background of
unmodulated echoes from background vegetation. Thus,
the long CF calls emitted at a high duty cycle, together
with Doppler shift compensation and the auditory fovea
allow horseshoe bats to detect fluttering insects in clut-
tered space (reviewed in [60]). In horseshoe bats the RF is
largely genetically determined [61]. However the peak fre-
quency of juveniles is also partially influenced by that of
their mothers [62,63] and the fine tuning of the frequency
of the acoustic fovea of young horseshoe bats may have a
learnt component via mother-to-offspring transmission
[63,64]. Several recent studies investigating sensory vari-
ation in rhinolophid and hipposiderid bats [65-69] attribute
observed variation predominantly to differences in diet
[70] and environmental humidity (Humidity Hypothesis
[71,72]). Such variation may be correlated with morpho-
logical features directly involved in echolocation pro-
duction [47,73] and reception [74]. Sensory divergence
may however also be an indirect result of adaptive changes
in body size to prevailing environmental conditions (e.g.
[71]). Among sympatric species call divergence may
have evolved under regimes of social selection where
character displacement maintains private bandwidths
for intraspecific communication (Acoustic Communication
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Hypothesis [48,67,75]). Within a particular community, the
echolocation frequencies used by any one species may
therefore also be a consequence of the frequencies used by
other species in that community [48,67]. Lastly, the physical
structure of habitats (vegetation cover) can impose signi-
ficant constraints on the range of frequencies bats use to
successfully navigate within their environment and to de-
tect prey, purely because of the physics of sound and
sound transmission. Low frequency calls with longer
wavelengths enable long-range detection of prey or other
targets and are generally associated with open habitats.
Conversely, higher frequency calls are more directional
and provide greater resolution of targets, at least for bats
using low duty cycle echolocation, at short detection
ranges typical of highly cluttered habitats [45]. The
Foraging Habitat Hypothesis [76] thus proposes that
habitat clutter influences echolocation frequency and
predicts that a gradient of increasing vegetation clut-
ter selects for a gradient of increasing echolocation
frequency. Most studies generally assume that obser-
ved variation in RF results from micro-evolutionary
processes selecting for calls that are sharply tuned to
the narrowband range of the acoustic fovea (+ 1 kHz RF)
[56,77,78]. Recent evidence, however, suggests that horse-
shoe bats and other high duty cycle echolocating bats
exhibit some degree of temporal flexibility in RFs and
associated changes in cochlear tuning [63,79] in response
to both conspecifics [46,80] and local ambient noise [81].
More recently neutral evolutionary processes have
become a focus of research centred on understanding
echolocation divergence in bats [66,82]. Using the
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theoretical framework of population genetics, phylogeo-
graphy and phylogenetics, the effects of gene flow and
genetic drift on divergence in peak frequencies between
divergent lineages has revealed relationships between
echolocation divergence and e.g. female philopatry [66]
geographic distance [7,69], and palaeoclimatic lineage
divergence [82,83]. Here we use multiple data sets to
investigate variation in echolocation frequency across
the geographic range of the South African endemic
Cape horseshoe bat, Rhinolophus capensis. We assess
echolocation variation within a neutral evolutionary
framework to (i) quantify the extent to which population
genetic structure and gene flow contribute to variation in
echolocation frequencies, and (ii) using a model-based
approach explore the roles of habitat structure (Foraging
Habitat Hypothesis [76]) and humidity (Humidity Hypo-
thesis) in echolocation divergence. Our analyses reveal
significant sensory diversification among R. capensis
populations in the presence of extensive historic gene
flow, and we discuss how selection, plasticity and gene
flow may interact to characterize patterns of trait variation
in this system.

Methods

Regional sampling of echolocation frequency and genetic
variation

We measured echolocation parameters and collected
tissue biopsies from populations across the distribution
(Figure 1) of Rhinolophus capensis. Eleven populations
were sampled across several major biomes in the region
(Additional file 1: Figure S1, adapted from [84], no

15°8 =

"R. damarensis

°g - 1 2
s _R.clivosus

R.capensis
O Sampling sites

25°s =

30°S o

35°s o

82-gokHz =
92.2-92.5kHz |
75.7-86.5kHz %

T
15°E

Figure 1 Sampling localities and geographic distribution of sympatric horseshoe bats. Geographic ranges of R. capensis, R. damarensis and
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permission to reproduce maps was required) including
Desert at the extreme northern edge, through Succulent
Karoo and Fynbos in the centre of the distribution, and
finally to Forest and areas of transition between Fynbos
and neighbouring biomes (Albany Thicket, Nama-Karoo
and Grassland) at the eastern limit of its range (Additional
file 1: Figure S1). The geographic range of R. capensis is
characterised by two distinct environmental gradients that
influence regional rainfall patterns. The first is a latitudinal
gradient of increasing aridity northwards. The second is a
longitudinal seasonality shift from a predominantly winter
to an aseasonal rainfall regime from west to east, and
another shift to a summer rainfall regime at the ex-
treme eastern edge of the distribution of the species
[85] (Additional file 1: Figure S1). The resulting rainfall
gradients translate into a clear habitat gradient from
relatively open and sparse habitats in the north and west
(Desert and Karoo Biomes), to more cluttered habitats in
the east (Fynbos, Albany Thicket and Forest). Bats were
captured at their roosts during the day with hand nets, or
as they emerged from roosts at dusk using mist nets and/
or harp traps. The age (adult or juvenile) and sex of each
bat was recorded; juveniles were distinguished from adults
by the presence of cartilaginous epiphyseal plates in their
finger bones [86] and excluded from subsequent analyses.
Individual body mass was measured. Seasonal and diurnal
variation in body mass was controlled for by excluding
pregnant females, sampling only in the southern hemi-
sphere spring and summer and measuring bats only after
their gut was emptied by keeping them overnight in soft
cotton bags.

Echolocation calls were recorded from hand held bats
positioned 10 c¢cm in front of an Avisoft Ultrasound Gate
416 (Avisoft Bioacoustics, Germany) microphone con-
nected to a laptop running Avisoft SasLab Pro software
(sampling rate 500 kHz). Resting peak frequency (RF,
where the CF component is stable and inter-pulse vari-
ation is low [47]) was recorded from hand-held individ-
uals because it eliminates differences in peak frequency
that may be due to Doppler shift compensation during
flight [45]. RF is a reliable indicator of the reference fre-
quency because the difference between the reference
and resting frequency is stable in horseshoe bats (within
150-200 Hz) [60] Furthermore, when hunting from a
perch rhinolophids emit their resting frequencies [88].
Recordings were slowed down by ten times and analysed
using BatSound Pro software (Pettersson Elektronik AB,
Sweden) with a sampling rate of 500 kHz. We measured
the peak frequency (kHz) (frequency of maximum inten-
sity) of the dominant second harmonic of the CF com-
ponent determined from the fast Fourier transformation
power spectrum (FFT =1024, frequency resolution 684
Hz) with a Hanning window. To identify the typical echo-
location parameters for each bat we calculated means of
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call duration, RF, lowest frequency of the FM component,
bandwidth and inter-pulse interval from 5-10 high
quality calls (amplitude of the signal at least three
times higher than that of the background noise as dis-
played on the oscillogram). We chose the RF from an ori-
ginal call sequence that was most similar to the calculated
mean parameters for all subsequent analyses. Thus the
‘true’ RF instead of a constructed statistical value was used
in our analyses [73].

We also collected a tissue sample for DNA extraction
and sequencing from most individuals for which we had
echolocation recordings. Biopsy punches (3mm) were
taken from the wing or tail membrane following [89].
Membranes were illuminated to ensure that no blood ves-
sels were ruptured during sampling and tissues were stored
in molecular grade (99%) ethanol at room temperature in
the field, and at 4°C until extraction. Our capture, handling
and tissue collection methods were approved by the
Science Faculty Animal Ethics Committee (approval num-
ber: 2008/V18/LO) of the University of Cape Town. Total
DNA was extracted using a DNeasy Blood and Tissue Kit
(Qiagen) and stored at 4°C. We amplified a 520 base pair
(bp) fragment of the mitochondrial d-loop using the
primers N777 (5" TACACTGGTCTTGTAAAACC 3’) and
E (3" CCTGAAGTAGGAACCAGATG 5') from [90] and
[91] respectively. PCR conditions consisted of an initial
cycle of 94°C for 5 minutes, followed by 35 cycles of 94°C,
50-55°C and 72°C each for 30 seconds and a final step of
72°C for 7 minutes. PCR products were checked on 1%
agrose and gel purified using a Wizard SV Gel and PCR
Clean-up System (Promega). Samples were sequenced in
both directions using BigDye 3.1 chemistry on an ABI
3730 XL DNA Analyzer (Applied Biosystems). Chromato-
grams were edited and aligned using BioEdit v7.1.3.0 [92].
For each population the number of unique haplotypes,
haplotype diversity (Hd) and nucleotide diversity (1) [93]
were calculated using DnaSP v5.10.01 [94]. All unique
haplotype sequences obtained in this study were deposited
in GenBank (accession numbers: KF 175232-175270).

Influence of non-genetic factors on echolocation
divergence

We conducted a Kolmogorov-Smirnov test for normality,
Levene’s test for homogeneity of variances and regressed
means against standard deviations for all grouping levels
to ensure the data met the assumptions of subsequent
analyses.

To quantify variation in RF within and between popu-
lations we calculated the mean + standard deviation (SD)
and the coefficient of variation (CV = SD/mean x 100)
of each population.

Various intrinsic (e.g. body size and sex) and extrinsic
(e.g. habitat characteristics) factors can influence the evo-
lution of geographic variation in acoustic signals across a
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species range. To tease apart the effects of these factors
on RF divergence we first conducted a general linear
model (GLM) with RF as the dependent variable and
population, sex and their interaction as categorical predic-
tors. We then used SPSS (version 21, IBM, USA) to con-
duct linear mixed models (LMM’) performed with type
III sums of squares to determine the ecological factors
which best predict RF in R. capensis. Mixed models are
robust to unbalanced designs and thus data from single-
sex populations could be included [95]. LMM’s estimate
the effects of both fixed and random factors to models of
data that are normally distributed [95]. Our GLM results
revealed significant differences between populations and
sexes, but no significant interaction between them (see
Results). Population and sex were therefore included as
random factors to control for spatial clustering of samples
and intrinsic sexual differences in RF [95]. Fixed factors
included biome category and body mass. Even though the
presence or absence of congeneric species may also influ-
ence RF variation across different populations of horse-
shoe bats, we were unable to explicitly test the Acoustic
Communication Hypothesis for several reasons. First, the
range of Rhinolophus damarensis (mean RF of 85.1 kHz in
the region of overlap [87]), only overlaps with that of R
capensis at LS (Figure 1) and therefore its presence cannot
be replicated across populations. Second, the presence of
R. damarensis and the Desert Biome category are collinear
and thus cannot be included in the same model [96].
Lastly, with the exception of the LS site, R. capensis
co-occurs with a larger congeneric species, Rhinolo-
phus clivosus, over much of its range. Five geographical
lineages of R. clivosus corresponding to previously de-
scribed sub-species based on genetic, acoustic and
morphological differences have been identified, and of
these, R. capensis overlaps with two lineages which echo-
locate between 92.5 and 92.2 kHz [83] (Figure 1). At these
frequencies the RF of R. clivosus is unlikely to influence
the RF of R. capensis and R. clivosus was therefore
excluded from our analyses.

We employed a model selection approach based on
Akaike’s information criterion (AIC) to determine which
model, out of a range of candidate models, best explained
RF divergence in R. capensis [97,98]. The model with the
lowest AIC value was considered the most parsimonious
and the difference in AIC scores (A;) were calculated to
determine the likelihood that a given model was the best
model relative to other candidate models [98]. A A, value
of zero indicates the best fit model; values up to two indi-
cate models with substantial empirical support; values
between four and seven indicate less support and models
with values > 10 have essentially no support [98]. We also
used Akaike weights (w;) to calculate the probability
that a given model is the best among a candidate set
of models. Thus, the best model has the lowest A; and
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highest w; [98]. Once the best fit model was identi-
fied, we estimated the effects of each factor level on
RF variation in R. capensis using the restricted max-
imum likelihood method. Then, to determine the im-
portance of each variable included in the best model,
we calculated the summed Akaike weight (w,) for all
models containing that particular variable. The variable
with the largest w, is likely the most important variable in
the model [99].

Our model selection results led us to explore the influ-
ence of habitat structure (typically vegetation cover) and
body size on RF variation in greater detail. The Normal-
ized Difference Vegetation Index (NDVI) was used as a
measure of vegetation cover. NDVI is a suitable measure
because it provides an estimate of above ground primary
productivity [100] and it has been shown to be associ-
ated with a wide range of vegetation properties including
photosynthetic activity [101] vegetation cover [102,103]
and vegetation biomass [104]. Thus NDVI is commonly
used to link vegetation dynamics to various aspects of
animal ecology (reviewed in [105,106]). NDVI is a meas-
ure of the density of chlorophyll contained in vegetation
and it is calculated as (NIR-RED)/(NIR + RED), where
NIR is the near-infrared light, and RED is the visible-red
light, reflected by vegetation and captured by the sat-
ellite. The values of NDVI range from -1 to 1, where
negative values correspond to an absence of vegetation.
Green and/or dense vegetation has high RED absorption
together with high NIR, leading to high, positive NDVI
values. In contrast, sparse vegetation absorbs substantially
more NIR, leading to lower NDVI values [101]. Bare soils,
snow and cloud have NDVI values close to zero [102,107].
We used the Expedited Moderate Resolution Imaging
Spectroradiometer (eMODIS) Vegetation Indices dataset
from NASA, which provides the maximum value for
NDVI images for composites over a 10-day period at a
resolution of 250 m from the year 2000 to present. Aver-
age NDVI values from a 20 km radius around each sam-
pling site were extracted and compiled in ArcGIS 9.3.1
(ESRI®). Because echolocation frequency scales negatively
with body size in horseshoe bats [52], variation in body
size could cause concomitant changes in RF. Thus, to test
whether RF variation is associated with differences in
NDVI while controlling for the potential influence of body
size, we used SPSS to conduct a hierarchal multiple re-
gression analysis (HMRA). The first step of a HMRA is to
add the independent variable that you wish to control for
(in our case, body size). The second step examines the
relationship between an independent (NDVI) and depen-
dent variable (RF) while controlling for the effect of the
first independent variable. We limited this analysis to
males (n=153) and evaluated the correlations between
RE, body mass and NDVI as well as the change in the
correlation coefficients between the model including body
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size and the model including NDVI but controlling for
body size.

We also investigated whether there was a negative
relationship between relative humidity and mean RF as
predicted by the Humidity Hypothesis [108]. Relative
humidity (%) data for each sampling site were obtained
from the literature or from the nearest weather stations
and provided by the South African Weather Service.

Like most other rhinolophids, R. capensis forage in or
near highly cluttered habitats [67,109]. While the long
CF portion of their echolocation calls allow the detection
of fluttering prey against structurally complex backgrounds
like dense vegetation [88], differences in vegetation cover
between sampling sites could still influence the sound
transmission properties of the echolocation call frequency
used in each habitat. To better understand the effects of
vegetation cover on variation in echolocation frequencies
we calculated the mean detection distances for prey and
vertical background targets (e.g. leafy vegetation edge) for
each population according to the method developed in
Stilz and Schnitzler [110]. This method depends on the
dynamic range and frequency of the sonar system, local at-
mospheric conditions and target type. The dynamic range
was calculated as the difference between peak intensity (dB
SPL) at 1m (79.1 dB SPL for R. capensis at De Hoop; Jacobs
and Parsons, unpublished data) and the auditory threshold
of the bat (assumed to be 0 dB SPL for horseshoe bats
[70,111]). We assumed the different populations had simi-
lar dynamic ranges. The different prey size categories
tested in [110] were derived from Houston et al. [51]
and included small, medium and large categories—all
within the size range of prey consumed by R. capen-
sis (2 mm-19 mm [67]). Mean minimum temperature
(°C) data for each population were obtained from the
nearest weather stations and provided by the South
African Weather Service.

Spatial population structure and patterns of gene flow

Geographic variation in phenotypic traits may be a con-
sequence of neutral evolutionary processes, particularly
when dispersal distances result in a pattern of predo-
minantly nearest-neighbour gene exchange [112,113]. To
better understand the role of random genetic drift in the
evolution of RF variation we used a number of statistical
approaches to (i) determine the degree to which genetic
variation is spatially structured in R. capensis and (ii)
quantify levels of historic gene flow among populations.
We first explored the evolutionary relationships among
mtDNA haplotypes to determine whether observed rela-
tionships reflected either the geographic sampling of
populations or specific biome discontinuities across the
range of the species by constructing a Neighbour-net
network in SplitsTree v4.12.6 [114] using uncorrected ‘p’
distances. Network analysis allows reticulations among
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branches and is highly suitable for analysing evolution-
ary relationships among populations [115].

The spatial clustering of samples and distribution of
genetic variation were also investigated using BAPS v6.0
[116] and Analysis of Molecular Variance (AMOVA) in
GenAlEx v6.5 [117]. The AMOVA quantified partition-
ing of genetic variation within and among populations
and biomes. The significance of variance components
and @g7 (a measure of population genetic differentiation
analogous to the fixation index Fs7 [118,119]) were esti-
mated with 1000 random permutations. To test for the
presence of discrete evolutionary lineages we estimated
the most probable number of genetic clusters (K) among
populations using a spatially explicit Bayesian clustering
mixture model in BAPS. We performed spatial cluster-
ing for groups with K ranging from 4-11. The analysis
was repeated ten times for each maximum K and the
log marginal likelihood value for each genetic partition
was evaluated.

To obtain estimates of historic gene flow among po-
pulations we used a maximum likelihood method based
on the coalescent implemented in MIGRATE-N v3.3.2
[120]; MIGRATE uses an equilibrium model that esti-
mates migration rates averaged across the coalescent
history and simultaneously estimates O, the effective
population size scaled by mutation rate where ©=N,_u,
together with pairwise migration rates summarised as
M=m/u, where m is the effective immigration rate
per generation between populations. Banding data from
European horseshoe bats reveal generally small home
ranges where maximum dispersal distances rarely exceed
100km over the course of an individual’s life time [121]. If
similar, dispersal in R. capensis likely occurs over relatively
short distances. Thus we estimated © and M using a cus-
tom designed migration matrix where migration was only
allowed between neighbouring populations. Populations
separated by large geographic distances were not directly
connected except in cases where unique haplotypes were
shared. Starting values for all parameter estimates were
initially obtained using Fs7 [122] and the following search
parameters were used: 10 short chains with 500 000 gene
trees sampled and 5000 trees recorded; three long chains
with 50 million sampled trees of which 50 000 were re-
corded. The first 10 000 trees were discarded as burn-in
and a static heating scheme with six temperatures and a
swapping interval of one was used. The results were
averaged over five replicate runs.

Comparing echolocation divergence and genetic distance
Genetic divergence among populations is dependent on
both the degree of physical isolation and levels of con-
nectivity between them [123]. To test whether genetic
and RF differentiation is associated with geographic iso-
lation (isolation by distance) we used Mantel [124] and
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partial Mantel tests to explore the relationships between
genetic structure, RF divergence and geographic distance
[125]. Matrix correlations were calculated in GenAlex
v6.5 [117] and XLStat (v2013, Addinsoft) with 1000
random permutations. The three matrices analysed were
pairwise geographic distances (km) calculated as straight
line distances from geographic coordinates using the
program Geographic Distance Matrix Generator v1.2.1
(Ersts, Internet); genetic distance using Slatkin’s line-
arized @gr [126] and RF differences (kHz) among po-
pulations. Log-transformed geographic distances were
regressed against genetic distance and peak frequency
difference. Our partial Mantel test determined whether RF
difference was associated with genetic distance while
controlling for the effect of geographic distance (isolation
by adaption).

Results

Effects of morphology, sex and ecology on RF divergence
We measured the RF of 248 individuals across multiple
biomes (Additional file 1: Figure S1) and observed a
clinal increase in mean RF across the distribution of R.
capensis ranging from 75.7 kHz (LS) in the west, to 86.5
kHz (BAV) in the east (Figure 2, Table 1). Resting fre-
quencies differed significantly among populations (GLM:
Fig, 486 =120.5, P<0.001; Tukey HSD tests: P <0.005)
with the exception of KNY which used similar frequen-
cies to HDH and DHC (Tukey HSD tests: P> 0.05;
Table 1). Sex significantly influenced echolocation vari-
ation within populations with females emitting higher
frequencies than males (GLM: F3 170 =33.5, P<0.001;
Table 1). However, we detected no significant interaction
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between sex and population (GLM, Fig 486=1.1, P>
0.05), suggesting that the degree of sexual dimorphism
in RF was identical across populations. The CV of call
frequencies for each population was low and at most 1%
(Table 1).

The most parsimonious model explaining variation in
RF included the factors biome category (Fs, 15 =40.3,
P <0.005) and body mass (F;, »3,=10.4, P<0.001) of
which the former was the most important variable in
the model (w, biome = 0.99, w, body mass = 0.95) (Table 2).
Generally, bats from the Desert Biome use significantly
lower frequencies than Succulent Karoo bats (point of ref-
erence selected by SPSS). Also, bats inhabiting the Forest
Biome or regions comprised of multiple biomes use sig-
nificantly higher frequencies (Table 3) because long—range
detection is not an advantage in such habitats. In the first
stage of our HMRA, body size significantly influenced RF
(R?=0.121, Fy 150 =20.6, P <0.0001) but it only explained
12% of the variation in RF (Figure 3). Bats from LS use
relatively lower RFs given their body size compared to
other sampled populations. The inclusion of NDVI in
the second stage of the regression model significantly
increased the proportion of variance explained in the
model (A R*=0.68, F; 140=>5287.9, P<0.0001), with
NDVI accounting for 80% of the variation in RF (R’ =
0.80, F5 149=310.9, P<0.0001) after controlling for the
effect of body size (Figure 4).

We also found no relationship between relative hu-
midity and RF (R*=0.04, P>0.5) but we did discover
significant differences in detection distances for large
prey and vegetation edge (GLM: Fig 306 = 275, P<0.01,
Tukey HSD tests: P’s < 0.05; Additional file 2: Table S2),
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Table 1 Biome category and mean (+ SD) body mass and RF for each sampled population

Population Biome GPS Population mass (g) Population RF (kHz) CV  Male RF (kHz) Female RF (kHz)
category (decimal degrees) (n) (Mean + SD) (n) (Mean + SD) (%) (n) (Mean£SD) (n) (Mean +SD)

Lekkersing (LS) Desert —2842,16.88 (18) 132+ 1.1 (18) 75.7+0.8 106 (10) 755+1 (9) 759+05
Steenkampskraal Succulent —30.98, 18.63 (22) 13.1+09 (22) 806 +0.5 062 (11)805+06 (13) 80.8+03
(SKK) Karoo
Zoutpansklipheuwel Succulent —31.63, 18.21 (25)123+06 (25) 808+0.8 1.08 Male only
(ZPK) Karoo/fynbos colony
De Hel (DHL) Fynbos —33.08, 19.08 (10) 12 +£045 (10) 815+ 06 083 Male only

colony
Boskloof (BKL) Fynbos —34.39, 19.68 (15) 11.7£05 (15) 834 +0.7 0.90 Male only

colony
Heidehof (HDH) Fynbos —34.62.19.50 (12) 11.31+05 (12) 845+ 06 0.67 (6) 84.1+£05 (11) 848+ 06
De Hoop (DHC) Fynbos —34.42,20.36 (46) 104+ 1.1 (46) 846+0.7 090 (35) 84.1+£0.65 (23) 85.1+£06
Knysna (KNY) Forest —33.88, 23.00 (4)116+15 (4) 84.7 0.7 0.7 (5) 848+ 06 (2) 85.2+0.7
Baviaanskloof (BAV)  Multiple biomes —33.63, 24.24 (20) 108+ 14 (20) 86.5+0.7 0.90 (17) 86 +£09 (10) 87 £0.5
Sleepy Hollow (SPH) Multiple biomes —33.96, 25.28 (2) 115+0 (2) 85207 0.82 (1) 847 (1) 857
Table Farm (TF) Multiple biomes —33.283, 2642 (36) 13.9+08 (36) 85.8+0.75 090 (19) 854 +065 (18) 86+ 0.6

Mean (+ SD) body mass and mean (+ SD) resting frequencies (kHz) for populations (population acronyms in parentheses) and sexes are shown. Male only
populations were ZPK, DHL and BKL. An equal number of males and females were used to calculate the mean population mass and RF. Multiple biomes occur at
BAV, TF and SPH (combinations of Albany thicket, Nama Karoo, Fynbos and Savanna).

but not for small or medium sized prey (Tukey HSD tests:
Ps>0.05; Additional file 2: Table S2), between popula-
tions. There was, however, no difference in detection
ranges associated with vegetation or large prey between
ZPK, SKK and DHL and between TF and BKL (Tukey
HSD tests: Ps>0.05; Additional file 2: Table S2). Bats
inhabiting more open habitats used lower frequencies and
had longer detection distances than bats in more cluttered
habitats, with LS bats (Desert Biome) having the longest
detection distances of both large insects and background
vegetation (Additional file 2: Table S2).

Spatial population genetic structure and patterns of gene
flow

A total of 39 unique mtDNA haplotypes were identified
from 203 individuals (Additional file 3: Figure S2).
Haplotype diversity ranged from 0.57 (SPH) to 0.88
(BKL) and the highest number of unique haplotypes
(n=12) was found in the Baviaanskloof area (BAV)
(Additional file 4: Table S2). Most populations shared
haplotypes with their nearest neighbours and a few haplo-
types were shared between more distant populations (e.g.

Table 2 Model selection results for three candidate
models explaining variation in resting frequencies

Model AIC A; Weights (w;)
Biome 540.86 6.14 0.044
Body mass 58846 53.74 2.04E-12
Biome + body mass 534.72 0 0.95

The most parsimonious model is highlighted in bold.

between ZPK and BAV) (Additional file 3: Figure S2). We
identified three genetically isolated populations (i.e. LS,
TE and KNY) consisting largely of unique mitochondrial
lineages (Additional file 3: Figure S2).

Complex network relationships characterise the evolu-
tionary history of R. capensis populations sampled in our
study. The neighbour-net network revealed numerous
reticulations between haplotypes, suggesting several al-
ternative evolutionary pathways among them ([127],
Additional file 5: Figure S3). While the network recovered a
number of clear clades these were not generally structured
by biome or geographic proximity. Only haplotypes from

Table 3 Restricted maximum likelihood estimates and
confidence intervals for the best-fit linear mixed effects
model

Parameter Estimate (SE) df t-value P-value 95% Cl
Intercept 80.85 (0.6) 118 1259 <0001 794,823
Biome

Desert —4.9 (0.9) 11.7 =55 <0.001 -69,-29
Forest 4.1 (09 133 44 <0.001 2.1,6.1
Fynbos 28(0.7) 12.1 38 <0.005 12,44
Multiple biomes 54(038) 11.5 6.9 <0.001 37,71
Succulent/fynbos 09 (1) 11.2 0.08 09 -23,25
Succulent karoo™ 0 0

Body mass* -0.17(0.05) 2319 =32 <0.001 -02,-06

The best-fit linear mixed effects model describes resting frequency variation as
a function of biome and body mass in R. capensis.

*Reference parameter.

*Centred variable.
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Figure 3 The regression of mass (g) on resting frequency (kHz) for male R. capensis (n = 153) from 11 populations. Colours represent
the biome category of each population and shapes represent different populations. The key to the abbreviations of population names are given
in Table 1.
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the desert biome and populations occurring in regions at all three levels but most variation occurred within
where multiple biomes are connected formed discrete  populations (Dsz = 0.54) rather than between populations
clusters (Additional file 5: Figure S3). (Ds7=0.33) or biomes (DST =0.13) (P’s < 0.005). Bayesian

Our investigation of hierarchal population genetic struc-  clustering identified four spatially explicit genetic clus-
ture revealed significant partitioning of genetic variation ters in our data (Figure 5). Only individuals situated
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Figure 4 The relationship between RF and NDVI (as a proxy for habitat clutter). The regression of RF (kHz) and NDVI across populations
of R. capensis. Habitat photographs show the vegetation cover and structure for each population, A: Lekkersing (Desert), B: Steenkampskraal
(Succulent Karoo), C: De Hoop (Fynbos), D: Knysna (Forest). A key to acronyms used are given in Table 1.
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Figure 5 Estimated migration patterns among populations of Cape horseshoe bats. The thickness of the arrows indicates the relative
migration rates; values indicate M, the number of immigrants per generation scaled by mutation rate. The 95% confidence intervals are provided
in Additional file 6: Table S3. Inset: Voronoi tessellation showing the assignment of populations to four spatially defined genetic clusters. A key to

d Cluster 1

Cluster 2

O Cluster 3 _
(O Cluster 4

at opposite ends of the species distribution (populations
LS and TF), were assigned to unique clusters while the
nine populations between them were assigned to two
spatially structured clusters (Figure 5). Furthermore,
estimates of historical migration rates (M) revealed
generally asymmetrical patterns of gene flow between
populations situated in different biomes (Figure 5,
Additional file 6: Table S3). The main source popula-
tions were ZPK, BKL and BAV and gene flow generally
occurred between neighbouring populations. There
was also evidence for long distance gene flow from
BAV to BKL (430 km straight line distance) and from
DHC to BAV (370 km) but this occurred at relatively
low levels (Figure 5). Together, these results support a pat-
tern of relatively high regional connectivity and hence
minimal fine-scale population structure in the R. capensis.

Influence of genetic distance and geography

Pairwise differences in both RF and genetic distance
were characterised by significantly positive relationships
with geographic distance (Figure 6A, B). RF and genetic
distance co-varied with geographic distance and followed
a general model of isolation by distance (IBD). Geographic
distance, however, explained only a relatively small pro-
portion of the variation in RF and genetic distance (44%
and 30%, respectively; Figure 6A, B). We also found a sig-
nificant correlation between RF difference and genetic dis-
tance among populations (Figure 6C) and this remained

significant when we controlled for the effect of geographic
distance (Partial Mantel Test: R = 0.075, P < 0.001). Des-
pite the significance of the correlation, genetic distance
only explained a small proportion of the variation in echo-
location frequencies (7.5%).

Discussion

Our results reveal significant geographic variation in the
resting echolocation frequencies (RF) of R. capensis des-
pite substantial historical gene flow across the distribution
of this species. Body size, genetic distance and geographic
distance play minor roles in the evolution of geographic
variation in RF in R. capensis. Further, despite a lack of
strong geographic structure in mitochondrial lineages,
biome was identified as the best predictor of RF. In sup-
port of this we found a significant relationship between
RF and increasing vegetation clutter from west to east
across the range of this species. Our results suggest that
the evolution of geographic variation in RF in the face of
homogenizing gene flow in R. capensis was probably influ-
enced by selection for lower echolocation frequencies in
less cluttered habitats. However, the relationship we found
between RF and habitat type is solely correlative, and
therefore a thorough comparison of foraging behaviours
of bats between different habitats is required. Thus, alter-
native evolutionary processes e.g. selection for discrete
frequency bands or phenotypic plasticity cannot be
excluded at this stage.
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and C: genetic distance versus RF difference.
A

Disparities between RF and population genetic structure:
trait diversification in the presence of gene flow

Studies investigating the various evolutionary forces
shaping phenotypic and genetic divergence between
populations often describe trait variation in the context
of substantial population structure and limited gene
flow [7]. While phylogeographic patterns of maternally
(mtDNA) and bi-parentally (e.g. microsatellites) inherited
genetic markers usually concur, discordance between
phenotypic and genetic structure is also reported.
This is usually attributed to demographic processes that
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characterize species, such as sex-biased dispersal [128] or
secondary contact following historical isolation [47]
(reviewed in [129]). Similar discordance has been reported
in several European and Asian horseshoe bats either as a
result of male-biased dispersal and female philopatry (e.g.
R. pumilus: [66]) or historical introgression of mtDNA
(R. pearsoni: [130]; R. sinicus: [131]; or nuclear genomes
(R. yunanensis to R. pearsoni: [130]) between sister line-
ages. Despite recent advances in testing the evolutionary
processes that shape contemporary population genetic
structure in horseshoe bats (e.g. [132]), few studies have
specifically evaluated sensory variation within a phylogeo-
graphic or population genetic framework in this genus
[66,69]. In our study, we expected RF divergence in the R.
capensis to reflect mtDNA structure given that (i) the fine
tuning of the echolocation frequency of young horseshoe
bats are partly learned from their mothers[63], (ii) female
philopatry and male dispersal characterize other horseshoe
bats studied to date [66,133], and (iii) the degree of RF
divergence observed among populations (range: 1-11 kHz)
is similar to that reported for other high duty cycle bats
which have corresponding significant genetic structure
among maternal lineages [77]. Our results instead reveal
minimal genetic structure amongst R. capensis popu-
lations. A Bayesian clustering analysis identified four
dominant genetic lineages which broadly reflect estimated
patterns of regional gene flow that are not limited by bi-
omes; notably only LS and TF (populations at the opposite
extremes of the distribution of the species) are identified
as unique genetic clusters (Figure 5). A number of
mitochondrial haplotypes were also found to be shared
between geographically distant populations; these may
reflect long-distance dispersal events or the retention of
common ancestral polymorphisms. Mitochondrial data
clearly reveals a recent evolutionary history of complex
reticulations in R. capensis, suggesting that gene flow and
not incomplete lineage sorting is responsible for the ob-
served genetic structure or lack thereof.

One caveat of our analytical approach is the statistical
non-independence of our populations due to the sub-
stantial gene flow we detected between them [134].
Populations that are more closely related to one another
or exchange higher numbers of migrants are likely to
have similar phenotypic trait values irrespective of the
local selection pressures they experience [134]. Ideally,
the inclusion of our calculated migration matrices be-
tween populations in our ecological models would control
for the effect of gene flow, but the development of effect-
ive computational methods to include the complex reticu-
late relationships among population’s remains challenging
[134,135]. Nonetheless, the spatial distribution of the four
dominant genetic lineages does not reflect the broad
pattern of RF variation among populations of R. capensis.
For example, we detected considerable gene flow between
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populations at SKK, ZPK and DHL, but no direct gene
flow between these populations and the population at
DHC, even though they were all assigned to the same gen-
etic cluster (Figure 5). Bats from these genetically similar
populations use RF’s ranging from 80.6-84.6 kHz. Thus
the discordance between patterns of genetic and RF vari-
ation among R. capensis lineages suggest that gene flow
does not significantly contribute to RF variation across the
distribution of R. capensis, although this remains to be
explicitly tested. Furthermore, although RF is also charac-
terised by IBD, geographic distance only accounted for a
minor proportion of the variation in RF (Figure 6A and B).
Interestingly, RF divergence is also positively correlated to
some degree with genetic distance, even after controlling
for geographic distance (Figure 6C), suggesting that
local environmental conditions may influence sensory
differentiation in areas with some degree of restricted
gene flow [136].

However, estimates of maternal gene flow support
significant regional connectivity in the recent past and is
at odds with the pattern of structuring in RF we observe
across populations. This is in contrast to previous studies
of high duty cycle bats where population genetic structure
generally reflects the variation of sonar frequencies across
often widespread species (e.g. Pteronotus parnellii: [77],
R. clivosus: (73], R. hildebrandtii: [82], R. rouxii: [137]).
As we discuss below, this anomaly may be a consequence
of the complex interactions between gene flow, diversify-
ing selection and environmentally mediated selection
for phenotypic plasticity. Phenotypic plasticity can be
advantageous if it results in the expression of different
phenotypes that increase an individual’s fitness in diverse
environments [19,138]. In this way plasticity can minimise
the costs incurred from dispersal into environments with
different selection regimes [18,29]. If plasticity influences
RF diversification, it may lead to a situation in which
selection does not significantly constrain gene flow among
populations, leading to adaptive phenotypic variation in
the presence of gene flow [18].

Body size and habitat structure predict RF: influence of
diversifying selection and adaptive phenotypic plasticity
The frequency of acoustic signals scales negatively with
body size in a range of organisms [139-141] including
bats [52]; larger bat species produce echolocation calls
of lower frequencies than smaller bat species. This rela-
tionship also exists within R capensis with larger bats
generally using lower RF’s. However, body size only ex-
plained a minor proportion of the variation in RF because
concomitant changes in body size and RF were not
evident across all populations. For example, although BAV
bats are not the smallest, they use the highest echolo-
cation frequencies. In contrast, individuals in populations
at both ends of the distribution of this species (LS in the
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west and TF in the east) were similar in size but echo-
located at the lowest and second highest frequencies
respectively (Table 1, Figure 3). This may explain why
previous research on echolocation variation in the species
did not support a relationship between body size and RF,
and instead suggested the decoupling of echolocation di-
vergence from the evolution of body size [73]. This result
was likely an artefact of under sampling trait variation in
R capensis and highlights the difficulties of inferring
evolutionary processes from data sets which inadequately
sample the true distribution of a trait. Our results here
suggest that the allometric relationship between body size
and RF collapses in populations situated towards the edge
of the range of this species. This is perhaps not unex-
pected given that range edges and ecotones provide novel
environments to which species can become locally
adapted, leading to significant phenotypic divergence of
edge populations from those at the centre of the distribu-
tion of a species [142]. This may explain why populations
at either end of the species’ range (LS in the west, and TF
in the east) were identified as unique genetic clusters,
while the nine sampled populations between them were
assigned to only two genetic clusters (Figure 5).
Paleoenvironmental change from the Miocene to
Pleistocene profoundly impacted the evolution of
population divergence and speciation in a wide range of
southern African taxa; several studies report a strong link
between divergent genetic lineages and the biomes or
ecogeographical regions of southern Africa for various
organisms including reptiles [143], invertebrates [144] and
small mammals [145,146] including bats [82,87]. In our
study we did not find any clear population genetic diver-
gence with topographical features. Neither did we find any
support for the humidity hypothesis which proposes that
divergence in RF is the result of selection against higher
frequencies in humid environments [108]. Instead we
found that bats in the Desert Biome used significantly
lower frequencies than those occupying Forest and areas
of transition between multiple biomes (Figure 4, Table 3).
This clinal increase in RF across populations of R. capensis
from west to east may be the result of the gradient of
increasing vegetation cover and density from west to east
(Figure 4). At LS in the west the vegetation was very
sparse and consisted of low shrubs (< 1m in height). In
the east the vegetation ranged from dense Fynbos to
Forest (Figure 4). Thus, there is a steep habitat gradient
between LS (genetic cluster 1) and its nearest neighbours
(SKK and ZPK: genetic cluster 2), and selection may
therefore dominate in this region. In contrast, plasticity
may be favoured as an explanation for RF variation
amongst the other populations because the habitat gra-
dients are not as steep. A notable exception is that of
the population at TF. At TF (genetic cluster 4) bats use
similar RF’s to other populations situated in ecotones
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(genetic cluster 3), and yet appears to be relatively isolated
genetically (Figure 5). TF is situated at the interface
between aseasonal and summer rainfall zones [147]
which, together with the intrinsic habitat heterogen-
eity of ecotones, may serve as a significant barrier to
gene flow. This pattern has been observed for various
other species in this region (e.g. four-striped mouse,
Rhabdomys pumilio [145]; forest shrew, Myosorex var-
ius [146]).

The positive correlation we found between RF and
NDVI suggests that variation in the degree of habitat
clutter might explain variation in RF. Across our sam-
pling sites, the mean detection distance for large prey
and background vegetation edge was significantly different
between populations; bats occupying more open habitats
have lower RF’s and thus longer detection distances than
those in more cluttered habitats, allowing them to detect
larger prey or background targets at greater distances.
While this result was statistically significant, LS bats only
had a 10 cm and 50 cm greater detection distance than
their nearest neighbours for large prey and vegetation
edge, respectively (Additional file 2: Table S1). Although
all rhinolophids supposedly fly close to vegetation and
may experience even relatively open habitats as cluttered,
the 50 cm greater detection distances of the vegetation
edge may be advantageous during orientation and com-
muting flight in the sparse vegetation of LS where the
distance between clumps of vegetation are greater than in
the Fynbos or the Forest (Figure 4). Further, prey density
is also likely to be lower at LS and selection is likely to
favour the evolution of lower RF’s that would allow the
detection of larger prey at greater distances. There is suffi-
cient empirical evidence to suggest that even rhinolophids,
constrained by their echolocation to hunt in narrow space
[58], display some degree of flexibility in the foraging
habitat they exploit [148-151] or the foraging style they
adopt (aerial hawking vs. perch hunting) [59,152] as a
result of resource partitioning [150,153], habitat structure
[148] or seasonal changes in prey resources [150]. At least
one species of rhinolophid also appears to vary its echo-
location frequency in response to different degrees of
clutter [148]. Within the same nature reserve, greater
horseshoe bats (R ferrumequinum) use a variety of
habitats with differing degrees of clutter and use sig-
nificantly lower echolocation frequencies in relatively
open habitats than in cluttered habitats [148]. It is
likely therefore that R. capensis uses both aerial haw-
king and perch hunting styles to different degrees in
the different habitats perhaps also altering its call fre-
quency to deal with different degrees of clutter. The
distinctly lower call frequency at LS could possibly be
explained by the pronounced clutter gradient between
LS and the other habitats occupied by R. capensis.
However, our detection distance calculations must be
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interpreted with caution because different populations
may have different echolocation call intensities, which
could greatly influence the calculation of maximum
detection distance [154].

Although differences in habitat structure provide a
compelling explanation for different RF’s in R. capen-
sis, an interesting anomaly needs to be accommodated;
R. damarensis (forearm length 49.5+ 1.7 mm; n =20) is
sympatric with R. capensis in the extremely arid area of LS
but uses frequencies (mean + SD = 85.4 + 1.4 kHz; range =
82-89 kHz; [87]) as high as those used by R. capensis in
highly cluttered habitats e.g. TF. It seems reasonable to
assume that selection would have favoured similar call fre-
quencies, and therefore detection distances, in R. damar-
ensis and R. capensis where they are sympatric in the arid
region of LS. However, it is possible that R. damarensis ex-
ploits a different foraging niche to R. capensis in this area
of sympatry. Alternatively, this species may compensate
by using higher intensity calls to achieve more or less the
same detection distances as R. capensis [154]. Of course it
is possible that the presence of R. damarensis at LS has
selected for the low frequencies we observe in R. capensis.
Observed frequencies are much lower in the LS popula-
tion than in the other arid populations (Figure 4) despite
similarities in body size to the other arid populations
(Table 1). On the basis of its body size, R. capensis at LS
should echolocate at approximately 82 kHz (Figure 3).
Instead we observe a mean RF of 75.7 kHz. Bats at LS
may have shifted their frequency below 82 kHz to avoid
acoustic overlap with R damarensis (82-89 kHz), and
maintain effective intraspecific communication. How-
ever, the closest known roosts of these two species
are 40 km apart and it is not known if the foraging
areas of these two species overlap, i.e. if they are syn-
topic, as required by the Acoustic Communication
Hypothesis.

Nevertheless, character displacement, mediated by
some form of resource partitioning or local adaptation,
in sonar parameters can contribute to the initial stages
of lineage divergence by causing populations in sympatry
with heterospecifics to diverge from their respective con-
specific populations in allopatry. The result would be
reduced gene flow between populations found in different
selective regimes or heterospecific assemblages [155]. For
example, Lemmon [37] showed that acoustic traits im-
portant for female preference and mate choice in popu-
lations of the chorus frog, Pseudacris feriarum, diverged
to maximize differences from the heterospecific assem-
blage present, ultimately promoting reproductive isolation
between conspecific populations via sexual selection. Eco-
logically adaptive traits can also promote divergence if
divergence has a pleiotropic effect on reproductive isola-
tion via assortative mating; so called ‘magic traits’ [34]. In
R. philippinensis assortative mating has evolved between
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size morphs as a by-product of selection for different
frequencies used to exploit different prey sizes [70].
The significant and consistent sexual dimorphism we
observe in the RFs of R. capensis (female’s echolocate
at higher frequencies than males: Table 1), may serve
a role in sex-specific communication in the species.
Recent experimental evidence reveals that horseshoe
bats (R. euryale and R. mehelyi) and emballonurid
bats (Saccopteryx bilineata) are indeed able to recognise
the sex of conspecifics based on their echolocation calls
[44,156]. Thus, the limited gene flow between LS and
other populations may be a consequence of LS bats not
effectively recognizing other R. capensis as potential
mates. Divergence in RF may have under-appreciated con-
sequences for the evolution of reproductive isolation via
female preference for male RFs in different populations of
horseshoe bats. Evaluating female preference in LS bats
for local versus allopatric RFs may provide intriguing
insights into the causes and consequences of sexual selec-
tion in horseshoe bats. Finally, because R. damarensis only
occurs in sympatry with R. capensis at a single site (LS),
we were not able to test whether habitat or the presence
of R. damarensis offered a better explanation for RF differ-
entiation in R capensis. An experimental approach is
required to test whether R. capensis has shifted its RF
to avoid acoustic overlap with R damarensis. Such an
approach would evaluate whether R. capensis from LS
responds differentially to the echolocation calls of hete-
rospecifics and acoustically divergent conspecifics using
playback experiments.

At a ‘local to regional’ scale geographic distance is not
a significant barrier to gene flow in R. capensis, and the
evolution of sensory divergence in the presence of this
gene flow may also reflect a degree of adaptive pheno-
typic plasticity in RF. Despite the tight coupling between
RF and the acoustic fovea in high duty cycle bats [45],
empirical studies have shown that species are able to
shift their RF’s in response to both neighbouring conspe-
cifics (maximum shift 3.9 kHz: [46]) and different ambi-
ent noise conditions (maximum shift <0.5 kHz: [81]).
Such small shifts in frequency may explain the range of
RF variation in the southern and eastern populations of
our study (approximately 3 kHz) where plasticity in re-
sponse to slightly varying degrees of vegetation clutter
towards the east might occur. However, it is unlikely to
explain the 9 kHz shift in the Lekkersing bats. Nonethe-
less, it appears that southern and eastern populations of
R. capensis use RF’s within the best hearing range of the
acoustic fovea of their nearest neighbours, possibly facili-
tating gene flow and promoting relatively flexible RF’s in
these populations. While small shifts in the acoustic
fovea and its corresponding reference frequency are
possible in high duty cycle bats [46,81], we do not know
the precise limits of the flexibility of the acoustic fovea.
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Long-term experimental studies evaluating the change
in RFs in response to the RFs of bats from acoustically
divergent populations may shed light on the degree of
plasticity in this system. Alternatively, the relative influ-
ence of plasticity versus selection can be evaluated indir-
ectly. For example, selection may better explain our
observations if variation in functional genes involved in
hearing co-varies with RF variation across populations.
Recent studies reveal a wide range of candidate hearing
genes which show strong signals of ancestral positive
selection in the evolution of echolocation in bats and
cetaceans [157,158]. Selection may also be favoured as
an explanation for variation in RF if there is a strong
correlation, independent of variation in body size, be-
tween RF and morphological features directly involved
in echolocation production and emission (such as dorsal
nasal chambers) [47]. Previous research investigating
morphological correlates of RF in R. capensis revealed
that RF is best predicted by nasal chamber length [73],
but a thorough evaluation of skull morphology variation
across the distribution of the species is required. The
social life of bats may also influence the relative roles of
diversifying selection versus plasticity across the dis-
tribution of a species. If bats are able to recognise
conspecific calls from a range of acoustically diver-
gent populations this might suggest that selection for
some degree of plasticity in the trait is also favoured.
Classic playback experiments can be used to assess
the sensitivity of individuals to the range of frequencies
exhibited by a species. These two hypotheses are clearly
not mutually exclusive; and their relative influences across
the highly heterogeneous environments of R. capensis
certainly merit further attention.

Conclusions

This study reveals significant sensory trait variation in
the Cape horseshoe bat despite substantial historical
gene flow. While genetic and geographic distances do
influence sensory variation to some extent, our results
suggest that differences in habitat complexity across the
range of the Cape horseshoe bat may be the dominant
driver of sensory differentiation in this system. Classical
divergent selection together with some degree of pheno-
typic plasticity may be responsible for RF variation in
the presence of gene flow. However, an investigation of
the variation in foraging behaviour within and between
populations of the Cape horseshoe bat is required to
support our results. Nonetheless, our findings high-
light the importance of population level analyses to
elucidate the complex interactions among selection,
plasticity and gene flow in the evolution of adaptive
trait variation and reveal a number of interesting avenues
for future research into the evolution of this remarkable
sensory system.



Odendaal et al. BMC Evolutionary Biology 2014, 14:60
http://www.biomedcentral.com/1471-2148/14/60

Additional files

Additional file 1: Figure S1. Map of the biomes of South Africa
together with the geographic locations of the 11 populations of
Rhinolophus capensis sampled in this study Biomes are from Rutherford
et al. [84] and lines indicate the approximate positions of the different
rainfall zones of South Africa: Solid line indicates the winter rainfall zone;
dashed line indicates all year rainfall zone; and the rest of South Africa
receives summer rainfall. The key to population acronyms are found in
Table 1.

Additional file 2: Table S2. Climatic variables for each population and
the mean detection distances for prey and background vertical targets
(leafy vegetation edge). Detection ranges calculated from the method
of Stilz and Schnitzler [110] (http://134.2.91.93/~peter/calculator/range.
php). The size range of prey taken by R. capensis at De Hoop is 2-19 mm
[67] and this covers the range of small, medium and large prey in [110].
Climatic data were obtained from the nearest weather stations and pro-
vided by the South African Weather Service.

Additional file 3: Figure S2. The distribution of 39 unique haplotypes
across the 11 populations of Rhinolophus capensis sampled in this study.
Key to acronyms given in Table 1.

Additional file 4: Table S2. Genetic variability in 11 populations of
Rhinolophus capensis based on 519 bp of the mitochondrial control
region. Haplotype diversity (Hd), number of haplotypes, nucleotide
diversity () and number of polymorphic sites are shown.

Additional file 5: Figure S3. Neighbour-net network based on
p-corrected distances of the 39 unique haplotypes isolated in this study.
Each circle represents a unique haplotype coloured according to the
biome/s in which it occurs. Pie graphs indicate where haplotypes are
shared across several biomes.

Additional file 6: Table S3. Lower and upper profile likelihood

percentiles of M, the number of immigrants per generation scaled by
mutation rate, calculated in Migrate-N (Beerli [120]).
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