BNMIC Evolutionary Biology

Research article

Evolution of phage with chemically ambiguous proteomes
Jamie M Bacher!4, James ] Bull}2 and Andrew D Ellington*!.3

O

BiolVled Central

Address: !Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA 78712, 2Section of Integrative Biology,
University of Texas at Austin, Austin, TX, USA 78712, 3Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA

78712 and “The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA 92037

Email: Jamie M Bacher - jbacher@scripps.edu; James J Bull - bull@bull.biosci.utexas.edu;
Andrew D Ellington* - andy.ellington@mail.utexas.edu

* Corresponding author

Published: 10 December 2003
BMC Evolutionary Biology 2003, 3:24

Received: 24 June 2002
Accepted: 10 December 2003

This article is available from: http://www.biomedcentral.com/1471-2148/3/24

© 2003 Bacher et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all

media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background: The widespread introduction of amino acid substitutions into organismal
proteomes has occurred during natural evolution, but has been difficult to achieve by directed
evolution. The adaptation of the translation apparatus represents one barrier, but the multiple
mutations that may be required throughout a proteome in order to accommodate an alternative
amino acid or analogue is an even more daunting problem. The evolution of a small bacteriophage
proteome to accommodate an unnatural amino acid analogue can provide insights into the number
and type of substitutions that individual proteins will require to retain functionality.

Results: The bacteriophage Qp initially grows poorly in the presence of the amino acid analogue
6-fluorotryptophan. After 25 serial passages, the fitness of the phage on the analogue was
substantially increased; there was no loss of fitness when the evolved phage were passaged in the
presence of tryptophan. Seven mutations were fixed throughout the phage in two independent
lines of descent. None of the mutations changed a tryptophan residue.

Conclusions: A relatively small number of mutations allowed an unnatural amino acid to be
functionally incorporated into a highly interdependent set of proteins. These results support the
‘ambiguous intermediate' hypothesis for the emergence of divergent genetic codes, in which the
adoption of a new genetic code is preceded by the evolution of proteins that can simultaneously
accommodate more than one amino acid at a given codon. It may now be possible to direct the
evolution of organisms with novel genetic codes using methods that promote ambiguous

intermediates.

Background

Organismal proteomes are generally thought of as being
chemically distinct, in the sense that a genetic code is
maintained by codon:anticodon interactions and the spe-
cificities of aminoacyl-tRNA synthetases will almost
always lead to the translation of mRNAs into proteins of
defined sequence and chemical composition. While alter-
native codes are known [1], these also yield chemically

distinct proteomes. The evolution of an organism with
novel codon:anticodon interactions and aminoacyl-tRNA
synthetase specificities may produce proteins whose
sequences and compositions differ from those generated
by an organism with the 'Universal' code, but still will not
produce proteins that have multiple, different amino
acids at a given sequence position.
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This chemical distinctness of organismal proteomes is
maintained by the relatively low rate of amino acid misin-
corporation that occurs during protein biosynthesis.
Many aminoacyl-tRNA synthetases have been found to
have at least a thousand-fold preference for their cognate
amino acid, after editing (reviewed in [2]). EF-Tu further
discriminates between cognate and non-cognate
codon:anticodon pairs prior to and after GTP hydrolysis
[3]. Because of these mechanisms, the overall error rate for
amino acid insertion into proteins is typically at least 3 x
103, and frequently lower [2-4].

Although amino acid misincorporations seldom occur in
Nature, chemically ambiguous proteomes can be gener-
ated in laboratory settings. Many aminoacyl-tRNA syn-
thetases will efficiently charge tRNA molecules with
amino acid analogues [2]. In particular, the ability of the
Bacillus subtilis tryptophanyl-tRNA synthetase to discrimi-
nate against fluorine-substituted analogues of tryptophan
has been examined. Discrimination against 4-fluorotryp-
tophan (4fW) was only 6-fold, while discrimination
against 6-fluorotryptophan (6fW) was 20-fold [5]. Con-
sistent with this, Escherichia coli strains that are transiently
grown in the presence of high concentrations of fluorot-
ryptophan analogues will incorporate a mixture of natural
and unnatural amino acids throughout their proteomes
[6-10]. Similarly, norleucine and norvaline have been
shown to be synthesized as side-products of branched
chain amino acid biosynthesis [2]. Norleucine is incorpo-
rated with alacrity into proteins, replacing up to 20% of
methionine residues once methionine has been exhausted
during protein overexpression [11,12].

Such chemical ambiguity typically extracts a phenotypic
cost. An E. coli auxotroph selected to grow continuously
on a high proportion of 4fW [6] accumulated 5 (identi-
fied) mutations in three genes responsible for tryptophan
incorporation (tryptophanyl tRNA synthetase, aromatic
amino acid permease, and a transcriptional repressor of
aromatic amino acid permease). Nonetheless, the evolved
strain grew extremely poorly, and had a doubling time of
over a day. E. coli mutants selected to grow with cysteine
incorporated at a valine codon accumulated mutations in
the editing domain of valyl-tRNA synthetase [13].
Increased mischarging led to the substitution of 24% of
valines with aminobutyrate. Finally, the yeast Candida
spp. has been found to ambiguously (albeit inefficiently
[14]) translate the leucine codon CUG as serine [15]. This
ambiguous tRNA was transferred to Saccharomyces cereve-
siae on a plasmid, and the dual incorporation of serine
and leucine throughout the yeast proteome resulted in a
50% decrease in growth rate [16].

The design or evolution of organisms with novel genetic
codes has been undertaken by a number of groups
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[6,13,17-19]. One potential route to the evolution of an
organism with a novel genetic code is to initially select for
the mixed incorporation of natural and unnatural amino
acids throughout the proteome [6]. Growth defects that
arise from the misincorporation of the amino acid ana-
logue can potentially be ameliorated by the evolution of
those proteins whose functions are inhibited by the ana-
logue. Such chemically ambiguous proteomes might then
further evolve over time to fully incorporate the analogue.
In order to better understand the initial route of adapta-
tion of an organismal proteome to chemical ambiguity,
we chose to adapt a simple proteome, that of bacteri-
ophage Qp, to function in the presence of an amino acid
analogue.

Results and Discussion

The evolution of phage that could utilize or tolerate an
amino acid analogue required the availability of a host
that could grow on the analogue. We and others have pre-
viously shown that E. coli can be grown in high concentra-
tions of fluorotryptophan analogues, with concomitantly
high incorporation of the analogues into cellular proteins
[6-10]. The replication of QP phage was therefore exam-
ined in an E. coli auxotroph grown in the presence of a
series of tryptophan analogues. The number of doublings
in 20 hours was used as a measure of fitness, and was
determined using a standardized assay. While most ana-
logues did not seem to affect phage growth, 6fW signifi-
cantly depressed Qf fitness, decreasing the number of
doublings by ca. 10-fold in a standard assay (Figure 1).
This is equivalent to an approximately 180 million-fold
smaller increase in titer over 20 hours. We therefore chose
to adapt phage to 95% 6fW. As expected based on previ-
ous experiments with tryptophan analogues, 6fW was
found to be incorporated into cellular proteins at a level
of approximately 60%, irrespective of whether a single,
isolated protein or the bacterial proteome was analyzed
(Table 1).

Initially, two replicate lines of phage were evolved over
ten serial passages in tryptophan alone, to help ensure
that any mutations that were adaptive for the growth con-
ditions alone would sweep the population in advance.
Both lines were split and then further evolved over an
additional 15 rounds of selection in W or an additional 25
rounds of selection in 95% 6fW (see also Figure 2). After
25 serial passages the fitness of both replicate lines
increased by slightly more than 4-fold on the analogue.
The kinetics of fitness improvements were quite different
between the replicate lines (Figure 3), indicating that the
phage may have taken different evolutionary paths to sim-
ilar phenotypes. Variant lineages have previously been
observed during the natural or directed evolution of other
phenotypes, including the evolution of drug-resistant
HIV-1 [20], the evolution of $X174 bacteriophage with
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Fitness of ancestral and selected phage on various tryptophan analogues. Ancestral and round 25 selected phage were tested
for fitness on eight additional tryptophan analogues (95% analogue, 5% W) for Line | (left) and Line 2 (right). Analogues used
were 4-fluorotryptophan (4fW), 5-fluorotryptophan (5fW), 4-methyltryptophan (4MeW), 5-methyltryptophan (5MeW), 6-
methyltryptophan (6MeW), 7-methyltryptophan (7MeW), 5-hydroxytryptophan (50OHW) and 5-methoxytryptophan
(5MeOW). Data for fitness on 95% 6fW and W are taken from Figures 3 and 5 respectively. Error bars represent standard

deviations of at least three replicates.

Table I: Incorporation of 6fW into proteins.

Method of Analysis %6fW Incorporation

Whole-cell Protein Extract

- HPLC-ESI 56.5
- HPLC-HPLC 66.7
Purified GFPuv

- HPLC-ESI 68.6
Average % Incorporation 64.0

altered host ranges and thermal optima [21], and the evo-
lution of ribozymes that could cleave a novel substrate
[22]. The increase in fitness appeared to have leveled off
after 25 rounds of selection in at least one of the lines (Fig-
ure 3), and the selection was therefore stopped and the
population further characterized.

In order to more closely discern similarities or differences
in the evolutionary paths taken by the phage, the genomes
of populations of ancestral and evolved phage, as well as

genomes of individual variants from the evolved popula-
tions, were isolated and sequenced (Figure 2, Figure 4). All
phage apparently had a number of sequence differences
relative to a previously published sequence of Qf phage
(A558C, A1607G, A2111G, C2944T, T3229C, C3712T,
C4019T) [23]. However, the sequences we have deter-
mined are consistent with other published sequences of
the coat and Al proteins (Medline accession number
M99039) and the replicase protein (accession number
X14764). While bacteriophage Qf can evolve extremely
quickly, we believe that our sequences represent the first
complete, accurate, and electronically accessible sequence
of the bacteriophage genome, and the first detailed exam-
ination of the genome of a Qf quasi-species. Nonetheless,
it should be noted that prior to the development of RNA
sequencing techniques, Domingo et al. [24] used RNase
T1 fingerprinting to demonstrate that bacteriophage Qf
was in fact a quasi-species in which the genome was "a
weighted average of a large number of different individual
sequences."

Replicate experiments were carried out in parallel on tryp-

tophan media. In these lines, only one mutation, P160S
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Qp proteins are:

Line 1 Coat,

Figure 2

, Replicase

Line 2

Genotype changes over the course of the selection. A phylogeny of the two lines, along with associated mutations, is shown.
Evolution on W is in black, while selection carried out on 6fWV is indicated in red; the number of cycles of selection are indi-
cated beside the lines. Mutations are color coordinated as indicated at the bottom of the figure; mutations in green are in A2,
black is the coat protein, orange indicates a mutation in Al, and green in the replicase; genotypes with no mutations are indi-
cated by 'wt.' Lower case mutations correspond to base changes; upper case indicates protein substitutions.

in the A1 protein, was fixed; this mutation was not found
in the lines evolved on 6fW (Figure 2). Interestingly, pro-
line and serine seem to toggle back and forth at position
160 during the passage of the population. It may also be
that these mutations do not alternately sweep the popula-
tion, but instead vary between high (detectable at the pop-
ulation level) and low (undetectable) frequencies over
time. Mutations that cyclically appear have been observed
during the evolution of other phage, although usually as
a result of iterative passages between different environ-
mental conditions (for example, see [25]). Finally, the
dominant genomic sequence of these populations is iden-
tical, except for the variable presence of P160S substitu-
tions in A1. This being the case, we expect that the fitness
level of the unselected population, the population after
ten rounds of selection on W, and the population after fif-
teen additional rounds of selection on W to be highly
comparable.

Given this control, it is likely that the mutations that were
fixed at the population level during growth on 6fW were
adaptive. Each evolved population had seven mutations
that were either fixed or at high frequency, although only
two of these mutations were common to both lines (Fig-
ure 2). There were some discrepancies between the muta-

tions found in the population and the mutations
identified in individual isolates. Mutations that appeared
to be fixed at the population level were found to be miss-
ing from either one clone (one instance) or two clones
(from different lines, one instance). Conversely, there
were two mutations (i.e., t66a and a3309t = I320F in the
replicase) that appeared in two clones, but did not appear
at the population level.

On average, individual clones from the two populations
had 13 mutations (standard deviation of 3.4), 7 fixed
mutations and 6 mutations that were unique to a given
isolate. Some isolates contained only 2 unique mutations
while others had up to 10 unique mutations. A total of
more than 50 unique mutations were found. Qf phage is
typically thought of as an error-prone, quasi-species com-
prised of numerous different variants, and it has been esti-
mated to have mutation rates as high as 6.5 nucleotide
substitutions per genome per replicative cycle [26,27].
While our results are also consistent with considering Qf3
a quasi-species [24], they may also support the hypothesis
that selection is continuing to act on a transient popula-
tion of variants, especially in line 2, in which fitness may
still be increasing. In support of this hypothesis, the final

Page 4 of 12

(page number not for citation purposes)



BMC Evolutionary Biology 2003, 3

18
16 l
14 * ’]‘
r B
& 12 L e
£ 10 . y 1
S s L i
(@) ¢
S g } : P
L
: A T ‘l"' M line 1
f = ® line 2
0 ! i a3 { P A ) { aaa l g :

I
0 5 10 15 20 25
round of selection

Figure 3

Fitness of selected populations on 95%6fW. Populations
were tested for fitness on 95%6fWV at various points over the
course of the selection. Error bars represent standard devia-
tions of at least three replicates.

population of line 2 was found to have a greater variabil-
ity when assayed for fitness on W (Figure 1, Figure 5).

Amino acid substitutions were distributed throughout the
phage genome (Figure 4, Figure 6a), but the improvement
in fitness on 6fW occurred without the isolation of a sin-
gle mutation in a tryptophan codon, either at the popula-
tion level or in individual clones. Interestingly, the coat
protein contained no tryptophans, and was also found to
contain no fixed amino acid substitutions. However the
fact that this gene is short and would therefore have accu-
mulated fewer random mutations may also explain this
phenomenon. In contrast, the read-through protein Al
contained two fixed amino acid substitutions, S221R and
T223N. However, it should be noted that while the S221R
substitution was consistently found at the population
level it was not found in either clone 1 of Line 1 or clone
3 of Line 2. Because the recombination frequency of Qp
phage is known to be low (on the order of 10-8[28]), it is
possible that S221R may be a mutation which was acci-
dentally fixed along with another, truly adaptive muta-
tion, and was in the process of being slowly diluted out of
the population. Each of the replicate lines also had addi-
tional amino acid substitutions that were fixed at the pop-
ulation level. An amino acid substitution (P149L) was
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found in the A1 protein in Line 2, there were two different
amino acid substitutions (one in each line) in the A2 pro-
tein, and two different amino acid substitutions in the
replicase. Sequence alignments of the replicase genes from
QpB, SP, MS2 and GA, representing the four serotypes of
RNA phage, revealed a number of regions of high conser-
vation [29,30]. The F380L substitution in the replicase
protein of Line 2 occurred in what was otherwise a phylo-
genetically conserved residue. Similarly, the amino acid
substitutions D250N (clone 3, Line 2) and L290P (clone
3, Line 1) occurred in highly conserved residues. That
appearance of mutations in otherwise highly conserved
residues strongly suggests that these mutations were adap-
tive. By comparison, 1320F, found in clones 1 and 3 of
Line 1, substituted the residue found in Group B single-
stranded RNA phage for the residue found in Group A,
suggesting that this substitution is functionally conserva-
tive [29,30].

The simplest explanation for these results is that the
amino acid substitutions in the three Qf proteins some-
how compensated for intramolecular disruptions due to
the incorporation of 6-fluorotryptophan or for
intermolecular disruptions with fluorinated E. coli pro-
teins. A number of interactions between phage and host
proteins have been described. Interactions between Qf
replicase and various E. coli proteins are known, including
EF-Tu, EF-Ts, ribosomal protein S1, and an RNA-binding
protein called Hfq [31-33]. A2 is known to interact with
MurA and inhibit cell wall biosynthesis, resulting in cell
lysis [34]. Finally, the entry of Qp phage is mediated by
the F-pilus. A2 binds to the pilus and uses it for transport
of the genome. The read-through protein Al is also
required for this process [30], although its precise func-
tion is not yet known [35,36].

The identification of five fixed yet silent substitutions
(three in Line 1 and two in Line 2; Figure 6b) was
consistent with results from previous directed evolution
experiments with QB and the related RNA phage MS2,
which indicated that mutations affecting RNA structure
could be as or more important than those affecting pro-
teins. For example, when a hairpin structure that controls
the expression levels of the MS2 coat protein was mutated,
compensatory mutations were recovered that restored the
hairpin [37]. Eight of the selected MS2 operator muta-
tions were silent and retained the wild-type amino acid
sequence of the coat protein; only one altered the amino
acid sequence [37].

Since it is clear that the secondary structures of RNA phage
are under selective pressure, it is formally possible that the
amino acid substitutions we observed were not important
in and of themselves, but rather were by-products of the
evolution of an altered RNA structure. Both the S$221R and
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Figure 4

Specific mutations found in QB phage selected on W and 6fW. Of the upper portion of the figure, the first column indicates the
protein affected by mutations, the second column indicates the specific genetic mutation and the third column indicates the
expected protein mutation. Later columns represent specific populations or clones as indicated. Mutations indicated in the sec-
ond and third columns are present in the phage in question if a particular cell is filled with the color corresponding to the spe-
cific protein in question, as indicated in the first column. The lower portion of the figure presents a summary of the mutations
found.
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Fitness of selected populations on W. Populations were
tested for fitness on W at various points over the course of
the selection. Error bars represent standard deviations of at
least three replicates.

T223N substitutions in the QB Al protein occur succes-
sively in a stem-loop structure [38]. The U2006G (S221R)
mutation converts an A:U base-pair into an A:G mis-
match, while the C2011A (T223N) mutation converts a
G:C base-pair to a G:A mismatch. However, given that
both of these mutations would be expected to destabilize
the stem structure, it is telling that no non-coding muta-
tions were found that would similarly destabilize this
structure. Moreover, if silent mutations were involved in
functional alterations of RNA structure then it might be
expected that compensatory base-pairing mutations
would have been observed. For example, when Qp§ was
selected to grow in a hfg host a G:C base pair was found to
be mutated to an A:U base pair [31,39]. This covariation
destabilized the 3'-terminus of the plus strand and pro-
moted melting of the phage RNA structure, a function
ascribed to Hfq. No such compensatory base-pairing
mutations were found in our selection. Overall, the sim-
plest explanation for the fixation of amino acid substitu-
tions is that that these substitutions preserved the stability
or function of QP proteins in the presence of a mixture of
W and 6fW.

Additional experiments revealed that the adaptive muta-
tions allowed the phage to better tolerate a mixture of
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Distribution of mutations in the Q3 genome. (A) Missense
and (B) Silent mutations are mapped onto the genome of Q.
Short bars represent locations of codons for tryptophan,
mid-sized bars represent mutations found only in clones and
full-height bars represent mutations found in populations.
Mutations extending upwards show mutations found in Line
I, while mutations extending downwards from the genome
represent mutations found in Line 2.

tryptophan and 6-fluorotryptophan, without loss of fit-
ness on the wild-type amino acid (Figure 5). Moreover, fit-
ness remained the same or improved slightly when
evolved phage were assayed on eight other tryptophan
analogues (Figure 1). The retention of fitness under mul-
tiple growth conditions was not a foregone conclusion.
For example, when ¢$X174 phage were adapted to grow on
Salmonella typhimurium, they lost the ability to infect E. coli
C [25]. E. coli adapted to grow on glucose elicited no
growth improvement on maltose [40,41]. While the same
bacteria evolved to grow at 37°C lost fitness at tempera-
tures further from optimal, they gained fitness at nearby
temperatures [42]. One likely explanation for the lack of a
trade-off during growth on the unnatural amino acid is
that the natural amino acid was still present, and thus any
given tryptophan codon would have had to accommodate
both compounds at some point in the evolutionary his-
tory of the phage. This may also explain why there was no
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loss of fitness on a number of other tryptophan
analogues.

The most important aspect of these results, though, is that
they reveal that it is unlikely that the original diminution
in phage fitness and subsequent evolutionary recovery
were a consequence of the diminished growth rate of the
host on the unnatural amino acid. Strain C600p, a strain
of E. coli closely related to the host strain used here, has
been shown to grow robustly in 95%6fW, but approxi-
mately half as well in 95%4fW [6]. In contrast, Qp phage
grew poorly on hosts grown in 95%G6fW, but grew as well
in hosts grown in 95%4fW as hosts grown in pure tryp-
tophan (Figure 1). Thus, it is the effects of the amino acid
on the phage itself that seem to be functionally important,
as opposed to any indirect effects due to changes in host
fitness.

Overall, these results have implications for the origins of
alternate genetic codes. Several competing hypotheses for
codon reassignment have been proposed (reviewed in
[43]). The first of these hypotheses, the 'disappearing
intermediate’ hypothesis [44-46], posits that certain
codons were eliminated by genetic drift throughout
genomes that evolved skewed GC or AT contents.
Following codon loss, relevant tRNA adaptors became
functionless and were deleted. At some later point in evo-
lution sequence composition changed again, and a differ-
ent tRNA adaptor duplicated, mutated at the anticodon
position, and recaptured the codon which had previously
disappeared. A variant of this hypothesis suggests that
evolutionary pressure on a number of genotypic charac-
teristics, including genome size and organization as well
as composition, may have influenced codon reassignment
[47].

Alternatively, in the 'ambiguous intermediate' hypothesis
[48-50] a duplicated and mutated tRNA could recognize a
normally non-cognate codon and insert its amino acid in
competition with the cognate amino acid. Propagation of
organisms with ambiguous proteomes could occur if the
non-cognate amino acid were either close to selectively
neutral or provided a net selective advantage that over-
came any deficits in the function of individual proteins.
The further evolution of those proteins whose functions
were compromised by amino acid substitutions would
eventually repair any minor decreases in fitness.
Following the adaptation of individual proteins, a discrete
but altered genetic code could be re-established.

In our system, incorporation of the amino acid analogue
was beneficial relative to growth in the presence of low or
no tryptophan, yet still caused a decrease in phage fitness.
This is analogous to the finding that a yeast tRNA that
ambiguously encoded serine and leucine allowed growth
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in diverse environments, yet also led to a 50% decrease in
growth rate [14-16]. Thus, the requirements for an exper-
imental test of the ambiguous intermediate hypothesis
were established. The fact that fitness deficits in the phage
Qp proteome were overcome by amino acid substitutions
unrelated to the ambiguous amino acid itself strongly
supports the 'ambiguous intermediate' hypothesis. The
evolved phage are a plausible, experimental example of
the penultimate step in amino acid substitution under the
ambiguous intermediate model. By way of comparison, a
failure to isolate phage with increased fitness on 6fW or
the widespread elimination of tryptophan codons would
have indicated that codon ambiguity was not an accepta-
ble evolutionary path. Of course, the substitution of an
even more chemically dissimilar amino acid might have
generated an intractable barrier to evolution.

Conclusion

As in the natural selection of an ambiguous intermediate,
evolutionary engineering of an unnatural organism
should occur in stages. First, the incorporation of an
unnatural amino acid into a proteome, and second the
adaptation of the proteome to the unnatural amino acid.
Previous experiments have focused largely on the first
stage. Taken together, our experiments now suggest that
while amino acid ambiguity is poorly tolerated initially, a
secondary, proteomic adaptation to ambiguity is possible.
Of course, the number of proteins in the phage proteome
is of course small relative to larger, organismal proteomes.
In this regard, our results with Qf phage can be seen as
either discouraging or encouraging. From one vantage, the
fact that three of the four Qp proteins accumulated substi-
tutions in order to increase the fitness of the phage may
imply that literally thousands of independent mutations
may be required to isolate organisms that can fully utilize
unnatural amino acids. Alternatively, only a few proteins
critical for growth may need to adapt to chemical ambigu-
ity, and the highly interdependent phage proteins may
therefore all have been under selection pressure. This lat-
ter interpretation is most in keeping with the single exam-
ple of an organism that has been evolved to have an
altered genetic code. Starting with a B. subtilis auxotroph,
Wong evolved a strain that could not only fully substitute
4fW throughout its proteome, but actually preferred 4fW
for growth [19]. While the number and type of genomic
mutations responsible for this phenotype are not known,
the strain was generated via only four sequential rounds of
mutation and selection. The most parsimonious hypothe-
sis for these results, that only a few key proteins in the bac-
teria were mutated, is consonant with our observation
that a relatively small number of mutations were required
to adapt the QP phage proteome for chemical ambiguity.
Irrespective of whether critical targets were spread
throughout an organismal proteome or concentrated in
the highly interdependent phage proteome, these targets
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Table 2: Oligonucleotides used for reverse transcription, PCR amplification and sequencing of the Q3 genome.

Oligo name Position on phage genome Sequence (5' --> 3")

Qb52 1-40 GGGGACCCCCTTTAGGGGGTCACCTCACACAGCAGTACTT
SeqlA 385411 GCGAACCTTGTCATTAATGACTTTCTG
SeqlrevA 510486 CATAGTGCCATACTTGGCATTAAAC
Seq2A 826852 GCCGTTGCTTACTTTAAACTGAAAGGG
Qb.rtA3 948-928 GGACACAGGCCGAAGGGAACC

Seq3A 12951315 TTTTATTAACCCAACGCGTAA

Qb.rtA4 1427-1401 ATTTACCCCACGCGGATTGAGGACCAG
Seq4A 1730-1752 GAACCCAGCGTATTGAACACTGC
Qb.rtA5 1948-1922 ACATCAAATTCGCGAGGCTGGAGTTCA
AmpB 1998-2020 CGGCTTAGTTATACCACGTTCCG
Qb.rtA 2190-2171 CGCTAAGAGAGCAATAAGCA

SeqlB 2374-2392 GTAACTCTCTCAGCGCACAA

SeqlrevB 2495-2470 AGAGTTAAATGGCGACTGACCATAGG
Seq2B 2820-2841 GGTGCTACAACAACGAATAACC
Qb.rtB4 2947-2925 CGAAGATGTGTAAAGCTATGGTC

Seq3B 3280-3303 CTGACGGTATGTGTTGTTACCTACG
Qb.rtB3 3385-3364 TCACAAACGGAACGAGCGAGAG

Seq4B 3738-3760 ATACCTGATGGTTACGGTGATGG
Qb.rtB2 3852-3828 GGTCCCTTGTATGGTCCGTAATCAC
3'Qb-pTlink 4217-4201 B-AAAAAAAAAAAAAAAAAATGGGAGGAGAGAGGGCA?

aThe primer 3'Qb-pTlink has a 5' biotin and poly-A tract. While this oligo was used for amplification and sequencing, these features were not

required for either process.

evolved in response to the change in the genetic code. The
evolution of phage with chemically ambiguous pro-
teomes now provides a springboard to the evolution of
phage with novel genetic codes, and a means to quantify
the relative evolutionary costs of such changes.

Methods

Strains, reagents, and media

Qp bacteriophage was a gift of D. R. Mills (Health Science
Center at Brooklyn, State University of New York). E. coli
C600F (thi-1 thr-1 leuB6 lacY1l tonA21 supE44 mcrA 4
trpE F'kanR) was a gift of 1. J. Molineux (University of
Texas at Austin). The strain C600F(DE3) was constructed
using the DE3 lysogenization kit (Novagen, Madison,
WI). Media were as described [6]; 6fW and other tryp-
tophan analogues were from Sigma (St. Louis, MO).
Oligonucleotides used in these experiments are listed in
Table 2 and were obtained from IDT (Coralville, IA).

Selection on W

Each round of selection consisted of plating approxi-
mately 1000 plaque-forming units with C600F on
MIBITLW + Kn. Once plaques were visible, top agar was
scraped off of the plate and incubated with 5 ml of PBS at
37°C for 15'. Chloroform (5 ml) was added and the
solution was mixed thoroughly with a vortex. Organic and
aqueous phases were separated by centrifugation at 6000
rpm for 15'. The aqueous phase was filtered through a
0.22 um filter (Pall Gelman Laboratories, Ann Arbor, MI)

to a fresh tube and two aliquots (1 ml each) were taken for
storage. Phage were titered on LB + Kn, and diluted appro-
priately such that approximately 1000 plaque-forming
units were used for subsequent rounds of selection. This
process was repeated for twenty-five cycles.

Selection on 95% 6fW

Phage from round 10 of the selection on MIB1TLW + Kn
plates were further selected for 25 rounds on
MIB1TL95%6fW + Kn plates. Since plaques were never
visible, each round of selection was carried out for a stand-
ard 20 hours. PBS (2 ml) was used to recover the phage,
and 100 pl of solution was used in the subsequent rounds
of selection. Phage were titered with C600F on LB + Kn.
The phage solution was not extracted with chloroform.

Fitness assays

Host bacteria for fitness assays were grown up in LB + Kn
to a concentration of approximately 108 colony-forming
units/ml. The culture was spun down and resuspended in
1/100 volume of 20% glycerol, aliquoted, and stored at -
80°C. Aliquots were thawed as needed and grown for 1
hour in 100 volumes M9B1TLW + Kn before plating. This
procedure served to standardize the physiological state of
cells used for assays.

After 1 hour of growth, bacteria were plated with ca. 1000
phage from the population being assayed. Plates varied in
terms of what amino acids or analogues were added, but
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were always M9BITL + Kn. After 20 hours of growth at
37°C, the top agar was scraped away, and phage were
eluted in PBS (2 ml), spun down at 6000 rpm for 15', and
phage were titered on LB + Kn in parallel with phage
stocks used to initiate the fitness assay. Plaques were
counted and fitness was expressed as the number of dou-
blings in a 20 hour period according to the equation
log,(# of phage at end of assay) - log,(# phage at start of
assay).

Sequencing of phage genomes

Phage RNA genomes were purified essentially as previ-
ously described [51]. In brief, 100 pl of a solution of
phage, either directly from the selection or from a
population grown on C600F in LB, was extracted with
phenol:chloroform:0.1% SDS, chloroform extracted, eth-
anol precipitated, resuspended in 50 pl of water, and
passed through a Centri-Sep column (Princeton
Separations, Adelphia, NJ) to remove unincorporated
small molecules.

Purified phage genome was used for reverse transcription
(Superscript 1I RT kit, Invitrogen, Carlsbad, CA). In short,
10 pl of phage RNA, 9 pg of random hexamers and water
to a total of 21 pl was heated to 70°C for 3', placed on ice,
and the remainder of the reaction was assembled accord-
ing to the manufacturer's instructions. Reverse transcrip-
tion reactions were incubated for 1 hour at 42°C. A
portion of this reaction (4 pl) was used to seed polymer-
ase chain reactions (100 pl). Different reactions contained
different primers to amplify different portions of the
phage genome. PCR products were gel-purified (QIAquick
Gel Extraction Kit, Qiagen, Valencia, CA) prior to
sequencing. The complete sequence of the wild-type
phage genome has been deposited in GenBank (accession
number AY099114). The primers used for the amplifica-
tion of the genome limited our ability to identify
sequence changes to nucleotides 40-4200 of the phage
genome.

In some instances, phage were first grown on C600F in LB
+ Kn prior to reverse transcription and sequencing. In
order to ensure that growth on LB did not drastically affect
the distribution of phage genotypes, a 1.6 Kb region of the
phage genome was also sequenced from non-LB-grown
phage stocks. The sequences were found to be identical to
those from LB-grown phage stocks.

Determination of amino acid incorporation ratios

Global amino acid incorporation ratios were determined
from 100 ml overnight cultures of C600F grown on
MIBITLW + Kn or MIBITLI5%6fW + Kn. The bacteria
were spun down and lysed in 200 pl B-PERII (Pierce, Bev-
erly, MA). Half of this volume was passed through a Cen-
tri-Sep column. The eluant was dried down and

http://www.biomedcentral.com/1471-2148/3/24

hydrolyzed overnight in 5.4 M HCI, 10% thioglycolic acid
at 110°C under vacuum. Hydrolysates were again dried
down, and then resuspended in 50 ul of water. These
hydrolysates were analysed by HPLC-ESI at the Mass Spec-
trometry Facility at the University of Texas at Austin.
Hydrolysates were also analyzed by HPLC. Samples (20
pL) were injected onto a C-18 column and eluted with 50
mM NH,OAc, pH 5.0 in a 3% to 1% MeOH gradient.
Peaks were collected and lyophilized, followed by reinjec-
tion on the same column and developed with 0.1 M
NaH,PO,, pH 2.5, 10% MeOH. Identities of peaks that
absorb at 280 nm were confirmed by determining the elu-
tion times of standards.

Amino acid incorporation ratios in a single protein, green
fluorescent protein, were also determined. The gene for
the highly fluorescent protein GFPuv [52] (Clontech, Palo
Alto, CA) was PCR-amplified with Vent DNA polymerase
(NEB, Beverly, MA) with primers CFPA (5'-CACCACG-
GCCACTGTGGCCATGAGTAAAGGAGAAGAACTT-3')
and CFPB (5-GGCCATCGGGGCCCTATITGTATAGT-
TCATCCATGCC-3'"). The GFPuv gene was cloned into the
plasmid pET100/D/topo (Invitrogen) and transformed
into TOP10 cells. The resultant plasmid pET100GFPuv
was purified (QIAprep Miniprep Spin Kit, Qiagen) and
used to transform C600F(DE3). Overnight MIBITLW +
Kn + Ap cultures of C600F(DE3)+pET100GFPuv were
diluted 1:100 into 400 mL M9B1TLW + Kn + Ap. At mid-
log phase, cultures were split and spun down. Pellets were
resuspended in 200 mL of either MOB1TLW + Kn + Ap or
MIB1TL95%6fW + Kn + Ap, each with 1 mM IPTG and
grown for an additional 3 hours. Cultures were again spun
down, lysed in 3 mL B-PER, and purified on 3 mL Ni-NTA
columns at room temperature as recommended by the
manufacturer (Novagen). Purified GFPuv was hydrolyzed
as described above and analyzed by HPLC-ESI.

Abbreviations
4-fluorotryptophan, 4fW. 6-fluorotryptohan, 6fW.
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